Search results for: KERNEL PCA
-
Kernel PCA in Application to Leakage Detection in Drinking Water Distribution System
PublicationMonitoring plays an important role in advanced control of complex dynamic systems. Precise information about system's behaviour, including faults detection, enables efficient control. Proposed method- Kernel Principal Component Analysis (KPCA), a representative of machine learning, skilfully takes full advantage of the well known PCA method and extends its application to nonlinear case. The paper explains the general idea of KPCA...
-
Kernel PCA in Application to Leakage Detection in Drinking Water Distribution System
Publication -
Data-driven models for fault detection using kernel PCA: A water distribution system case study
Publication -
Optimising approach to designing kernel PCA model for diagnosis purposes with and without a priori known data reflecting faulty states
PublicationFault detection plays an important role in advanced control of complex dynamic systems since precise information about system condition enables efficient control. Data driven methods of fault detection give the chance to monitor the plant state purely based on gathered measurements. However, they especially nonlinear, still suffer from a lack of efficient and effective learning methods. In this paper we propose the two stages learning...
-
Data-driven models for fault detection using kernel pca:a water distribution system case study
PublicationKernel Principal Component Analysis (KPCA), an example of machine learning, can be considered a non-linear extension of the PCA method. While various applications of KPCA are known, this paper explores the possibility to use it for building a data-driven model of a non-linear system-the water distribution system of the Chojnice town (Poland). This model is utilised for fault detection with the emphasis on water leakage detection....