Search results for: MAXWELL’S EQUATIONS
-
Preconditioners with Low Memory Requirements for Higher-Order Finite-Element Method Applied to Solving Maxwell’s Equations on Multicore CPUs and GPUs
PublicationThis paper discusses two fast implementations of the conjugate gradient iterative method using a hierarchical multilevel preconditioner to solve the complex-valued, sparse systems obtained using the higher order finite-element method applied to the solution of the time-harmonic Maxwell equations. In the first implementation, denoted PCG-V, a classical V-cycle is applied and the system of equations on the lowest level is solved...
-
Signal propagation in electromagnetic media described by fractional-order models
PublicationIn this paper, signal propagation is analysed in electromagnetic media described by fractional-order (FO) models (FOMs). Maxwell’s equations with FO constitutive relations are introduced in the time domain. Then, their phasor representation is derived for one-dimensional case of the plane wave propagation. With the use of the Fourier transformation, the algorithm for simulation of the non-monochromatic wave propagation is introduced....
-
GENERAL DYNAMIC PROJECTING OF MAXWELL EQUATIONS
PublicationA complete – system of Maxwell equations is splitting into independent subsystems by means of a special dynamic projecting technique. The technique relies upon a direct link between field components that determine correspondent subspaces. The explicit form of links and corresponding subspace evolution equations are obtained in conditions of certain symmetry, it is illustrated by examples of spherical and quasi-one-dimensional waves.
-
Formulation of Time-Fractional Electrodynamics Based on Riemann-Silberstein Vector
PublicationIn this paper, the formulation of time-fractional (TF) electrodynamics is derived based on the Riemann-Silberstein (RS) vector. With the use of this vector and fractional-order derivatives, one can write TF Maxwell’s equations in a compact form, which allows for modelling of energy dissipation and dynamics of electromagnetic systems with memory. Therefore, we formulate TF Maxwell’s equations using the RS vector and analyse their...
-
Modelling and simulations in time-fractional electrodynamics based on control engineering methods
PublicationIn this paper, control engineering methods are presented with regard to modelling and simulations of signal propagation in time-fractional (TF) electrodynamics. That is, signal propagation is simulated in electromagnetic media described by Maxwell’s equations with fractional-order constitutive relations in the time domain. We demonstrate that such equations in TF electrodynamics can be considered as a continuous-time system of...
-
Electromagnetic-based derivation of fractional-order circuit theory
PublicationIn this paper, foundations of the fractional-order circuit theory are revisited. Although many papers have been devoted to fractional-order modelling of electrical circuits, there are relatively few foundations for such an approach. Therefore, we derive fractional-order lumped-element equations for capacitors, inductors and resistors, as well as Kirchhoff’s voltage and current laws using quasi-static approximations of fractional-order...
-
Efficiency of acoustic heating in the Maxwell fluid
PublicationThe nonlinear effects of sound in a fluid describing by the Maxwell model of the viscous stress tensor is the subject of investigation. Among other, viscoelastic biological media belong to this non-newtonian type of fluids. Generation of heating of the medium caused by nonlinear transfer of acoustic energy, is discussed in details. The governing equation of acoustic heating is derived by means of the special linear combination...
-
Efficiency of acoustic heating in the Maxwell fluid
PublicationThe nonlinear effects of sound in a fluid describing by the Maxwell model of the viscous stress tensor is the subject of investigation. Among other, viscoelastic biological media belong to this non-newtonian type of fluids. Generation of heating of the medium caused by nonlinear transfer of acoustic energy, is discussed in details. The governing equation of acoustic heating is derived by means of the special linear combination...
-
FDTD Method for Electromagnetic Simulations in Media Described by Time-Fractional Constitutive Relations
PublicationIn this paper, the finite-difference time-domain (FDTD) method is derived for electromagnetic simulations in media described by the time-fractional (TF) constitutive relations. TF Maxwell’s equations are derived based on these constitutive relations and the Grünwald–Letnikov definition of a fractional derivative. Then the FDTD algorithm, which includes memory effects and energy dissipation of the considered media, is introduced....
-
A Compact Basis for Reliable Fast Frequency Sweep via the Reduced-Basis Method
PublicationA reliable reduced-order model (ROM) for fast frequency sweep in time-harmonic Maxwell’s equations by means of the reduced-basis method is detailed. Taking frequency as a parameter, the electromagnetic field in microwave circuits does not arbitrarily vary as frequency changes, but evolves on a very low-dimensional manifold. Approximating this low-dimensional manifold by a low dimension subspace, namely, reduced-basis space, gives...
-
Geometry Parametric Model Order Reduction with Randomly Generated Projection Bases
PublicationIn this work, a reduced-order model for geometry parameters and fast frequency sweep is proposed. The Finite Element Method is used to solve time-harmonic Maxwell’s equations. Taking into account the electromagnetic field does not arbitrarily vary as a function of frequency and geometry parameters, a low dimension system manifold is identified. Thus, the original Finite Element problem can be approximated by a model of reduced...
-
Nonreciprocal cavities and the time-bandwidth limit: comment
PublicationIn their paper in Optica 6, 104 (2019), Mann et al. claim that linear, time-invariant nonreciprocal structures cannot overcome the time-bandwidth limit and do not exhibit an advantage over their reciprocal counterparts, specifically with regard to their time-bandwidth performance. In this Comment, we argue that these conclusions are unfounded. On the basis of both rigorous full-wave simulations and insightful physical justifications,...
-
Vortex flow caused by periodic and aperiodic sound in a relaxing maxwell fluid
PublicationThis paper concerns the description of vortex flow generated by periodic and aperiodic sound in relaxing Maxwell fluid. The analysis is based on governing equation of vorticity mode, which is a result of decomposition of the hydrodynamic equations for fluid flow with relaxation and thermal conductivity into acoustical and non-acoustical parts. The equation governing vorticity mode uses only instantaneous, not averaged over sound...
-
On possible applications of media described by fractional-order models in electromagnetic cloaking
PublicationThe purpose of this paper is to open a scientific discussion on possible applications of media described by fractional-order (FO) models (FOMs) in electromagnetic cloaking. A 2-D cloak based on active sources and the surface equivalence theorem is simulated. It employs a medium described by FOM in communication with sources cancelling the scattered field. A perfect electromagnetic active cloak is thereby demonstrated with the use...
-
Spurious Modes in Model Order Reduction in Variational Problems in Electromagnetics
PublicationIn this work, we address an everlasting issue in 2 model order reduction (MOR) in electromagnetics that has 3 remained unnoticed until now. Contrary to what has been 4 previously done, we identify for the very first time spurious 5 modes in MOR for time-harmonic Maxwell’s equations and 6 propose a methodology to remove their negative influence on the 7 reduced order model (ROM) response. These spurious modes 8 have nonzero resonance...
-
Efficiency of acoustic heating produced in the thermoviscous flow of a fluid with relaxation
PublicationInstantaneous acoustic heating of a fluid with thermodynamic relaxation is the subject of investigation. Among others, viscoelastic biological media described by the Maxwell model of the viscous stress tensor, belong to this type of fluid. The governing equation of acoustic heating is derived by means of the special linear combination of conservation equations in differential form, allowing the reduction of all acoustic terms in...
-
A review on analytical models of brushless permanent magnet machines
PublicationThis study provides an in-depth investigation of the use of analytical and numerical methods in analyzing electrical machines. Although numerical models such as the finite-element method (FEM) can handle complex geometries and saturation effects, they have significant computational burdens, are time-consuming, and are inflexible when it comes to changing machine geometries or input values. Analytical models based on magnetic equivalent...
-
The influence of frequency separation on imaging properties in DFEIT
PublicationW artykule przedstawiono wpływ wyboru składowych częstotliwościowych dla różnicowej tomografii impedancyjnej na wynik i własności obrazowania w dwuczęstotliwościowej różnicowej tomografii impedancyjnej.A Dual Frequency EIT is an extension of a traditional EIT that uses two sinusoidal signals for imaging. Appropriate selection of signals' frequency allows to achieve reasonable contrast of imaged structure. It has already been shown...
-
Ruch wirowy wywoływany przez ultradźwięk w płynach z relaksacją
PublicationRozprawa doktorska poświęcona jest badaniu ruchu wirowego wywoływanego przez ultradźwięk w różnych modelach płynów z relaksacją. Ma ona charakter teoretyczny, jednak wykorzystanie uzyskanych dzięki niej wyników może przynieść lepsze zrozumienie ruchu wirowego wywoływanego przez siłę akustyczną. W I rozdziale rozprawy przedstawione zostały ogólne rozważania dotyczące akustyki nieliniowej. Rozdział II dotyczy ruchu wirowego wywoływanego...
-
Simulating coherent light propagation in a random scattering materials using the perturbation expansion
PublicationMultiple scattering of a coherent light plays important role in the optical metrology. Probably the most important phenomenon caused by multiple scattering are the speckle patterns present in every optical imaging method based on coherent or partially coherent light illumination. In many cases the speckle patterns are considered as an undesired noise. However, they were found useful in various subsurface imaging methods such as...
-
Automatic Regularization by Quantization in Reducible Representations of CCR: Point-Form Quantum Optics with Classical Sources
PublicationElectromagnetic fields are quantized in a manifestly covariant way by means ofa class of reducible "center-of-mass N-representations" of the algebra of canonical commutationrelations (CCR). The four-potential Aa(x) transforms in these representations as aHermitian four-vector field in Minkowski four-position space (without change of gauge), butin momentum space it splits into spin-1 massless photons and two massless scalars. Whatwe...
-
Signal Propagation in Electromagnetic Media Modelled by the Two-Sided Fractional Derivative
PublicationIn this paper, wave propagation is considered in a medium described by a fractional-order model, which is formulated with the use of the two-sided fractional derivative of Ortigueira and Machado. Although the relation of the derivative to causality is clearly specified in its definition, there is no obvious relation between causality of the derivative and causality of the transfer function induced by this derivative. Hence, causality...
-
Fractional Order Circuit Elements Derived from Electromagnetism
PublicationIn this paper, derivations of fractional-order (FO) circuit-element equations from electromagnetism are presented. Whilst many papers are devoted to FO modelling of electrical circuits, there are no strong foundations for such an approach. Therefore, we investigate relations between the FO electromagnetism and the FO circuit theory. Our derivations start from quasi-static (QS) approximations of Maxwell's equations in media with...