displaying 1000 best results Help
Search results for: RESIDUAL MAGNETIC FLUX
-
Dynamics of Field Line Mappings in Magnetic Flux Tubes
PublicationWe study the topological constraints on the dynamics of magnetic field lines in flux tubes. Our approach is based on the application of the topological invariant: fixed point index. We consider periodic flux tubes and find various restrictions on the field lines that come from the sequence of fixed point indices of iterations. We also analyze the case of a tube with a cylindrical obstacle, deducing some special dynamical properties...
-
Reduction of the Velocity Impact on the Magnetic Flux Leakage Signal
PublicationThe velocity effect on the magnetic flux leakage (MFL) signal was investigated in this paper. Experiments were performed for velocity of the MFL tool within the range of 0–2 m/s. The velocity was not constant during each measurement to imitate real operational conditions of the MFL tool. Two components of the leakage were measured, i.e. the tangential to the motion direction (x) and the normal to the investigated surface (z). In...
-
Influence of circuit breaker operation upon transformeros residual flux and inrush current
PublicationPrzedstawiono model i wyniki obliczeń prądu i strumienia magnetycznego w układzie zawierającym transformator trójfazowy i wyłącznik. Opracowano obwodowy model łącznika z łukiem elektrycznym. Model łuku zbudowano w oparciu o jego statyczną charakterystykę prądowo-napięciową z uwzględnieniem uproszczonej charakterystyki dynamicznej. Przeprowadzone symulacje wykazały, że wartość maksymalna prądu włączania transformatora zależy zarówno...
-
Numerical calculation of three-phase transformer's residual flux in ATP and PSpice programs.
PublicationW artykule przedstawiono analizę przebiegów prądu i strumienia magnetycznego podczas wyłączania transformatora energetycznego, wykonaną w celu określenia strumieni szczątkowych. Wykorzystano do tego celu modele obwodowe zbudowane w oparciu o programy symulacyjne ATP (Alternative Transients Program) i PSpice. Wyniki obliczeń okazały się bardzo zbliżone dla obu modeli. Przy ich wykorzystaniu obliczono strumienie szczątkowe w kolumnach...
-
Inspection of Gas Pipelines Using Magnetic Flux Leakage Technology
PublicationMagnetic non-destructive testing methods can be classified into the earliest methods developed for assessment of steel constructions. One of them is the magnetic flux leakage technology. A measurement of the magnetic flux leakage is quite commonly used for examination of large objects such as tanks and pipelines. Construction of a magnetic flux leakage tool is relatively simple, but a quantitative analysis of recorded data is a...
-
A Wind Energy Conversion System Based on a Generator with Modulated Magnetic Flux
PublicationIn this work, the concept of an energy conversion system for wind turbines based on the modified permanent magnet synchronous generator (PMSG) is presented. In the generator, a pair of three-phase windings is used, one of which is connected in a “star” and the second in a “delta” configuration. At the outputs of both windings, two six-pulse uncontrolled (diode) rectifiers are included. These rectifiers are mutually coupled by a...
-
Numerical Analysis of Magnetic Core Properties Influence on Residual Current Device Behaviour
PublicationW artykule przedstawiono analizę wpływu kształtu prądu w uzwojeniu pierwotnym transformatora prądowego na pracę przekładnika różnicowo-prądowego. Przeprowadzono obliczenia symulacyjne dla wymuszenia o kształcie sinusoidy i sinusoidy wyprostowanej dla częstotliwości 50 Hz. Wzięto pod uwagę dwa typy charakterystyki magnesowania transformatora: dla materiału magnetycznie miękkiego i materiału o prostokątnej pętli histerezy. Analiza...
-
Discussion of Derivability of Local Residual Stress Level from Magnetic Stray Field Measurement
PublicationThe NDT procedure dubbed ‘metal magnetic memory’ method and the related ISO 24497 standard has found wide industrial acceptance in some countries, mainly in Russia and China. The method has been claimed by some researchers (Roskosz and Bieniek in NDT&E Int 45:55–62, 2012; Wilson et al. in Sens Actuators A 135:381–387, 2007) as having potential for quantitative determination of local residual stress state in engineering structures,...
-
Evaluation of time and space distribution of magnetic flux density in a steel plate magnetized by a C-core
PublicationBadano wpływ częstości magnesowania płyty stalowej na rozkład przestrzenny indukcji magnetycznej wewnątrz tej płyty. Rozkład ten oceniano na podstawie pomiaru natężenia emisji magnetoakustycznej a także rozkładu na powierzchni płyty natężenia efektu Barkhausena. Wyniki dyskutowane są ilościowo i porównane z wynikami modelowania metodą elementów skończonych, w której uwzględniono efekt powstawania prądów wirowych.
-
Investigation of the Effect of The Temperature and Magnetization Pattern on Flux Density, Instantaneous Torque, Unbalanced Magnetic Forces of a Surface Inset PMM
PublicationElectrical machines utilized in domestic applications such as ceiling fans should have low losses and cost. Permanent magnets are used instead of rotor excitation to reduce losses. Therefore, not only the losses of the rotor winding are eliminated, but also the efficiency of the machine is increased. A surface inset consequent pole (SICP) machine has also been used to reduce costs. Because less magnets are utilized in this structure....
-
A Comparative Study on Methods of Distinction Between Near- and Far-Side Defects as Techniques Used Alongside with the Magnetic Flux Leakage Testing
PublicationResults of the finite element analysis show that a far-side defect in a steel plate, with the depth greater by 10% of the plate thickness than a near-side defect, can produce a very similar magnetic flux leakage (MFL) signal. Due to the fact that a measurement of MFL itself can lead to misclassification of a far-side defect as a near-side one, and thus to underestimation of its depth, a comparative study of three complementary...
-
Progress in the post weld residual stress evaluation using Barkhausen effect meter with a novel rotating magnetic field probe
PublicationWe report the progress in post weld residual stress evaluation using Barkhausen effect (BE) meter with rotating magnetic field probe. The novel probe of the BE meter contains two C-core electromagnets and searching coil with ferrite antenna. This meter allows automatic measurements of BE intensity envelopes at different angles of magnetizing field. The full process of measurement at given position of the probe takes about only...
-
Magnetic flux leakage signals of near side defects measured with different velocities
Open Research DataThe dataset contains raw signals measured with the use of the magnetic flux leakage (MFL) technique. Linear Hall effect sensors A1324 were used to measure magnetic flux leakage. Three voltage signals were measured: Bx sensor output, Bz1 sensor output, and difference of Bz1 and Bz2 outputs. An output of a Bx sensor was directly proportional to the tangential...
-
Magnetic flux leakage signals of far side defects measured with different velocities
Open Research DataThe dataset contains raw signals measured with the use of the magnetic flux leakage (MFL) technique. Linear Hall effect sensors A1324 were used to measure magnetic flux leakage. Three voltage signals were measured: Bx sensor output, Bz1 sensor output, and difference of Bz1 and Bz2 outputs. An output of a Bx sensor was directly proportional to the tangential...
-
Evaluation by means of magneto-acoustic emission and Barkhausen effect of time and space distribution of magnetic flux density in ferromagnetic plate magnetized by a C-core
PublicationPokazano wyniki badań emisji magnetoakustycznej (EMA) i efektu Barkhausena (HEB) dla dwóch płyt stalowych o różnych wymiarach. Wyniki te są porównane z wynikami modelowania zjawiska EMA z wykorzystaniem metody elementów skończonych z uwzględniem efektu prądów wirowych. Uzyskano zadawalające dopasowanie modelu, który odtwarzał poszerzenie maksimum EMA oraz przesunięcie fazowe i zmianę amplitudy HEB.
-
Simulation of the remanence influence on the transient states in a single-phase multiwinding transformer
PublicationThis paper presents the mathematical model of a single-phase multi-winding core type transformer taking into account magnetic hysteresis phenomenon based on the feedback Preisach model (FPM). The set of loop differential equations was developed for a K-th winding transformer model where the flux linkages of each winding includes flux Φ common to all windings as a function of magneto motive force Θ of all windings. The first purpose...
-
Research of leakage magnetic field in deenergized transformer
PublicationThe article deals with the issue of the numerical analysis of the magnetic field occurring around the transformer after it has been powered down. The main goal of this analysis was to examine if it is possible to identify the residual fluxes in the transformer legs based on this fields’ measurements. It was also intended to determine the type and the location of magnetic sensors. Numerical analysis of the magnetic field was performed....
-
Analysis of leakage flux in deenergized transformer
PublicationThe article presents the numerical analysis of the magnetic field that occurs around the transformer after it has been switched off. The purpose of this analysis was to determine if it is possible to define the residual fluxes in the legs of transformer based on the measurements of this field. These studies have allowed us to determine the quantity and location of the sensors. The influence of the Earth's magnetic field has also...
-
Separation of the effects of notch and macro residual stress on the MFL signal characteristics
PublicationMagnetic flux leakage (MFL) distribution for three configurations of samples has been investigated in order to study the influence of notch and plastic deformation separately as well as together. Samples have been made of S355 steel. The MFL signal measurements were carried out along the longest dimension of the sample over a length of 120 mm. Two components of magnetic field were measured: 1) tangential to the main axis and 2)...
-
Simulation of the Remanence Influence on the Transient States of the Single-Phase Transformer Including Feedback Preisach Model
PublicationThis paper presents the results of the experimental and simulation investigation concerning the influence of remanence in the core of a single-phase transformer at the no-load transient state. Experimental studies consisted of the discharge of the capacitor through the primary winding at several different values of the residual magnetic flux. The paper presents a model of the transformer test system, taking into account the magnetic...
-
Description of parameters of symmetrical prolate ellipsoid magnetic signature.
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
BADANIE WPŁYWU INDUKCJI REMANENCJI NA STAN PRZEJŚCIOWY JEDNOFAZOWEGO UKŁADU TRANSFORMATOROWEGO
PublicationW referacie przedstawiono wyniki badań eksperymentalnych i symulacyjnych wpływu indukcji remanencji w rdzeniu transformatora jednofazowego na jego stan przejściowy przy jego pracy jałowej. Badany obiekt jest układem transformatorowym o dwóch uzwojeniach nawiniętych na zwijanym z blachy anizotropowej rdzeniu w kształcie toroidu. Doświadczenia eksperymentalne polegały na rozładowywaniu kondensatora przez uzwojenie strony pierwotnej...
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -100 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -50 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -20 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters -Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 90 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 90 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.