Search results for: THERMAL STRESS RESTRAINED SPECIMEN TEST (TSRST)
-
Low temperature cracking equipment: Termal Stress Restrained Specimen Test (TSRST); Uniaxial Tensile Strength Test (UTST); Tensile Creep Test (TCT); Relaxation Test (RT);
Research Equipment -
Evaluation of Thermal Stresses in Asphalt Layers in Comparison with TSRST Test Results
PublicationThe paper presents the results of calculations and laboratory determination of thermal stresses at low temperatures. The modified Hills and Brien's method was used to calculate the thermal stresses in asphalt layers of pavements and the results were compared against the values obtained at a laboratory with the Thermal Stress Restrained Specimen Test (TSRST) method. The laboratory investigations were conducted using plain grade...
-
Influence of cooling rate and additives on low-temperature properties of asphalt mixtures in the TSRST
PublicationThe paper presents the results and analysis of low-temperature properties of asphalt mixtures according to Thermal Stress Restrained Specimen Test (TSRST) and Indirect Tensile Test methods. Different groups of bitumen were investigated: neat, SBS-modified and highly SBS-modified. Influence of cooling rates (1 C/h, 3 C/h, 5 C/h and 10 C/h) and additives (aramid fibres and crumb rubber) was identified as well. Moreover, for each...
-
Assessment of Tensile Strength Reserve of Asphalt Mixtures at Low Temperatures
PublicationDuring winter conditions, low-temperature cracks develop at the surface of the asphalt pavement when tensile thermal stress induced in the asphalt layer during cooling equals and exceeds the tensile strength of the material. The paper presents the results of tensile strength reserve assessment of asphalt mixtures with neat and SBS-polymer modified bitumen application. The tensile strength reservewas calculated as difference between...
-
Influence of Bitumen Type and Asphalt Mixture Composition on Low-Temperature Strength Properties According to Various Test Methods
PublicationIn regions with low-temperatures, action transverse cracks can appear in asphalt pavements as a result of thermal stresses that exceed the fracture strength of materials used in asphalt layers. To better understand thermal cracking phenomenon, strength properties of different asphalt mixtures were investigated. Four test methods were used to assess the influence of bitumen type and mixture composition on tensile strength properties...
-
Badania mieszanek mineralno-asfaltowych w niskiej temperaturze
PublicationW artykule przedstawiono metody badań w niskiej temperaturze betonu asfaltowego przeznaczonego do warstwy ścieralnej. Przedstawione zostały wyniki badań dla 4 różnych metod badawczych: zginania, pełzania, pośredniego rozciągania oraz rozciągania termicznego przy ograniczonym odkształceniu (test TSRST). Próbki betonu asfaltowego były przygotowywane w laboratorium z wykorzystaniem 3 rodzajów asfaltów: asfaltu zwykłego, asfaltu modyfikowanego...
-
Influence of Selected Warm Mix Asphalt Additives on Cracking Susceptibility of Asphalt Mixtures
PublicationWarm mix asphalt (WMA) has been widely accepted as a future asphalt paving technology. Besides clear advantages, there are still some concerns regarding durability and long-term performance of pavements made with this type of asphalt mixtures. One of the most important issues is low temperature behaviour of WMA because certain additives used for temperature reduction can aect bitumen properties. This paper presents the evaluation...
-
Comparison of calculated and measured thermal stresses in asphalt concrete
PublicationThe paper presents the comparison of calculated and measured thermal stresses induced in restrained asphalt concrete specimens by cooling. Thermal stresses were measured in the Thermal Stress Restrained Specimen Test. The calculations of thermal stresses were performed with the use of a theoretical formula based on the temperature dependent stiffness modulus. The novel approach applied in this paper was that the stiffness modulus...
-
Verification of the new viscoelastic method of thermal stress calculation in asphalt layers of pavements
PublicationThe new viscoelastic method of thermal stress calculations in asphalt layers has been developed and published recently by the author. This paper presents verification of this method. The verification is based on the comparison of the results of calculations with results of testing of thermal stresses in Thermal Stress Restrained Specimen Test. The calculations of thermal stresses according to the new method were based on rheological...
-
Field Evaluation of High Modulus Asphalt Concrete Resistance to Low-Temperature Cracking
PublicationHigh-modulus asphalt concrete has numerous advantages in comparison to conventional asphalt concrete, including increased resistance to permanent deformations and increased pavement fatigue life. However, previous studies have shown that the construction of road pavements with High Modulus Asphalt Concrete (HMAC) may significantly increase the risk of low-temperature cracking. Those observations were the motivation for the research...
-
Evaluation of Thermal Stresses in Asphalt Layers Incomparison with TSRST Test Results
Publication -
FE analysis of support-specimen interaction of compressive experimental test
PublicationThe objective of this work is to investigate the support-specimen interaction during the compressive experimental testing of stiffened plates. The interaction is analyzed employing the nonlinear Finite Element Method using the commercial software ANSYS. The connection between the stiffened plate and testing supports is modelled with the use of contact elements, where several possible interaction scenarios are investigated, and...
-
Assessment of Thermal Stresses in Asphalt Mixtures at Low Temperatures Using the Tensile Creep Test and the Bending Beam Creep Test
PublicationThermal stresses are leading factors that influence low-temperature cracking behavior of asphalt pavements. During winter, when the temperature drops to significantly low values, tensile thermal stresses develop as a result of pavement contraction. Creep test methods can be suitable for the assessment of low-temperature properties of asphalt mixtures. To evaluate the influence of creep test methods on the obtained low-temperature...
-
Mariusz Kaczmarek dr hab. inż.
PeopleReceived M.Sc., Eng. in Electronics in 1995 from Gdansk University of Technology, Ph.D. in Medical Electronics in 2003 and habilitation in Biocybernetics and Biomedical Engineering in 2017. He was an investigator in about 13 projects receiving a number of awards, including four best papers, practical innovations (7 medals and awards) and also the Andronicos G. Kantsios Award and Siemens Award. Main research activities: the issues...
-
Marek Pszczoła dr hab. inż.
PeopleI am a Faculty member (Department of Highway and Transportation Engineering) at the Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Poland). My main research interests include: low-temperature properties of asphalt mixtures, low temperature cracking assessment of pavement structures, road materials properties, thermal stress analysis, design of pavement structures, airfield design and analysis....
-
Application of Tensile Creep Test and Viscoelastic Method to the Analysis of Thermal Stresses at Low Temperatures
PublicationThe paper presents the viscoelastic method of thermal stresses calculation with utilization of results from tensile creep test (TCT) at a temperature range from −20 to +20 °C (in the case of asphalt concrete with styrene-butadiene-styrene (SBS) polymer-modified bitumen from −30 to +20 °C). Two types of neat road bitumen 35/50 and 50/70 and polymer SBS-modified bitumen 45/80–55 were tested for tensile creep properties at low temperatures....
-
Thermal Imaging Aided Assessment of a State of Equipment Under Test and its Protecting Elements
PublicationIn the paper the investigation results using thermal imaging methods are presented. The examined is a state of equipment under test and its protecting components. The estimations are done for the chosen protecting elements during surge immunity testing. The results show that the thermal imaging methods are useful for early detection of possible damage of a device being tested
-
Results of nanoindentation test to calculate residual stress in an eyelet of undercarriage drag strut after laser treatment
Open Research DataIn order to determine the residual stress in the laser-processed an eyelet of undercarriage drag strut, a nanoindentation test was performed before and after stress relief annealing. For this purpose, after the hardness test, the sample was subjected to stress relief annealing at 270 °C for 2 hours. Annealing was performed in a vacuum furnace. Hardness...
-
Impact of the medical clothing on the thermal stress of surgeons
Publication -
Thermal efficiency investigations on the self-ignition test engine fed with marine low sulfur diesel fuels
PublicationWithin the article an issues of implementing the new kinds of marine diesel fuels into ships’ operation was described taking into ac-count restrictions on the permissible sulphur content introduced by the International Maritime Organization. This is a new situation for ship owners and fuel producers, which forces the necessity to carry out laboratory research tests on especially adapted engine stands. How to elaborate the method...
-
Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment
PublicationStress-driven nonlocal theory of elasticity, in its differential form, is applied to investigate the nonlinear vibrational characteristics of a hetero-nanotube in magneto-thermal environment with the help of finite element method. In order to more precisely deal with the dynamic behavior of size-dependent nanotubes, a two-node beam element with six degrees-of freedom including the nodal values of the deflection, slope and curvature...
-
THERMAL ANALYSIS AND DESIGN OF HYBRID MICROCHANNEL-MICROJET TEST PROBE
PublicationThe paper presents the numerical investigation of a microjet- microchannel cooling module. In which microjets of water are impinging into the microchannels and forming a liquid film on the impingement surface. Applied technology takes benefits from two very attractive heat removal techniques. When lminar jets are impinging on the surface have a very high kinetic energy at the stagnation point, also in microchannels boundary layer...
-
THERMAL ANALYSIS AND DESIGN OF HYBRID MICROCHANNEL -MICROJET TEST PROBE
PublicationAccurate control of cooling parameters is required in ever wider range of technical applications. It is known that reducing the flow hydraulic diameter to an increase in the economy of cooling and improves its quality (Mikielewicz and Muszyński 2009). Present study describes research results related to the design and construction of the test stand for hybrid microjet- microchannel cooling modules study, which may be applied in...
-
Preparation to ball on disk test Initial contact stress evaluation
Open Research DataEvaluation of initial contact stress in tests on wear of Al6061 alloy in ball on disk tribological testing. Research on the reinforcing effect of aluminium alloy injection reinforcement with TiN and WC powders in laser remelted surface layer.
-
NON-LINEAR MASTIC CHARACTERISTICS BASED ON THE MODIFIED MSCR (MULTIPLE STRESS CREEP RECOVERY) TEST
PublicationMastic containing asphalt in its composition is an example of a viscoelastic material. It is an effective binder in asphalt. It consists of a filler (<0.063 mm) and asphalt mixed in the right proportions. Just like in asphalt, its response depends on the temperature level, the load and stress time. Changing the stress stiffness of the mastic affects the non-linear course of the stress-strain relationship. Modelling of the non-linear...
-
The effect of cranial techniques on the heart rate variability response to psychological stress test in firefighter cadets
Publication -
OPTICAL STRAIN MEASUREMENT OF CONCRETE VERSUS MANUAL EXTENSOMETER MEASUREMENT BASED ON THE TEST RC DEEP BEAM IN A COMPLEX STATE OF STRESS
PublicationThe purpose of this study is to compare the strain measurement techniques of concrete in R-C element subjected to the monotonic load up to the failure. In the analysis manual extensometer methods of measurements and the optical system ARAMIS for non-contact three-dimensional measurements of deformation was used. The test sample was a cantilever deep beam loaded throughout the depth which was a part of the reinforced concrete deep...
-
Corrigendum to “An investigation on residual stress and fatigue life assessment of T-shape welded joints” [Eng. Fail. Anal. 141 (2022) 106685]
PublicationThis paper aims to quantitatively evaluate the residual stress and fatigue life of T-type welded joints with a multi-pass weld in different direction. The main research objectives of the experimental test were to test the residual stress by changing direction along with multiple wielding passes and determine the fatigue life of the welded joints. The result shows that compressive residual stress increases in the sample gradually...
-
An investigation on residual stress and fatigue life assessment of T-shape welded joints
PublicationThis paper aims to quantitatively evaluate the residual stress and fatigue life of T-type welded joints with a multi-pass weld in different direction. The main research objectives of the experimental test were to test the residual stress by changing direction along with multiple wielding passes and determine the fatigue life of the welded joints. The result shows that compressive residual stress increases in the sample gradually...
-
EXPERIMENTAL EVALUATION OF DLC/STEEL SLIDING CONTACTS’ OPERATIONAL ENVELOPE
PublicationIn an industrial project concerning sliding bearings, a sliding pair was selected of high alloy steel vs. industrial grade DLC coated high alloy steel as a basis for an innovative design of high performance sliding bearings lubricated with a synthetic oil for use in geared transmission units. The development process required credible data on the ultimate resistance of the sliding pair to very high contact stress. An experimental...
-
EXPERIMENTAL AND NUMERICAL INVESTIGATION ON SPECIMEN GEOMETRY EFFECT ON THE CTOD VALUE FOR VL-E36 SHIPBUILDING STEEL
PublicationThere are special cases in the marine industry, where additional material tests, such as the fracture toughness test, must be performed. Additional fracture toughness tests, such as CTOD (Crack Tip Opening Displacement), are typically performed on three-point bend specimens. The dimension that defines all the specimen dimensions is the thickness of the material to be tested. It is recommended by classification societies (e.g. DNVGL)...
-
Tribological Properties of Thermoplastic Materials Formed by 3D Printing by FDM Process
PublicationThe dataset entitled 3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_4 contains: the time base (expressed in seconds and minutes), the friction torque for sliding friction, rotational velocity of the counter – specimen (velocity of sliding), friction coefficient, load in the friction contact...
-
On the crack front curvature in bonded joints
PublicationStandard tests of adhesively bonded specimens are likely to produce heterogeneous stress distribution along the crack front and its vicinity. High separation rate mode I dominated fracture test is performed.Observation of post mortem fractured surfaces with an optical microscope reveals characteristic features of mixed mode I/III fracture near the sides of the specimen but not in the middle. At first, finite elements calculations...
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_2
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_h_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 009_v_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_v_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_3
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_h_5
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 019_h_4
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.
-
3D printed ABS thermoplastic vs. steel. Dry sliding wear test in constant load & velocity ring on flat configuration. Test parameters: print layer thickness and orientation. Test symbol: 039_v_2
Open Research DataData gathered in sliding ring-on-block (flat contact) tribological experiment. Materials: alloy steel (heat treated) vs. ABS plastic.