Search results for: chromatic number
-
T-colorings, divisibility and circular chromatic number
PublicationLet T be a T-set, i.e., a finite set of nonnegative integers satisfying 0 ∈ T, and G be a graph. In the paper we study relations between the T-edge spans espT (G) and espd⊙T (G), where d is a positive integer and d ⊙ T = {0 ≤ t ≤ d (max T + 1): d |t ⇒ t/d ∈ T} . We show that espd⊙T (G) = d espT (G) − r, where r, 0 ≤ r ≤ d − 1, is an integer that depends on T and G. Next we focus on the case T = {0} and show that espd⊙{0} (G) =...
-
Total chromatic sum for trees
PublicationThe total chromatic sum of a graph is the minimum sum of colors (natural numbers) taken over all proper colorings of vertices and edges of a graph. We provide infinite families of trees for which the minimum number of colors to achieve the total chromatic sum is equal to the total chromatic number. We construct infinite families of trees for which these numbers are not equal, disproving the conjecture from 2012.
-
2-Coloring number revisited
Publication2-Coloring number is a parameter, which is often used in the literature to bound the game chromatic number and other related parameters. However, this parameter has not been precisely studied before. In this paper we aim to fill this gap. In particular we show that the approximation of the game chromatic number by the 2-coloring number can be very poor for many graphs. Additionally we prove that the 2-coloring number may grow...
-
Infinite chromatic games
PublicationIn the paper we introduce a new variant of the graph coloring game and a new graph parameter being the result of the new game. We study their properties and get some lower and upper bounds, exact values for complete multipartite graphs and optimal, often polynomial-time strategies for both players provided that the game is played on a graph with an odd number of vertices. At the end we show that both games, the new and the classic...
-
A 27/26-approximation algorithm for the chromatic sum coloring of bipartitegraphs
PublicationWe consider the CHROMATIC SUM PROBLEM on bipartite graphs which appears to be much harder than the classical CHROMATIC NUMBER PROBLEM. We prove that the CHROMATIC SUM PROBLEM is NP-complete on planar bipartite graphs with Delta less than or equal to 5, but polynomial on bipartite graphs with Delta less than or equal to 3, for which we construct an O(n(2))-time algorithm. Hence, we tighten the borderline of intractability for this...
-
Equitable colorings of some variation of corona products of cubic graphs
PublicationThe problem of determining the value of equitable chromatic number for multicoronas of cubic graphs is studied. We provide some polynomially solvable cases of cubical multicoronas and give simple linear time algorithms for equitable coloring of such graphs which use almost optimal number of colors in the remaining cases.
-
On incidence coloring of coloring of complete multipartite and semicubic bipartite graphs
PublicationIn the paper, we show that the incidence chromatic number of a complete k-partite graph is at most ∆+2 (i.e., proving the incidence coloring conjecture for these graphs) and it is equal to ∆+1 if and only if the smallest part has only one vertex.
-
Minimum order of graphs with given coloring parameters
PublicationA complete k-coloring of a graph G=(V,E) is an assignment F: V -> {1,...,k} of colors to the vertices such that no two vertices of the same color are adjacent, and the union of any two color classes contains at least one edge. Three extensively investigated graph invariants related to complete colorings are the minimum and maximum number of colors in a complete coloring (chromatic number χ(G) and achromatic number ψ(G), respectively),...
-
Equitable coloring of corona multiproducts of graphs
PublicationWe give some results regarding the equitable chromatic number for l-corona product of two graphs: G and H, where G is an equitably 3- or 4-colorable graph and H is an r-partite graph, a cycle or a complete graph. Our proofs lead to polynomial algorithms for equitable coloring of such graph products provided that there is given an equitable coloring of G.
-
The Backbone Coloring Problem for Small Graphs
PublicationIn this paper we investigate the values of the backbone chromatic number, derived from a mathematical model for the problem of minimization of bandwidth in radio networks, for small connected graphs and connected backbones (up to 7 vertices). We study the relationship of this parameter with the structure of the graph and compare the results with the solutions obtained using the classical graph coloring algorithms (LF, IS), modified...
-
Product Graph Invariants with Applications in the Theory of Information
PublicationThere are a large number of graph invariants. In the paper, we consider some of them, e.g. the independence and chromatic numbers. It is well know that we cannot efficiently calculate these numbers for arbitrary graphs. In the paper we present relations between these invariants and concepts from the theory of information. Concepts such as source coding and transmission over a noisy channel with zero probability of error are modeled...
-
Graph classes generated by Mycielskians
PublicationIn this paper we use the classical notion of weak Mycielskian M'(G) of a graph G and the following sequence: M'_{0}(G) =G, M'_{1}(G)=M'(G), and M'_{n}(G)=M'(M'_{n−1}(G)), to show that if G is a complete graph oforder p, then the above sequence is a generator of the class of p-colorable graphs. Similarly, using Mycielskian M(G) we show that analogously defined sequence is a generator of the class consisting of graphs for which the...
-
Equitable coloring of corona products of graphs
PublicationIn this paper we consider an equitable coloring of some corona products of graphs G and H in symbols, G o H). In particular, we show that deciding the colorability of G o H is NP-complete even if G is 4-regular and H is K_2. Next, we prove exact values or upper bounds on the equitable chromatic number of G o H, where G is an equitably 3- or 4-colorable graph and H is an r-partite graph, a path, a cycle or a complete graph.
-
Parity vertex colouring of graphs
PublicationA parity path in a vertex colouring of a graph is a path along which each colour is used an even number of times. Let Xp(G) be the least number of colours in a proper vertex colouring of G having no parity path. It is proved that for any graph G we have the following tight bounds X(G) <= Xp(G) <=|V(G)|− a(G)+1, where X(G) and a(G) are the chromatic number and the independence number of G, respectively. The bounds are improved for...
-
Optimal backbone coloring of split graphs with matching backbones
PublicationFor a graph G with a given subgraph H, the backbone coloring is defined as the mapping c: V(G) -> N+ such that |c(u)-c(v)| >= 2 for each edge uv \in E(H) and |c(u)-c(v)| >= 1 for each edge uv \in E(G). The backbone chromatic number BBC(G;H) is the smallest integer k such that there exists a backbone coloring with max c(V(G)) = k. In this paper, we present the algorithm for the backbone coloring of split graphs with matching backbone.
-
Eqiuitable coloring of corona products of cubic graphs is harder than ordinary coloring
PublicationA graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G. In this paper the problem of determinig the equitable coloring number for coronas of cubic graphs is studied. Although the problem of ordinary coloring of coronas...
-
Restricted open shop scheduling
PublicationIn the real applications the open shop scheduling models often require some additional constraints and adequate models. We concern the restrictions in the open shop scheduling related to an instance of the problem and to a feasible solution. Precisely, we require that each jobs consists of the bounded number of operations and each machine has a bounded load (i.e., the total number of operations executed on this machine in a schedule)....
-
The Backbone Coloring Problem for Bipartite Backbones
PublicationLet G be a simple graph, H be its spanning subgraph and λ≥2 be an integer. By a λ -backbone coloring of G with backbone H we mean any function c that assigns positive integers to vertices of G in such a way that |c(u)−c(v)|≥1 for each edge uv∈E(G) and |c(u)−c(v)|≥λ for each edge uv∈E(H) . The λ -backbone chromatic number BBCλ(G,H) is the smallest integer k such that there exists a λ -backbone coloring c of G with backbone H satisfying...
-
Necessary and Sufficient Condition for State-Independent Contextual Measurement Scenarios
PublicationThe problem of identifying measurement scenarios capable of revealing state-independent contextuality in a given Hilbert space dimension is considered. We begin by showing that for any given dimension d and any measurement scenario consisting of projective measurements, (i) the measure of contextuality of a quantum state is entirely determined by its spectrum, so that pure and maximally mixed states represent the two extremes...
-
The computational complexity of the backbone coloring problem for planar graphs with connected backbones
PublicationIn the paper we study the computational complexity of the backbone coloring problem for planar graphs with connected backbones. For every possible value of integer parameters λ≥2 and k≥1 we show that the following problem: Instance: A simple planar graph GG, its connected spanning subgraph (backbone) HH. Question: Is there a λ-backbone coloring c of G with backbone H such that maxc(V(G))≤k? is either NP-complete or polynomially...
-
Dynamic coloring of graphs
PublicationDynamics is an inherent feature of many real life systems so it is natural to define and investigate the properties of models that reflect their dynamic nature. Dynamic graph colorings can be naturally applied in system modeling, e.g. for scheduling threads of parallel programs, time sharing in wireless networks, session scheduling in high-speed LAN's, channel assignment in WDM optical networks as well as traffic scheduling. In...
-
Scheduling of unit-length jobs with cubic incompatibility graphs on three uniform machines
PublicationWe consider the problem of scheduling n identical jobs on 3 uniform machines with speeds s1, s2, and s3 to minimize the schedule length. We assume that jobs are subject to some kind of mutual exclusion constraints, modeled by a cubic incompatibility graph. We how that if the graph is 2-chromatic then the problem can be solved in O(n^2) time. If the graph is 3-chromatic, the problem becomes NP-hard even if s1>s2=s3.
-
Relations between the domination parameters and the chromatic index of a graph
PublicationIn this paper we show bounds for the sum and the product of the domination parameters and the chromatic index of a graph. We alsopresent some families of graphs for which these bounds are achieved.
-
Interval Edge Coloring of Bipartite Graphs with Small Vertex Degrees
PublicationAn edge coloring of a graph G is called interval edge coloring if for each v ∈ V(G) the set of colors on edges incident to v forms an interval of integers. A graph G is interval colorable if there is an interval coloring of G. For an interval colorable graph G, by the interval chromatic index of G, denoted by χ'_i(G), we mean the smallest number k such that G is interval colorable with k colors. A bipartite graph G is called (α,β)-biregular...
-
Edge coloring of graphs of signed class 1 and 2
PublicationRecently, Behr (2020) introduced a notion of the chromatic index of signed graphs and proved that for every signed graph (G, σ) it holds that ∆(G) ≤ χ′(G,σ) ≤ ∆(G) + 1, where ∆(G) is the maximum degree of G and χ′ denotes its chromatic index. In general, the chromatic index of (G, σ) depends on both the underlying graph G and the signature σ. In the paper we study graphs G for which χ′(G, σ) does not depend on σ. To this aim we...
-
A graph coloring approach to scheduling of multiprocessor tasks on dedicated machines with availability constraints
PublicationWe address a generalization of the classical 1- and 2-processor unit execution time scheduling problem on dedicated machines. In our chromatic model of scheduling machines have non-simultaneous availability times and tasks have arbitrary release times and due dates. Also, the versatility of our approach makes it possible to generalize all known classical criteria of optimality. Under these stipulations we show that the problem...
-
A note on polynomial algorithm for cost coloring of bipartite graphs with Δ ≤ 4
PublicationIn the note we consider vertex coloring of a graph in which each color has an associated cost which is incurred each time the color is assigned to a vertex. The cost of coloring is the sum of costs incurred at each vertex. We show that the minimum cost coloring problem for n-vertex bipartite graph of degree ∆≤4 can be solved in O(n^2) time. This extends Jansen’s result [K.Jansen,The optimum cost chromatic partition problem, in:...
-
Detection and segmentation of moving vehicles and trains using Gaussian mixtures, shadow detection and morphological processing
PublicationSolution presented in this paper combines background modelling, shadow detection and morphological and temporal processing into one system responsible for detection and segmentation of moving objects recorded with a static camera. Vehicles and trains are detected based on their pixellevel difference from the continually updated background model utilizing a Gaussian mixture calculated separately for every pixel. The shadow detection...
-
Zirconia ceramics with additions of Alumina for advanced tribological and biomedical applications
PublicationThe results of an investigation on slip cast and sintered Y2O3 (3 wt%)- stabilized ZrO2 with additions of 5, 10, 15 wt% Al2O3 are reported. The surface roughness, porosity and density of the samples were measured. The hardness HRc and Hv, fracture toughness K1C, and friction coefficients were also measured using standard methods. The structural properties of the samples were observed by Scanning Electron Microscopy (SEM). The surface...
-
Nonlinearity shaping in nanostructured glass-diamond hybrid materials for optical fiber preforms
PublicationNanodiamond integration with optical fibers has proved a compelling methodology for magneto-optics. We reveal that the applicability of nanodiamonds in nonlinear optics goes beyond the previous demonstrations of frequency converters. Instead, we exploit the recently reported volumetric integration of nanodiamonds along the optical fiber core and show that the nonlinear response of glasses can be manipulated by nanodiamonds. By...