Filters
total: 39
Search results for: minimal sets of lefschetz periods
-
Periodic expansion in determining minimal sets of Lefschetz periods for Morse–Smale diffeomorphisms
PublicationWe apply the representation of Lefschetz numbers of iterates in the form of periodic expansion to determine the minimal sets of Lefschetz periods of Morse–Smale diffeomorphisms. Applying this approach we present an algorithmic method of finding the family of minimal sets of Lefschetz periods for Ng, a non-orientable compact surfaces without boundary of genus g. We also partially confirm the conjecture of Llibre and Sirvent (J Diff...
-
Minimal Sets of Lefschetz Periods for Morse-Smale Diffeomorphisms of a Connected Sum of g Real Projective Planes
PublicationThe dataset titled Database of the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms of a connected sum of g real projective planes contains all of the values of the topological invariant called the minimal set of Lefschetz periods, computed for Morse-Smale diffeomorphisms of a non-orientable compact surface without boundary of genus g (i.e. a connected sum of g real projective planes), where g varies from 1 to...
-
Database of the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms of a connected sum of g tori
Open Research DataMorse–Smale diffeomorphisms, structurally stable and having relatively simple dynamics, constitute an important subclass of diffeomorphisms that have been carefully studied during past decades. For a given Morse–Smale diffeomorphism one can consider “Minimal set of Lefschetz periods”, which provides the information about the set of periodic points of...
-
Database of the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms of a connected sum of g real projective planes.
Open Research DataMorse–Smale diffeomorphisms, structurally stable and having relatively simple dynamics, constitute an important subclass of diffeomorphisms that were carefully studied during past decades. For a given Morse–Smale diffeomorphism one can consider “Minimal set of Lefschetz periods”, which provides the information about the set of periodic points of considered...
-
The database of odd algebraic periods for quasi-unipotent self-maps of a space having the same homology group as the connected sum of g tori
Open Research DataThe dataset consists of 20 files indexed by numbers g=1,...,20. Each file provides sets of odd algebraic periods for all quasi-unipotent self-maps of a space having the same homology groups as the connected sum of g tori. Let us remark that each data set covers all algebraical restrictions that come from zeta functions for the sets of minimal Lefschetz...
-
Database of algebraic periods of quasi-unipotent orientation-preserving homeomorphisms of orientable surfaces
Open Research DataThe set of algebraic periods of a map contains important information about periodic points and, in addition, is a homotopy invariant of the map. It is determined by indices of nonzero Dold coefficients which are computed purely algebraically from maps induced on homology groups of a considered space. In this dataset, we include for a given g=1,2,...,30,...
-
Minimization of the number of periodic points for smooth self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers
PublicationLet f be a smooth self-map of m-dimensional, m ≥ 4, smooth closed connected and simply-connected manifold, r a fixed natural number. For the class of maps with periodic sequence of Lefschetz numbers of iterations the authors introduced in [Graff G., Kaczkowska A., Reducing the number of periodic points in smooth homotopy class of self-maps of simply-connected manifolds with periodic sequence of Lefschetz numbers, Ann. Polon. Math....
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 4 and homology groups with the sum of ranks less or equal to10
Open Research DataAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 4 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 6 and homology groups with the sum of ranks less or equal to10
Open Research DataAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 6 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 5 and homology groups with the sum of ranks less or equal to10
Open Research DataAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 5 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 8 and homology groups with the sum of ranks less or equal to 10
Open Research DataAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 8 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal number of periodic points with the periods less or equal to r in the smooth homotopy class of simply-connected manifolds of dimension 7 and homology groups with the sum of ranks less or equal to10
Open Research DataAn important problem in periodic point theory is minimization of the number of periodic points with periods <= r in a given class of self-maps of a space. A closed smooth and simply-connected manifolds of dimension 7 and its self-maps f with periodic sequence of Lefschetz numbers are considered. The topological invariant Jr[f] is equal to the minimal...
-
Minimal 2-dominating sets in Trees
PublicationWe provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time O(1.3247^n). This leads to that every tree has at most 1.3247^n minimal 2-dominating sets. We also show that thisbound is tight.
-
Minimal double dominating sets in trees
PublicationWe provide an algorithm for listing all minimal double dominating sets of a tree of order $n$ in time $\mathcal{O}(1.3248^n)$. This implies that every tree has at most $1.3248^n$ minimal double dominating sets. We also show that this bound is tight.
-
Trees having many minimal dominating sets
PublicationWe provide an algorithm for listing all minimal dominating sets of a tree of order n in time O(1.4656^n). This leads to that every tree has at most 1.4656^n minimal dominating sets. We also give an infinite family of trees of odd and even order for which the number of minimal dominating sets exceeds 1.4167^n, thus exceeding 2^{n/2}. This establishes a lower bound on the running time of an algorithm for listing all minimal dominating...
-
An Algorithm for Listing All Minimal 2-Dominating Sets of a Tree
PublicationWe provide an algorithm for listing all minimal 2-dominating sets of a tree of order n in time O(1.3248n) . This implies that every tree has at most 1.3248 n minimal 2-dominating sets. We also show that this bound is tigh.
-
An algorithm for listing all minimal double dominating sets of a tree
PublicationWe provide an algorithm for listing all minimal double dominating sets of a tree of order $n$ in time $\mathcal{O}(1.3248^n)$. This implies that every tree has at most $1.3248^n$ minimal double dominating sets. We also show that this bound is tight.
-
Algebraic periods and minimal number of periodic points for smooth self-maps of 1-connected 4-manifolds with definite intersection forms
PublicationLet M be a closed 1-connected smooth 4-manifolds, and let r be a non-negative integer. We study the problem of finding minimal number of r-periodic points in the smooth homotopy class of a given map f: M-->M. This task is related to determining a topological invariant D^4_r[f], defined in Graff and Jezierski (Forum Math 21(3):491–509, 2009), expressed in terms of Lefschetz numbers of iterations and local fixed point indices of...
-
General form of fixed point indices of an iterated C^1 map andinfiniteness of minimal periods
PublicationDla zwartego podzbioru punktów periodycznych gładkiego odwzorowania podana zostaje formuła na indeksy iteracji. Wynik stanowi uogólnienie rezultatu Chowa, Malleta-Pareta i Yorke'a.
-
Comparison of construction algorithms for minimal, acyclic, deterministicfinite state automata from sets of strings.
PublicationArtykuł porównuje różne metody tworzenia minimalnych, acyklicznych, deterministycznych automatów skończonych ze zbiorów słów. Wdrożone i porównane zostały metody przyrostowe, prawie przyrostowe i nieprzyrostowe.
-
Minimization of the number of periodic points for smooth self-maps of closed simply-connected 4-manifolds
PublicationLet M be a smooth closed simply-connected 4-dimensional manifold, f be a smooth self-map of M with fast grow of Lefschetz numbers and r be a product of different primes. The authors calculate the invariant equal to the minimal number of r-periodic points in the smooth homotopy class of f.
-
Reducing the number of periodic points in the smooth homotopy class of a self-map of a simply-connected manifold with periodic sequence of Lefschetz numbers
PublicationLet f be a smooth self-map of an m-dimensional (m >3) closed connected and simply-connected manifold such that the sequence of the Lefschetz num- bers of its iterations is periodic. For a fixed natural r we wish to minimize, in the smooth homotopy class, the number of periodic points with periods less than or equal to r. The resulting number is given by a topological invariant J[f] which is defned in combinatorial terms and is...
-
Polynomial Algorithm for Minimal (1,2)-Dominating Set in Networks
PublicationDominating sets find application in a variety of networks. A subset of nodes D is a (1,2)-dominating set in a graph G=(V,E) if every node not in D is adjacent to a node in D and is also at most a distance of 2 to another node from D. In networks, (1,2)-dominating sets have a higher fault tolerance and provide a higher reliability of services in case of failure. However, finding such the smallest set is NP-hard. In this paper, we...
-
Minimal number of periodic points for smooth self-maps of simply-connected manifolds
Open Research DataThe problem of finding the minimal number of periodic points in a given class of self-maps of a space is one of the central questions in periodic point theory. We consider a closed smooth connected and simply-connected manifold of dimension at least 4 and its self-map f. The topological invariant D_r[f] is equal to the minimal number of r-periodic points...
-
Redukcja czasu analizy MZP przez ograniczenie rozmiaru rozwiązania
PublicationAnaliza drzew niezdatności jest uznaną metodą analizy bezpieczeństwa systemów. Notacja ECSDM pozwala definiować zależności czasowe między zdarzeniami drzewa oraz przeanalizować je w celu określenia zależności pomiędzy zdarzeniami z Minimalnych Zbiorów Przyczyn (MZP). Dzięki wprowadzeniu klasyfikacji zdarzeń z MZP można wyodrębnić zależności czasowe istotne dla zapobiegania wywoływania hazardu przez konkretny MZP. Pozostałe zależności...
-
Road Safety Trends at National Level in Europe: A Review of Time-series Analysis Performed during the Period 2000–12
PublicationThis paper presents a review of time-series analysis of road safety trends, aggregatedat a national level, which has been performed in the period 2000 – 12 and applied to Europeannational data sets covering long time periods. It provides a guideline and set of best practices inthe area of time-series modelling and identifies the latest methods and applications of nationalroad safety trend analysis...
-
Comparison of GPS tropospheric delays derived from two consecutive EPN reprocessing campaigns from the point of view of climate monitoring
PublicationThe main purpose of this research was to acquire information about consistency of ZTD (zenith total delay) linear trends and seasonal components between two consecutive GPS reprocessing campaigns. The analysis concerned two sets of the ZTD time series which were estimated during EUREF (Reference Frame Sub-Commission for Europe) EPN (Permanent Network) reprocessing campaigns according to 2008 and 2015 MUT AC (Military University...
-
Towards a classification of networks with asymmetric inputs
PublicationCoupled cell systems associated with a coupled cell network are determined by (smooth) vector fields that are consistent with the network structure. Here, we follow the formalisms of Stewart et al (2003 SIAM J. Appl. Dyn. Syst. 2, 609–646), Golubitsky et al (2005 SIAM J. Appl. Dyn. Syst. 4, 78–100) and Field (2004 Dyn. Syst. 19, 217–243). It is known that two non-isomorphic n-cell coupled networks can determine the same sets of...
-
Spontaneous electron emission vs dissociation in internally hot silver dimer anions
PublicationReferring to a recent experiment, we theoretically study the process of a two-channel decay of the diatomic silver anion (Ag2-), namely the spontaneous electron ejection giving Ag2 + e- and the dissociation leading to Ag- + Ag. The ground state potential energy curves of the silver molecules of diatomic neutral and negative ion were calculated using proper pseudo-potentials and atomic basis sets. We also estimated the non-adiabatic...
-
Automatic Rhythm Retrieval from Musical Files
PublicationThis paper presents a comparison of the effectiveness of two computational intelligence approaches applied to the task of retrieving rhythmic structure from musical files. The method proposed by the authors of this paper generates rhythmic levels first, and then uses these levels to compose rhythmic hypotheses. Three phases: creating periods, creating simplified hypotheses and creating full hypotheses are examined within this study....
-
On Computational Aspects of Greedy Partitioning of Graphs
PublicationIn this paper we consider a problem of graph P-coloring consisting in partitioning the vertex set of a graph such that each of the resulting sets induces a graph in a given additive, hereditary class of graphs P. We focus on partitions generated by the greedy algorithm. In particular, we show that given a graph G and an integer k deciding if the greedy algorithm outputs a P-coloring with a least k colors is NP-complete for an infinite...
-
Topological invariants for equivariant flows: Conley index and degree
PublicationAbout forty years have passed since Charles Conley defined the homotopy index. Thereby, he generalized the ideas that go back to the calculus of variations work of Marston Morse. Within this long time the Conley index has proved to be a valuable tool in nonlinear analysis and dynamical systems. A significant development of applied methods has been observed. Later, the index theory has evolved to cover such areas as discrete dynamical...
-
Estimates for minimal number of periodic points for smooth self-maps of simply-connected manifolds
Open Research DataWe consider a closed smooth connected and simply-connected manifold of dimension at least 4 and its self-map f. The topological invariant Dr[f] is equal to the minimal number of r-periodic points in the smooth homotopy class of f. We assume that r is odd and all coefficients b(k) of so-called periodic expansion of Lefschetz numbers of iterations are...
-
Dynamic F-free Coloring of Graphs
PublicationA problem of graph F-free coloring consists in partitioning the vertex set of a graph such that none of the resulting sets induces a graph containing a fixed graph F as an induced subgraph. In this paper we consider dynamic F-free coloring in which, similarly as in online coloring, the graph to be colored is not known in advance; it is gradually revealed to the coloring algorithm that has to color each vertex upon request as well...
-
Computational aspects of greedy partitioning of graphs
PublicationIn this paper we consider a variant of graph partitioning consisting in partitioning the vertex set of a graph into the minimum number of sets such that each of them induces a graph in hereditary class of graphs P (the problem is also known as P-coloring). We focus on the computational complexity of several problems related to greedy partitioning. In particular, we show that given a graph G and an integer k deciding if the greedy...
-
Data on LEGO sets release dates and retail prices combined with aftermarket transaction prices between June 2018 and June 2023.
Open Research DataThe dataset contains LEGO bricks sets item count and pricing history for AI-based set pricing prediction.
-
The statistic properties of rms voltage and frequency in the ship's electrical power system
Open Research DataThe dataset is a part of the research results on the quality of supply voltage on bus bars of the main switchboard of the ship's electrical power system in different states of ship exploitation. The attached dataset contains the results of a statistical analysis of rms voltage and frequency in the ship's electrical power system. The following statistical...
-
Mutually polarizable QM/MM model with in situ optimized localized basis functions
PublicationWe extend our recently developed quantum-mechanical/molecular mechanics (QM/MM) approach [Dziedzic et al., J. Chem. Phys. 145, 124106 (2016)] to enable in situ optimization of the localized orbitals. The quantum subsystem is described with ONETEP linear-scaling density functional theory and the classical subsystem – with the AMOEBA polarizable force field. The two subsystems interact via multipolar electrostatics and are fully...
-
Estimation of groundwater recharge in a shallow sandy aquifer using unsaturated zone modeling and water table fluctuation method
PublicationQuantification of groundwater recharge is one of the most important issues in hydrogeology, especially in view of the ongoing changes in climate and land use. In this study, we use numerical models of 1D vertical flow in the vadose zone and the water table fluctuation (WTF) analysis to investigate local-scale recharge of a shallow sandy aquifer in the Brda outwash plain in northern Poland. We show that these two methods can be...