Filters
total: 835
Search results for: ARTIFICIAL SWEETENER
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublicationAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Klasyfikacja sygnału EKG przy użyciu konwolucyjnych sieci neuronowych
PublicationAutomation and improvement of diagnostic process is a vital element of medicine development and patient’s condition self-control. For a long time different ECG signal classification methods exist and are successfully applied, nevertheless their accuracy is not always satisfying enough. The lack of identification of an existing abnormality, which is very similar to a normal heartbeat is the biggest issue - for example premature...
-
Condition-Based Monitoring of DC Motors Performed with Autoencoders
PublicationThis paper describes a condition-based monitoring system estimating DC motor degradation with the use of an autoencoder. Two methods of training the autoencoder are evaluated, namely backpropagation and extreme learning machines. The root mean square (RMS) error in the reconstruction of successive fragments of the measured DC motor angular-frequency signal, which is fed to the input of autoencoder, is used to determine the health...
-
Predicting emotion from color present in images and video excerpts by machine learning
PublicationThis work aims at predicting emotion based on the colors present in images and video excerpts using a machine-learning approach. The purpose of this paper is threefold: (a) to develop a machine-learning algorithm that classifies emotions based on the color present in an image, (b) to select the best-performing algorithm from the first phase and apply it to film excerpt emotion analysis based on colors, (c) to design an online survey...
-
Preferred Benchmarking Criteria for Systematic Taxonomy of Embedded Platforms (STEP) in Human System Interaction Systems
PublicationThe rate of progress in the field of Artificial Intelligence (AI) and Machine Learning (ML) has significantly increased over the past ten years and continues to accelerate. Since then, AI has made the leap from research case studies to real production ready applications. The significance of this growth cannot be undermined as it catalyzed the very nature of computing. Conventional platforms struggle to achieve greater performance...
-
Neural network training with limited precision and asymmetric exponent
PublicationAlong with an extremely increasing number of mobile devices, sensors and other smart utilities, an unprecedented growth of data can be observed in today’s world. In order to address multiple challenges facing the big data domain, machine learning techniques are often leveraged for data analysis, filtering and classification. Wide usage of artificial intelligence with large amounts of data creates growing demand not only for storage...
-
Advanced Sensor for Non-Invasive Breast Cancer and Brain Cancer Diagnosis Using Antenna Array with Metamaterial-Based AMC
PublicationMicrowave imaging techniques can identify abnormal cells in early development stages. This study introduces a microstrip patch antenna coupled with artificial magnetic conductor (AMC) to realize improved sensor for non-invasive (early-stage) breast cancer and brain cancer diagnosis. The frequency selectivity of the proposed antenna has been increased by the presence of AMC by creating an additional resonance at 2.276 GHz associated...
-
Explainable machine learning for diffraction patterns
PublicationSerial crystallography experiments at X-ray free-electron laser facilities produce massive amounts of data but only a fraction of these data are useful for downstream analysis. Thus, it is essential to differentiate between acceptable and unacceptable data, generally known as ‘hit’ and ‘miss’, respectively. Image classification methods from artificial intelligence, or more specifically convolutional neural networks (CNNs), classify...
-
The supramolecular organization of self-assembling chlorosomal bacteriochlorophyll c, d, or e mimics
PublicationBacteriochlorophylls (BChls) c, d, and e are the main light-harvesting pigments of green photosynthetic bacteria that self-assemble into nanostructures within the chlorosomes forming the most efficient antennas of photosynthetic organisms. All previous models of the chlorosomal antennae, which are quite controversially discussed because no single crystals could be grown so far from these organelles, involve a strong hydrogen-bonding...
-
Expedited Geometry Scaling of Compact Microwave Passives by Means of Inverse Surrogate Modeling
PublicationIn this paper, the problem of geometry scaling of compact microwave structures is investigated. As opposed to conventional structures (i.e., constructed using uniform transmission lines), re-design of miniaturized circuits (e.g., implemented with artificial transmission lines, ATSs) for different operating frequencies is far from being straightforward due to considerable cross-couplings between the circuit components. Here, we...
-
Thermal Images Analysis Methods using Deep Learning Techniques for the Needs of Remote Medical Diagnostics
PublicationRemote medical diagnostic solutions have recently gained more importance due to global demographic shifts and play a key role in evaluation of health status during epidemic. Contactless estimation of vital signs with image processing techniques is especially important since it allows for obtaining health status without the use of additional sensors. Thermography enables us to reveal additional details, imperceptible in images acquired...
-
Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy
PublicationTitanium and its alloys are the biomaterials most frequently used in medical engineering, especially as parts of orthopedic and dental implants. The surfaces of titanium and its alloys are usually modified to improve their biocompatibility and bioactivity, for example, in connection with the deposition of hydroxyapatite coatings. The objective of the present research was to elaborate the technology of electrophoretic deposition...
-
PRELIMINARY RESULTS FROM APPLICATION PHOSLOCK® TO REMOVE PHOSPHORUS COMPOUNDS FROM WASTEWATER
PublicationThe aim of the study is to assess the removal effectiveness of phosphorus compoundsby using lanthanum-modified bentonite. This material was produced by the Australian company Phoslock® Water Solutions Pty Ltd. According to the company, Phoslock® has substantial capacity to bound phosphate anions. The investigation was carried out in steady conditions in laboratory model with beakers. The results of the study are related to the...
-
Sperm segmentation and abnormalities detection during the ICSI procedure using machine learning algorithms
Publication(1) About 15-20% of couples struggle with the problem of infertility. 30 to 40% of these cases are caused by abnormalities in the structure and motility of sperm. Sometimes the only possibility for such people is to use the procedure of artificial insemination. CASA systems are used to increase the efficiency of this procedure by selecting the appropriate sperm cell. (2) This paper presents an approach to the sperm classification...
-
Elimination of Impulsive Disturbances From Archive Audio Signals Using Bidirectional Processing
PublicationIn this application-oriented paper we consider the problem of elimination of impulsive disturbances, such as clicks, pops and record scratches, from archive audio recordings. The proposed approach is based on bidirectional processing—noise pulses are localized by combining the results of forward-time and backward-time signal analysis. Based on the results of specially designed empirical tests (rather than on the results of theoretical analysis),...
-
Seven Different Lighting Conditions in Photogrammetric Studies of a 3D Urban Mock-Up
PublicationOne of the most important elements during photogrammetric studies is the appropriate lighting of the object or area under investigation. Nevertheless, the concept of “adequate lighting” is relative. Therefore, we have attempted, based on experimental proof of concept (technology readiness level—TRL3), to verify the impact of various types of lighting emitted by LED light sources for scene illumination and their direct influence...
-
Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach
PublicationTreatment of municipal wastewater to meet the stringent effluent quality standards is an energy-intensive process and the main contributor to the costs of wastewater treatment plants (WWTPs). Analysis and prediction of energy consumption (EC) are essential in designing and operating sustainable energy-saving WWTPs. In this study, the effect of wastewater, hydraulic, and climate-based parameters on the daily consumption of EC by...
-
The study on the appearance of deformation defects in the yacht lamination process using an AI algorithm and expert knowledge
PublicationThis article describes the application of the A-priori algorithm for defining the rule-based relationships between individual defects caused during the lamination process, affecting the deformation defect of the yacht shell. The data from 542 yachts were collected and evaluated. For the proper development of the algorithm, a technological process of the yacht lamination supported by expert decisions was described. The laminating...
-
Chained machine learning model for predicting load capacity and ductility of steel fiber–reinforced concrete beams
PublicationOne of the main issues associated with steel fiber–reinforced concrete (SFRC) beams is the ability to anticipate their flexural response. With a comprehensive grid search, several stacked models (i.e., chained, parallel) consisting of various machine learning (ML) algorithms and artificial neural networks (ANNs) were developed to predict the flexural response of SFRC beams. The flexural performance of SFRC beams under bending was...
-
Graph Neural Networks and Structural Information on Ionic Liquids: A Cheminformatics Study on Molecular Physicochemical Property Prediction
PublicationIonic liquids (ILs) provide a promising solution in many industrial applications, such as solvents, absorbents, electrolytes, catalysts, lubricants, and many others. However, due to the enormous variety of their structures, uncovering or designing those with optimal attributes requires expensive and exhaustive simulations and experiments. For these reasons, searching for an efficient theoretical tool for finding the relationship...
-
Data-Driven Modeling of Mechanical Properties of Fiber-Reinforced Concrete: A Critical Review
PublicationFiber-reinforced concrete (FRC) is extensively used in diverse structural engineering applications, and its mechanical properties are crucial for designing and evaluating its performance. The compressive, flexural, splitting tensile, and shear strengths of FRCs are among the most important attributes, which have been discussed more extensively than other properties. The accurate prediction of these properties, which are required...
-
Application of unmanned USV surface and AUV underwater maritime platforms for the monitoring of offshore structures at sea
PublicationThe operation of offshore structures at sea requires the implementation of advanced systems for their permanent monitoring. There is a set of novel technologies that could be implemented to deliver a higher level of effective and safe operation of these systems. A possible novel solution may be the application of a new maritime unmanned (USV) surface and underwater vehicles/platforms (AUV). Application of such vehicles/platforms...
-
EVALUATION OF LIQUID-GAS FLOW IN PIPELINE USING GAMMA-RAY ABSORPTION TECHNIQUE AND ADVANCED SIGNAL PROCESSING
PublicationLiquid-gas flows in pipelines appear in many industrial processes, e.g. in the nuclear, mining, and oil industry. The gamma-absorption technique is one of the methods that can be successfully applied to study such flows. This paper presents the use of thegamma-absorption method to determine the water-air flow parameters in a horizontal pipeline. Three flow types were studied in this work: plug, transitional plug-bubble,...
-
Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures
PublicationMany studies have been performed to put quantifying uncertainties into the seismic risk assessment of reinforced concrete (RC) buildings. This paper provides a risk-assessment support tool for purpose of retrofitting and potential design strategies of RC buildings. Machine Learning (ML) algorithms were developed in Python software by innovative methods of hyperparameter optimization, such as halving search, grid search, random...
-
Pedestrian detection in low-resolution thermal images
PublicationOver one million people die in car accidents worldwide each year. A solution that will be able to reduce situations in which pedestrian safety is at risk has been sought for a long time. One of the techniques for detecting pedestrians on the road is the use of artificial intelligence in connection with thermal imaging. The purpose of this work was to design a system to assist the safety of people and car intelligence with the use...
-
Light4Health eLearning Course: health research for interior lighting design. Re-thinking design approaches based on science
PublicationThis paper presents the results of 'Light4Health' (L4H), a three-year EU Erasmus+ Strategic Partnership grant project (2019-2021), which investigated, systematized and taught health-related research on the impact of natural and artificial light on human health and well-being relevant to indoor lighting design. The objective was to re-think evidence-based lighting design approaches for residential, working/educational, and healthcare...
-
How Machine Learning Contributes to Solve Acoustical Problems
PublicationMachine learning is the process of learning functional relationships between measured signals (called percepts in the artificial intelligence literature) and some output of interest. In some cases, we wish to learn very specific relationships from signals such as identifying the language of a speaker (e.g. Zissman, 1996) which has direct applications such as in call center routing or performing a music information retrieval task...
-
Development of novel (BiO)2OHCl/BiOBr enriched with boron doped-carbon nanowalls for photocatalytic cytostatic drug degradation: Assessing photocatalytic process utilization in environmental condition
PublicationIn this work, a series of novel (BiO)2OHCl/BiOBr-x%B:DGNW (x = 0%, 1%, 1.5%, 2%) composites with different content of boron-doped diamond/graphene nanowalls (B:DGNW) were fabricated by simple solvothermal synthesis. A boron-doped diamond/graphene nanowalls (B:DGNW) were prepared by CVD method. A series of analyses: XRD, XPS, SEM, and TEM showed that the photocatalyst (BiO)2OHCl/BiOBr-x%B:DGNW with a “flower-like” morphology was...
-
A Survey on the Datasets and Algorithms for Satellite Data Applications
PublicationThis survey compiles insights and describes datasets and algorithms for applications based on remote sensing. The goal of this review is twofold: datasets review for particular groups of tasks and high-level steps of data flow between satellite instruments and end applications from an implementation and development perspective. The article outlines the generalized data processing pipelines, taking into account the variations in...
-
Green engineered biomaterials for bone repair and regeneration: Printing technologies and fracture analysis
PublicationDespite the exceptional self-regeneration properties of bone, severe injuries often require additional surgical intervention such as using artificial bone constructs. These structures need to meet a number of criteria regarding their structure, performance, alongside the rate and the mechanism of erosion and fracture when implanted, for stimulating the regeneration of defected bone and, more critically providing support in the...
-
Cost-Efficient Measurement Platform and Machine-Learning-Based Sensor Calibration for Precise NO2 Pollution Monitoring
PublicationAir quality significantly impacts human health, the environment, and the economy. Precise real-time monitoring of air pollution is crucial for managing associated risks and developing appropriate short- and long-term measures. Nitrogen dioxide (NO2) stands as a common pollutant, with elevated levels posing risks to the human respiratory tract, exacerbating respiratory infections and asthma, and potentially leading to chronic lung...
-
Molecularly imprinted polymers for the detection of volatile biomarkers
PublicationIn the field of cancer detection, the development of affordable, quick, and user-friendly sensors capable of detecting various cancer biomarkers, including those for lung cancer (LC), holds utmost significance. Sensors are expected to play a crucial role in the early-stage diagnosis of various diseases. Among the range of options, sensors emerge as particularly appealing for the diagnosis of various diseases, owing to their cost-effectiveness,...
-
Design and Experimental Validation of a Metamaterial-Based Sensor for Microwave Imaging in Breast, Lung, and Brain Cancer Detection
PublicationThis study proposes an innovative geometry of a microstrip sensor for high-resolution microwave imaging (MWI). The main intended application of the sensor is early detection of breast, lung, and brain cancer. The proposed design consists of a microstrip patch antenna fed by a coplanar waveguide with a metamaterial layer-based lens implemented on the back side, and an artificial magnetic conductor (AMC) realized on as a separate...
-
Detection of circulating tumor cells by means of machine learning using Smart-Seq2 sequencing
PublicationCirculating tumor cells (CTCs) are tumor cells that separate from the solid tumor and enter the bloodstream, which can cause metastasis. Detection and enumeration of CTCs show promising potential as a predictor for prognosis in cancer patients. Furthermore, single-cells sequencing is a technique that provides genetic information from individual cells and allows to classify them precisely and reliably. Sequencing data typically...
-
Influence of an Interview Location on Opinions about the Ecosystem Services Provided by Trees
PublicationCollecting opinions regarding environmental management is essential, particularly in urban areas where space is limited, and interests often collide. However, the impact of the conditions in which the research is conducted on opinions and preferences elicited via surveys and interviews about the environment is usually taken for granted. The recent development of computer-aided survey methods allows a simulation of an environment,...
-
ChatGPT Application vis-a-vis Open Government Data (OGD): Capabilities, Public Values, Issues and a Research Agenda
PublicationAs a novel Artificial Intelligence (AI) application, ChatGPT holds pertinence not only for the academic, medicine, law, computing or other sectors, but also for the public sector-case in point being the Open Government Data (OGD) initiative. However, though there has been some limited (as this topic is quite new) research concerning the capabilities ChatGPT in these sectors, there has been no research about the capabilities it...
-
Optimal Design of Transmitarray Antennas via Low-Cost Surrogate Modelling
PublicationOver the recent years, reflectarrays and transmitarrays have been drawing a considerable attention due to their attractive features, including a possibility of realizing high gain and pencil-like radiation patterns without the employment of complex feeding networks. Among the two, transmitarrays seem to be superior over reflectarrays in terms of achieving high radiation efficiency without the feed blockage. Notwithstanding, the...
-
The optimisation of analytical parameters for routine profiling of antioxidants in complex mixture by HPLC coupled post-column derivatisation
PublicationIntroduction: The wide application of natural and artificial antioxidants in food, cosmetic and pharmaceutical industry as well as the recognition of the importance of food antioxidants for supporting human health created demand for reliable and industrially applicable methods of determining antioxidative activity. This requirement can be fullfilled with the recently proposed HPLC-post-column derivatisation approach enabling the...
-
The mechanisms of degradation of titanium dental implants
PublicationTitanium dental implants show very good properties, unfortunately there are still issues regarding material wear due to corrosion, implant loosening, as well as biological factors—allergic reactions and inflammation leading to rejection of the implanted material. In order to avoid performing reimplantation operations, changes in the chemical composition and/or modifications of the surface layer of the materials are used. This research...
-
Electrophoretic Deposition and Characterization of Chitosan/Eudragit E 100 Coatings on Titanium Substrate
PublicationCurrently, a significant problem is the production of coatings for titanium implants, which will be characterized by mechanical properties comparable to those of a human bone, high corrosion resistance, and low degradation rate in the body fluids. This paper aims to describe the properties of novel chitosan/Eudragit E 100 (chit/EE100) coatings deposited on titanium grade 2 substrate by the electrophoretic technique (EPD). The deposition...
-
Audio Feature Analysis for Precise Vocalic Segments Classification in English
PublicationAn approach to identifying the most meaningful Mel-Frequency Cepstral Coefficients representing selected allophones and vocalic segments for their classification is presented in the paper. For this purpose, experiments were carried out using algorithms such as Principal Component Analysis, Feature Importance, and Recursive Parameter Elimination. The data used were recordings made within the ALOFON corpus containing audio signal...
-
The potential interaction of environmental pollutants and circadian rhythm regulations that may cause leukemia
PublicationTumor suppressor genes are highly affected during the development of leukemia, including circadian clock genes. Circadian rhythms constitute an evolutionary molecular machinery involving many genes, such as BMAL1, CLOCK, CRY1, CRY2, PER1, PER2, REV-ERBa, and RORA, for tracking time and optimizing daily life during day-night cycles and seasonal changes. For circulating blood cells many of these genes coordinate their proliferation,...
-
Exergy and Energy Analyses of Microwave Dryer for Cantaloupe Slice and Prediction of Thermodynamic Parameters Using ANN and ANFIS Algorithms
PublicationThe study targeted towards drying of cantaloupe slices with various thicknesses in a microwave dryer. The experiments were carried out at three microwave powers of 180, 360, and 540 W and three thicknesses of 2, 4, and 6 mm for cantaloupe drying, and the weight variations were determined. Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) were exploited to investigate energy and exergy indices of...
-
Predicting the peak structural displacement preventing pounding of buildings during earthquakes
PublicationThe aim of the present paper is to verify the effectiveness of the artificial neural network (ANN) in predicting the peak lateral displacement of multi-story building during earthquakes, based on the peak ground acceleration (PGA) and building parameters. For the purpose of the study, the lumped-mass multi-degree-of-freedom structural model and different earthquake records have been considered. Firstly, values of stories mass and...
-
Quantitative Risk Assessment in Construction Disputes Based on Machine Learning Tools
PublicationA high monetary value of the construction projects is one of the reasons of frequent disputes between a general contractor (GC) and a client. A construction site is a unique, one-time, and single-product factory with many parties involved and dependent on each other. The organizational dependencies and their complexity make any fault or mistake propagate and influence the final result (delays, cost overruns). The constant will...
-
Social media for e-learning of citizens in smart city
PublicationThe rapid development of social media can be applied for citizens’ e-learning in a smart city. Big cities have to cope with several open issues like a growing population or a traffic congestion. Especially, a home and public space is supposed to be used in more efficient way. Sustainable homes and buildings can be planned with using some modern techniques. Even currently, there is a huge problem with a lack of key resources like...
-
KNOWING WHEN TO SAY NO / SAPERE QUANDO DIRE NO
PublicationEver since we began illuminating the exterior of the slender skyscrapers built during the of 20s and 30s in XX century, urban lighting has been considered a way to beautify cities, and make them more visually prominent and safe. At that time, we knew so little about the impact of lighting on humans, flora and fauna, so it never occurred to lighting designers then, that their actions would have harmful consequences. In those days,...
-
MACHINE LEARNING–BASED ANALYSIS OF ENGLISH LATERAL ALLOPHONES
PublicationAutomatic classification methods, such as artificial neural networks (ANNs), the k-nearest neighbor (kNN) and selforganizing maps (SOMs), are applied to allophone analysis based on recorded speech. A list of 650 words was created for that purpose, containing positionally and/or contextually conditioned allophones. For each word, a group of 16 native and non-native speakers were audio-video recorded, from which seven native speakers’...
-
Mixed integer nonlinear optimization of biological processes in wastewater sequencing batch reactor
PublicationWastewater treatment plays a key role for humanity. The waste entering lakes, rivers, and seas deteriorates daily quality of life. Therefore, it is very important to improve the efficiency of wastewater treatment. From a control point of view, a biological wastewater treatment plant is a complex, non-linear, multidimensional, hybrid control system. The paper presents the design of the optimizing hierarchical control system applied...
-
Determination of long-chain aldehydes using a novel quartz crystal microbalance sensor based on a biomimetic peptide
PublicationThere is an increasingly popular trend aimed at improvement of fundamental metrological parameters of sensors via implementation of materials mimicking biological olfactory systems. This study presents investigation on usefulness of the peptide mimicking HarmOBP7 region as a receptor element of the piezoelectric sensor for selective analysis of long-chain aldehydes. Identification of odorant binding proteins creates new possibilities...