Milena Sobotka - Profil naukowy - MOST Wiedzy

Wyszukiwarka

Zdjęcie profilowe: mgr inż. Milena Sobotka

mgr inż. Milena Sobotka

Kontakt dla biznesu

Centrum Transferu Wiedzy i Technologii
Lokalizacja
Al. Zwycięstwa 27, 80-219 Gdańsk
Telefon
+48 58 348 62 62
E-mail
biznes@pg.edu.pl

Media społecznościowe

Kontakt

Specjalista inżynieryjno-techniczny

Miejsce pracy
Budynek A Elektroniki
pokój EA 207 otwiera się w nowej karcie
Telefon
+48 58 347 17 35
E-mail
milena.sobotka@pg.edu.pl

Wybrane publikacje

  • Mask Detection and Classification in Thermal Face Images

    Face masks are recommended to reduce the transmission of many viruses, especially SARS-CoV-2. Therefore, the automatic detection of whether there is a mask on the face, what type of mask is worn, and how it is worn is an important research topic. In this work, the use of thermal imaging was considered to analyze the possibility of detecting (localizing) a mask on the face, as well as to check whether it is possible to classify...

    Pełny tekst do pobrania w portalu

  • Impact of Visual Image Quality on Lymphocyte Detection Using YOLOv5 and RetinaNet Algorithms

    Lymphocytes, a type of leukocytes, play a vital role in the immune system. The precise quantification, spatial arrangement and phenotypic characterization of lymphocytes within haematological or histopathological images can serve as a diagnostic indicator of a particular lesion. Artificial neural networks, employed for the detection of lymphocytes, not only can provide support to the work of histopathologists but also enable better...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Preeclampsia Risk Prediction Using Machine Learning Methods Trained on Synthetic Data

    - Rok 2024

    This paper describes a research study that investigates the use of machine learning algorithms on synthetic data to classify the risk of developing preeclampsia by pregnant women. Synthetic datasets were generated based on parameter distributions from three real patient studies. Four models were compared: XGBoost, Support Vector Machine (SVM), Random Forest, and Explainable Boosting Machines (EBM). The study found that the XGBoost...

    Pełny tekst do pobrania w serwisie zewnętrznym

wyświetlono 690 razy