Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at high temperature region - Open Research Data - MOST Wiedzy

Wyszukiwarka

Nonlinear impedance of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K measured with impedance spectroscopy method at high temperature region

Opis

The nonlinear electrcial properties of 50(2Bi2O3-V2O5)-50SrB4O7 glass heat treated at 693 K was measured by impedance spectroscopy method. 

 The polycrystalline strontium–borate, SrB4O7 was synthesized via a solid state reaction route that involved heating stoichiometric mixtures of analytical grade SrCO3 and H3BO3 at 1073 K for 12 hours. Next, sample of a composition of 50(2Bi2O3-V2O5)-50SrB4O7 (in %mol) was prepared from reagent-grade Bi2O3, V2O5 and preprepared SrB4O7. Samples of glass were prepared by the conventional melt quenching technique. The melting was conducted in alumina crucibles at 1373 K for 2 hours. The melt was poured onto a preheated (573 K) brass plate and pressed by another plate to obtain flat circular disks of 1–2 mm thickness and 20–30 mm in diameter. Glass samples were heat treated at 693 K for 3 h to obtain partially crystallized materials.

For the electrical measurements gold electrodes were evaporated at the preheated samples. Nonlinear impedance measurements were carried out in the temperature range from 373 K to 813 K, with the ac voltage of 1 Vrms with Concept 40 broadband dielectric spectrometer and a high temperature Controller Novotherm HT 1600. The measurements were carried out both while increasing and decreasing the temperature. The higher harmonic components (harmonic 0 and harmonic2) were measured up to frequency of 1000 Hz. Here the impedance for harmonic components was defined as the ratio of the voltage base wave to the n-th harmonic current component: Zn∗= U0∗/In∗, where Zn⁎ including the base wave generally depend on the sample voltage U1⁎ base wave amplitude. From Zn⁎ allother independent variables are calculated. The dependence of current density on the cosinusoidal electric field E(t)= E0cos(ωt) leads to the following expression:

j´ = σ´0hE0 cos (ωt) + σ´1hE0 cos (2ωt) + σ´2hE0 cos (3ωt) + …
Where σ´0h denotes base conductivity, while σ´1h, σ´2h etc. are higher harmonics conductivity. The admittivity for harmonic components with n ≥1, is calculated from relation σ⁎n = i2πfε0ε⁎n.

Plik z danymi badawczymi

set76.zip
948.6 kB, S3 ETag 3dcda9654d1be3844d19e696e99f7c46-1, pobrań: 67
Hash pliku liczony jest ze wzoru
hexmd5(md5(part1)+md5(part2)+...)-{parts_count} gdzie pojedyncza część pliku jest wielkości 512 MB

Przykładowy skrypt do wyliczenia:
https://github.com/antespi/s3md5
pobierz plik set76.zip

Informacje szczegółowe o pliku

Licencja:
Creative Commons: by 4.0 otwiera się w nowej karcie
CC BY
Uznanie autorstwa
Dane surowe:
Dane zawarte w datasecie nie zostały w żaden sposób przetworzone.

Informacje szczegółowe

Rok publikacji:
2015
Data zatwierdzenia:
2021-06-21
Język danych badawczych:
angielski
Dyscypliny:
  • inżynieria materiałowa (Dziedzina nauk inżynieryjno-technicznych)
DOI:
Identyfikator DOI 10.34808/ejp1-3305 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

Słowa kluczowe

Powiązane zasoby

Cytuj jako

wyświetlono 112 razy