Uniform expansion estimates in the quadratic map as a function of the partition size, using the “derivative” partition type
Opis
This dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
Using an approach based on graph algorithms described in the paper, comprehensive computation was conducted to obtain a rigorous lower bound on the expansion exponent λ (Statement 1 in the paper), the constant C (Statement 1 in the paper), and the adjusted exponent λ0 (Statement 2 in the paper). The size of the partition into which the domain of the map was subdivided is denoted by K. The radius of the critical neighborhood is denoted by δ. The key parameter of the map is denoted by a. The parallelization framework introduced in the paper "Parallelization method for a continuous property" by P. Pilarczyk, as published in Foundations of Computational Mathematics, Vol. 10, No. 1 (2010), 93–114, doi: 10.1007/s10208-009-9050-8, was used in order to use several CPUs at a time. Note that the data records are not sorted.
In this specific computation, the quadratic map was analyzed with a=2, δ=0.01, and K∈[100,7900]. The partition type called “derivative” was used.
The data is provided in plain text format. Each line with comments begins with a semicolon, each line with a single data record begins with an asterisk. Each data record consists of the following items, separated with the space:
- the asterisk that indicates the beginning of a data record
- the identifier of the data record in the format level:number (e.g., 4:12)
- the left endpoint of the parameter interval (minimal parameter value)
- the right endpoint of the parameter interval (maximal parameter value)
- the total number of intervals that cover both the critical neighborhood and the remainder of the domain of the map
- the diameter δ of the critical neighborhood
- the computed expansion exponent λ
- the computed value of log C (0 if not computed)
- the computed value of λ0 (0 if not computed)
- the computation time (in seconds)
The actual software that was used to obtain the results and also some illustrations are available at http://www.pawelpilarczyk.com/unifexp/.
Plik z danymi badawczymi
hexmd5(md5(part1)+md5(part2)+...)-{parts_count}
gdzie pojedyncza część pliku jest wielkości 512 MBPrzykładowy skrypt do wyliczenia:
https://github.com/antespi/s3md5
Informacje szczegółowe o pliku
- Licencja:
-
otwiera się w nowej karcieCC BY-SANa tych samych warunkach
Informacje szczegółowe
- Rok publikacji:
- 2008
- Data zatwierdzenia:
- 2021-07-29
- Język danych badawczych:
- angielski
- Dyscypliny:
-
- matematyka (Dziedzina nauk ścisłych i przyrodniczych)
- DOI:
- Identyfikator DOI 10.34808/xp1v-qc05 otwiera się w nowej karcie
- Seria:
- Weryfikacja:
- Politechnika Gdańska
Słowa kluczowe
- Dynamical Systems
- Rigorous Numerical Methods
- Scientific Computation
- One-Dimensional Dynamics
- Unimodal Map
- Quadratic Map
- Lyapunov Exponent
Powiązane zasoby
- publikacja Quantitative hyperbolicity estimates in one-dimensional dynamics
- publikacja Parallelization Method for a Continuous Property
Cytuj jako
Autorzy
wyświetlono 136 razy