Artificial neural network prophecy of ion exchange process for Cu (II) eradication from acid mine drainage
Abstrakt
The removal of heavy metal ions from wastewater was found to be significant when the cation exchange procedure was used effectively. The model of the cation exchange process was built using an artificial neural network (ANN). The acid mine drainage waste’s Cu(II) ion was removed using Indion 730 cation exchange resin. Experimental data from 252 cycles were recorded. In a column study, 252 experimental observations validated the three-layered ANN module’s ion exchange process forecasting. The model design for the ion exchange process focuses on the process’s major constraints, such as initial flow rate, initial concentration of Cu (II) ions, and AMDW residence time in the column, to fit the working environment. The maximum metal ion removal efficiency was found at 5 LPH initial flowrate, 5 pH suspension, and 60 cm bed height. With a regression value of 0.99, the proposed model matches experimental values. A hidden layer with 6 neurons and an outer layer with a linear transfer function can predict adsorption efficiency using the three-layer ANN module’s backpropagation (BP) technique. A linear method was used to construct the correlation between dependent and independent variables. The BP-ANN module’s coefficient of correlation was 0.99 with accurate dependent variable predictions. In a feedforward neural network, the current research’s ANN module predicts the best conditions for Cu(II) ion extraction.
Cytowania
-
1 1
CrossRef
-
0
Web of Science
-
5
Scopus
Autorzy (7)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
International Journal of Environmental Science and Technology
nr 20,
strony 13479 - 13490,
ISSN: 1735-1472 - Język:
- angielski
- Rok wydania:
- 2023
- Opis bibliograficzny:
- Hakke V. S., Gaikwad R. W., Warade A. R., Sonawane S. H., Boczkaj G., Sonawane S., Sapkal V. S.: Artificial neural network prophecy of ion exchange process for Cu (II) eradication from acid mine drainage// International Journal of Environmental Science and Technology -Vol. 20, (2023), s.13479-13490
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s13762-023-04818-8
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 92 razy
Publikacje, które mogą cię zainteresować
Cu( II ) ions removal from wastewater using starch nanoparticles ( SNPs ): An Eco‐sustainable approach
- V. S. Hakke,
- V. K. Landge,
- S. H. Sonawane
- + 3 autorów
An advanced synergy of partial denitrification-anammox for optimizing nitrogen removal from wastewater: A review
- H. Al-Hazmi,
- M. Maktabifard,
- D. Grubba
- + 7 autorów
Effective assessment of biopolymer-based multifunctional sorbents for the remediation of environmentally hazardous contaminants from aqueous solutions
- S. Nawaz,
- A. Tabassum,
- S. Muslim
- + 6 autorów
Band engineering of BiOBr based materials for photocatalytic wastewater treatment via advanced oxidation processes (AOPs) – A review
- Z. Saddique,
- M. Imran,
- A. Javaid
- + 4 autorów