ColorNephroNet: Kidney tumor malignancy prediction using medical image colorization - Publikacja - MOST Wiedzy

Wyszukiwarka

ColorNephroNet: Kidney tumor malignancy prediction using medical image colorization

Abstrakt

Renal tumor malignancy classification is one of the crucial tasks in urology, being a primary factor included in the decision of whether to perform kidney removal surgery (nephrectomy) or not. Currently, tumor malignancy prediction is determined by the radiological diagnosis based on computed tomography (CT) images. However, it is estimated that up to 16% of nephrectomies could have been avoided because the tumor that had been diagnosed as malignant, was found to be benign in the postoperative histopathological examination. The excess of false-positive diagnoses results in unnecessarily performed nephrectomies that carry the risk of periprocedural complications. In this paper, we present a machine-aided diagnosis system that predicts the tumor malignancy based on a CT image. The prediction is performed after radiological diagnosis and is used to capture false-positive diagnoses. Our solution is able to achieve a 0.84 F1-score in this task. We also propose a novel approach to knowledge transfer in the medical domain in terms of colorization based pre-processing that is able to increase the F1-score by up to 1.8pp.

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Proceedings of FLAIRS-35 nr 35, strony 1 - 6,
ISSN: 2334-0762
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Obuchowski A., Klaudel B., Karski R., Rydziński B., Glembin M., Syty P., Jasik P.: ColorNephroNet: Kidney tumor malignancy prediction using medical image colorization// Proceedings of FLAIRS-35 -Vol. 35, (2022), s.1-6
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.32473/flairs.v35i.130689
Weryfikacja:
Politechnika Gdańska

wyświetlono 153 razy

Publikacje, które mogą cię zainteresować

Meta Tagi