Abstrakt
Renal tumor malignancy classification is one of the crucial tasks in urology, being a primary factor included in the decision of whether to perform kidney removal surgery (nephrectomy) or not. Currently, tumor malignancy prediction is determined by the radiological diagnosis based on computed tomography (CT) images. However, it is estimated that up to 16% of nephrectomies could have been avoided because the tumor that had been diagnosed as malignant, was found to be benign in the postoperative histopathological examination. The excess of false-positive diagnoses results in unnecessarily performed nephrectomies that carry the risk of periprocedural complications. In this paper, we present a machine-aided diagnosis system that predicts the tumor malignancy based on a CT image. The prediction is performed after radiological diagnosis and is used to capture false-positive diagnoses. Our solution is able to achieve a 0.84 F1-score in this task. We also propose a novel approach to knowledge transfer in the medical domain in terms of colorization based pre-processing that is able to increase the F1-score by up to 1.8pp.
Cytowania
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Autorzy (7)
Cytuj jako
eksportuj:
Trwa wczytywanie...
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.32473/flairs.v35i.130689
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
Proceedings of FLAIRS-35
nr 35,
strony 1 - 6,
ISSN: 2334-0762 - Język:
- angielski
- Rok wydania:
- 2022
- Opis bibliograficzny:
- Obuchowski A., Klaudel B., Karski R., Rydziński B., Glembin M., Syty P., Jasik P.: ColorNephroNet: Kidney tumor malignancy prediction using medical image colorization// Proceedings of FLAIRS-35 -Vol. 35, (2022), s.1-6
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.32473/flairs.v35i.130689
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 169 razy
Publikacje, które mogą cię zainteresować
Deep convolutional neural network for predicting kidney tumour malignancy
- A. Obuchowski,
- B. Klaudel,
- R. Karski
- + 4 autorów
Enhancing Renal Tumor Detection: Leveraging Artificial Neural Networks in Computed Tomography Analysis
- M. Glembin,
- A. Obuchowski,
- B. Klaudel
- + 5 autorów