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Iwona Białas 5 and Piotr Bełdowski 6

1 Department of Physical Chemistry, Pharmacy Faculty, Collegium Medicum of Bydgoszcz,
Nicolaus Copernicus University in Toruń, 85096 Bydgoszcz, Poland
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Abstract: Fibroin–chitosan composites, especially those containing nanohydroxyapatite, show po-
tential for bone tissue regeneration. The physicochemical properties of these biocomposites depend
on the compatibility between their components. In this study, the intermolecular interactions of
fibroin and chitosan were analyzed using a molecular dynamics approach. Two types of systems
were investigated: one containing acetic acid and the other containing calcium (Ca2+) and hydrogen
phosphate (HPO4

2−) ions mimicking hydroxyapatite conditions. After obtaining the optimal equilib-
rium structures, the distributions of several types of interactions, including hydrogen bonds, ionic
contacts, and hydrophobic contacts, along with structural and energetical features, were examined.
The calculated binding energy values for the fibroin–chitosan complexes confirm their remarkable
stability. The high affinity of fibroin for chitosan can be explained by the formation of a dense network
of interactions between the considered biopolymers. These interactions were found to primarily be
hydrogen bonds and ionic contacts involving ALA, ARG, ASN, ASP, GLN, GLU, GLY, LEU, PRO, SER,
THR, TYR, and VAL residues. As established, the complexation of fibroin with chitosan maintains
the β-sheet conformation of the peptide. β-Sheet fragments in fibroin are involved in the formation
of a significant number of hydrogen bonds and ionic contacts with chitosan.

Keywords: biomaterials; chitosan; silk fibroin; molecular dynamics; intermolecular interactions;
hydrogen bonds

1. Introduction

It is widely recognized that the interactions between proteins and polysaccharides are
pivotal in both living organisms [1] and the development of novel biomaterials [2]. Among
the polysaccharide analogues, proteoglycans deserve special attention. These biomolecules
are composed of protein and glycosaminoglycan (GAG) moieties bound to the protein
by the serine and threonine fragments [3]. They are typically found on the cell surface
and in the extracellular matrix (ECM). Proteoglycans are essential for the strength and
flexibility of cartilage and tendons. The absence of proteoglycans is associated with heart
and respiratory failure, defects in skeletal development, and increased tumor metastasis [4].

Silk threads are considered to be one of the strongest natural fibers. They exhibit a high
tensile strength of 4.8 GPa, very good flexibility [5–7] and high thermal stability [8–10]. Silk
is more resistant to loads than Kevlar (the most potent manufactured fiber to date) [7,11,12].
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Spiderweb silk exhibits exceptional mechanical properties [10,13]. However, silk produced
on an industrial scale is primarily sourced from domesticated mulberry silkworms (B. mori)
due to their ease of cultivation and higher thread yield from their cocoons compared to
spider webs [10,13]. Natural silk thread is composed of two tightly packed bundles of
fibroin fibers, glued with a sericin sheath and soluble in hot water. Fibroin protein is a
dominant component of raw silk, accounting for 70%–80% of its weight [14–16]. The other
components are sericin, wax, fats, and dyes [12,17]. Fibroin, has a high content of amino
acids, with serine comprising approximately 12% [18], whereas collagen contains four
times less amino acids [19]. The repetitive sequence of amino acids (alanine and glycine)
already in the primary structure makes silk fibroin a highly ordered protein. An essential
repeating motif of the fibroin amino acid sequence is –(GLY-SER-GLY-ALA-GLY-ALA)n.
These chains, connected by hydrogen bonds, form the antiparallel β-sheet structure. Due
to the periodic primary structure, there are glycine residues in the secondary structure on
one side of the surface of the β-sheet, interacting with the glycine residues of the adjacent
chain. Similarly, on the other side of the surface of the β-sheet, there are serine and alanine
residues interacting with similar residues of another neighboring chain (Figure 1). This
quasi-crystalline structure is interrupted by stretches of the sequence containing other
amino acids (e.g., TYR, ASP, ARG and VAL).
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region, α-helix structure and non-oriented amorphous area, respectively.

Silk fibers with a high proportion of regular glycine–alanine fragments tend to be more
flexible due to weak interactions between chains in the β-sheet structure, but less stretchable
as the polypeptide chains are under significant tension in this secondary structure. Fiber
properties such as gloss and softness depend on differences in the size and characteristics
of amino acid residues within irregular structural fragments. Crystalline regions within
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fibers, marked as A in Figure 1, consist of tightly packed motifs of the antiparallel β-sheet,
aligned along the fiber axis. Dispersion angle measurements revealed the presence of
crystallites with dimensions of 2 × 2 × 2 nm [20]. However, these dimensions increase
to 5–7 nm in length at slower reeling speeds [23]. Additionally, the analysis identified
non-crystalline regions with two distinct morphologies: (i) oriented regions with an α-helix
structure (B, Figure 1) and (ii) non-oriented amorphous areas (C, Figure 1). A closer insight
into the less-ordered regions aligned with the fiber axis reveals the presence of the 31-helix
motif (which grants elasticity to the fibers) and a greater abundance of β-bends/turns and
potentially β-spirals. These β-structures, prevalent in spider silk, might be responsible for
the rapid shrinking of the thread in water (super contraction effect) [24–26].

Silk fibroin consists of two main chains: a heavier H-chain (around 300 kDa in B. mori)
with a hydrophobic nature and a lighter L-chain (25 kDa) with a hydrophilic nature. These
chains are linked by a disulfide bridge. The structure also includes a chaperone protein,
P25, which is a fibrohexamer glycoprotein. The structure of the silk thread is supported
by strong hydrogen bonds, especially in the crystalline areas, and by Van der Waals
interactions. According to Kaplan models, the primary structure’s chain is predominantly
hydrophobic, interspersed with small repetitive sections of a hydrophilic nature [27]. These
alternating hydrophilic and hydrophobic interactions lead to the formation of micelles,
where water is bound within the hydrophilic domains (approximately 8%). These micelles,
measuring up to 200 nm in size, ultimately form fibroin globulins. When subjected to
various physical or chemical stimuli, such as changes in pH, temperature fluctuations,
variations in metal ion concentration, increased fibroin concentration, ultrasound exposure,
or mechanical shearing, disordered and β-helical regions transform into ordered β-sheet
structures. Concentrated globulins transition into a liquid crystal phase, with particles
aligning parallel to one another as they flow, solidifying upon exposure to air to form
a thread.

Due to its hydrophobic nature, and the presence of inter- and intramolecular strong
hydrogen bonds in many crystalline regions, natural silk fibers dissolve only in a few
solvents, including concentrated acids: H3PO4, HCOOH, H3SO4, and HCl and aqueous
solutions of concentrated salts: LiSCN, LiBr, CaCl2, Ca(SCN)2, ZnCl2, NH4SCN, CuSO4,
Ca(NO3)2 [17]. Despite the solubility limitation, it is possible to obtain many different forms
of silk material, e.g., films, foams, hydrogels, powders, nanofibers, and microcapsules [18].
Silk is used not only in the clothing industry for producing fabrics, anti-allergic bedding,
bulletproof vests, ropes, and parachutes, but also in medical applications. Silk fibers
(catgut) have been used as surgical threads for years. There is a lot of interest in an
aqueous solution of silk fibroin, which, thanks to its biocompatibility, biodegradability, and
similarity to collagen and elastin, is successfully used in tissue engineering. Silk fibroin is a
promising scaffold material for cell growth and regeneration in various damaged tissues,
including connective, nervous, cartilage, and bone tissues [7]. Furthermore, it has a wide
range of other biomedical and pharmaceutical applications, including drug carriers [28–30]
and hydrogels for transparent wound dressings [31,32]. Notably, additional beneficial
properties, such as antibacterial properties, increased strength, resistance to degradation,
viscosity suitable for bioprinting, and others, can be achieved by adding other polymers,
such as chitosan, hyaluronic acid, cellulose, sodium alginate, starch, carrageenan, collagen,
gelatin, PVA, PVP, and poly(lactic acid) [33,34].

Among polysaccharide analogues, chitosan demonstrates exceptional biocompatibil-
ity and biodegradability [35,36]. It is derived from chitin, an abundant and renewable
resource, and is widely acknowledged for its safety profile [36]. Its versatility and potential
or actual applications have been widely demonstrated in numerous fields, including agri-
culture [37,38], pharmacy and medicine [30,36,37,39–43], food industry [36,37,44], textile
industry [36,37,45,46], biotechnology [47], cosmetics [37,48–51], paper production [37,52]
and various green and sustainable technologies [53–55]. Chitosan emerges as a highly desir-
able substance, owing to its non-toxicity, cationic nature, biocompatibility, and antibacterial
properties, alongside its unique chemical composition [35].
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In general, composites stabilized by strong intermolecular interactions exhibit su-
perior mechanical durability. For instance, there are documented correlations between
the denaturation temperature characterizing the thermal stability of protein-containing
biomaterials and their mechanical and rheological properties [56–58]. Importantly, the
direct evidence of the relationships between the strength and mechanical properties of in-
termolecular interactions was demonstrated by studies that explored experimental analysis
with molecular dynamics computations [59,60]. Our previous research employed molecular
dynamics simulations to explore complexes of chitosan/chitin with collagen [61–63] and
hyaluronan [64]. Understanding these interactions is crucial for developing strategies
for cartilage regeneration [65]. Likewise, chitosan–fibroin composites are relevant from
biomedical and pharmaceutical perspectives [34,66–70]. Notably, chitosan/fibroin compos-
ites containing hydroxyapatite exhibit exceptional tissue regeneration potential due to their
unique properties [66,68]. These composites hold promise for various applications. For
instance, they could serve as durable, natural fillings and dental implant scaffolds. Notably,
all the named substances—chitosan, fibroin, and hydroxyapatite—are either applied or con-
sidered as promising materials in dentistry thanks to their biocompatibility and mechanical
properties [71–75]. Their degradation products are non-toxic, and the materials can be
engineered to resist wear and tear depending on the number of intermolecular contacts
stabilizing the molecular assemblies. Additionally, these composites can be used for bone
reconstruction. The intermolecular contacts between silk fibroin and chitosan seems to be
a key factor influencing the mechanical behavior of load-bearing applications [34,76]. A
thorough understanding of these interactions will allow for the design of materials with
controlled degradation rates. This could be crucial for creating scaffolds that degrade
at a pace matching new bone tissue regeneration, thereby preventing the formation of
pseudoarthrosis (a common complication in long bone defects characterized by improper
mineralization) [77]. This study focuses on unraveling the intermolecular interactions
between fibroin and chitosan in the presence of HPO4

2− and Ca2+ ions using molecular
dynamics simulations. The main goal is to elucidate the factors that contribute to the
remarkable stability of these composites.

2. Methods

All molecular dynamics computations were carried out using an YASARA
software [78,79], a comprehensive and versatile tool for modeling biopolymer complexes,
including polysaccharide/peptide systems [61–64,80–82]. The structure of the chitosan
was taken from PubChem (PubChem CID: 129662530) and modified to obtain polymer
of total mass of 200 kDa (1250 monomer units). The deacetylation degree of the chitosan
applied in this study was 100%. Notably, chitosan with a high degree of deacetylation is
commonly used in fibroin composites [83–87]. A high degree of deacetylation results in a
higher number of protonated amino groups in aqueous solutions, thus enhancing solubility
and biocompatibility [88]. The structure of the silk fibroin heavy chain was obtained from
https://alphafold.ebi.ac.uk/entry/B0FRJ4 accessed on 6 May 2024 (fibroin heavy chain
Fib-h). In order to optimize the structure further, it was equilibrated for 5 ns. Additionally,
a single chitosan chain was included in the simulation box, and five separate simulations,
each lasting 40 ns, were conducted. Finally, 8 fibroin chains were added to chitosan for
each system. Two cases have been studied: (1) with the presence of Ca2+ and HPO4

2− ions
(HPO4

2−/Ca2+) and (2) with the presence of acetic acid. Point charges for silk fibroin atoms
were assigned using the AMBER14 force field [89], while charges for chitosan atoms were
assigned using the GLYCAM06 force field [90]. Notably, studies employing the AMBER14
force field in peptide simulations frequently yielded results aligned with experimental
observations [91–93]. This force field was modified compared to previous versions to better
reproduce structural data obtained from NMR measurements [94]. The GLYCAM06 force
field, utilized in this study alongside AMBER14, has shown a good quality of prediction of
structural features in polysaccharides [95,96].
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In the subsequent step, all molecular systems were used for the molecular dynamics
computations. The applied approach included the water solvation effects and acid–base
characteristics. For this reason, the procedure encompassed the adjustment of the structural
features of hydrogen bonds to achieve appropriate protonation microstates of the peptide
at pH = 7.0 [97]. The neutral pH was set for all systems considered in the study. The
charge of the generated structures used for molecular dynamics simulations was set to
zero. After equilibration and energy minimization, molecular dynamics (MD) simulations
were run for 1 nanosecond. The simulations employed appropriate force fields for all
atoms in the studied molecular systems: AMBER14 for fibroin, GLYCAM06 for chitosan,
and TIP3P for water. Standard AMBER settings were used, including a 1.0 nm van der
Waals cutoff and the Particle Mesh Ewald algorithm [98] for calculating electrostatic inter-
actions. The equations of motion were integrated using time steps of 1.25 femtoseconds
and 2.5 femtoseconds for bonded and non-bonded interactions, respectively, under the
conditions of temperature (T) set at 310 K and pressure (P) at 101,325 Pa within the NPT
ensemble [98]. The Berendsen barostat and thermostat [99], featuring a relaxation time of 1
fs, were employed to ensure constant pressure and temperature. To mitigate the impact
of rescaling, YASARA avoids utilizing the highly variable instantaneous microscopic tem-
perature and pressure for velocity rescaling in each simulation step (a characteristic of the
classic Berendsen thermostat). Instead, it computes the scaling factor based on Berendsen’s
formula using the time-averaged temperature. The simulation duration time was set to
200 ns to ensure sufficient information for subsequent analysis. Achieving the optimal
structure of the complex was confirmed based on several structural parameters, including
the RMSD of the evolution of all atoms, radius gyration, and numbers of intermolecular
interactions (Supplementary Figures S1 and S2). In order to determine binding energy and
other critical characteristics, 1500 data points were meticulously chosen from the 50–200 ns
timeframe, subsequent to the root mean square deviation/displacement (RMSD) analysis.

3. Results and Discussion

This study examined two chitosan–silk fibroin complexes. One complex incorporated
Ca2+ ions and HPO4

2− to mimic nanohydroxyapatite, while the other contained acetic acid.
The selection of the acetic acid environment as a reference simulation condition was guided
by two considerations: its well-documented role as a stabilizer for fibroin [67] and its
ability to dissolve both fibroin and chitosan [67,100]. The exemplary optimized structures
of chitosan–silk fibroin complexes are presented in Figure 2. The detailed structural and
geometric parameters, including hydrogen bond lengths, interaction distances, and bind-
ing energies, are provided in the Supplementary Materials. The analysis of the optimized
structures revealed that basic amino groups in chitosan undergo protonation under all
considered conditions. The role of charged ions in stabilizing these large biomolecular
systems presents an intriguing aspect for investigation. Although the individual com-
ponents of these complexes carry charges, the overall molecular assemblies themselves
remain neutral due to the presence of counterions (CH3COO−, HPO4

2−, Ca2+). Molecular
dynamics simulations unveil that the formation of complexes with both CH3COOH and
HPO4

2−/Ca2+ is energetically advantageous. However, the total binding energy, encom-
passing all stabilizing interactions, slightly favors the former system (7452 ± 397 kJ/mol)
over the latter (6483 ± 561 kJ/mol). Despite these disparities, both values are remarkably
high. Notably, the binding energies, calculated through similar procedures for chitosan-
collagen complexes as reported in our previous studies [61,63], did not exceed 850 kJ/mol.
This suggests a significantly lower mutual affinity between chitosan and collagen com-
pared to chitosan-fibroin systems. Notably, fibroin is known to form semi-interpenetrating
polymer network (semi-IPN) arrangements with chitosan [101]. Moreover, thermal studies
have shown high compatibility and thermal stability of the chitosan-fibroin mixture [102].
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Figure 2. Visualization of the initial chitosan–silk fibroin structure (a) and the optimized complexes
containing CH3COOH (b) and HPO4

2−/Ca2+ (c). Chitosan is presented in a ball model, while fibroin
is in ribbon like structure. Fibroin helices are presented as solid turquoise lines, whereas chitosan is
represented by a ball–stick model with colors representing the following elements: carbon—turquoise,
nitrogen—dark blue, oxygen—red, and hydrogen–white.

Similar to chitosan, fibroin undergoes protonation in acidic conditions [103,104], as
evidenced by computational results. While both biomolecules become positively charged
through protonation, the formation of stable complexes is possible due to the presence
of oppositely charged ions that neutralize the positive charge. Our previous studies [63]
have demonstrated similar behavior in the case of collagen–chitosan systems. Impor-
tantly, both chitosan and proteins, such as collagen and fibroin, exhibit polyelectrolytic
properties [105–107], leading to charge migration within the polymer chain and fluctuations
in charge density within the biomolecule. These properties can be manifested in complex
molecular systems. Nevertheless, similar calculations performed in previous studies [63]
have shown that even oligomeric chitosan chains exhibit polyelectrolytic features. Since
polyelectrolytes contain many ionic and polar groups, they are capable of forming various
intermolecular contacts. Remarkably, the complexes investigated in this study reveal a
dense network of interactions between chitosan and fibroin. The YASARA program (2021)
employed in this study was capable of identifying various primary types of interactions
in the considered fibroin–chitosan complexes, such as ionic contacts, hydrogen bonds,
and hydrophobic interactions. Of particular significance are strong ionic contacts. These
interactions are known to be crucial for stabilizing the fibroin–chitosan complexes [108]. As
shown in Figure 3, in the case of both complexes, containing acetic acid and HPO4

2−/Ca2+

ions various ionic contacts between chitosan and fibroin appear. However, a significantly
higher number of these interactions are observed under the influence of HPO4

2−/Ca2+

ions compared to the acetic acid solution. Similarly, Figure 4 reveals a greater frequency of
hydrogen bonds between fibroin and chitosan in the presence of HPO4

2− and Ca2+ ions.
Notably, hydrogen bonds and electrostatic interactions in fibroin blends containing differ-
ent polysaccharides including chitosan were analyzed using experimental tools [108]. As
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indicated by these studies, interactions between the protein and polysaccharides can indeed
modify the protein structure itself. From the perspective of bone regeneration, it seems to
be beneficial to utilize materials that are structurally similar to natural bone tissue. Fibroin
emerges as a promising candidate in this context. It is well established that the crystal
phase formed during bone mineralization exhibits a characteristic inter-crystalline center
spacing of 0.362 nm [109]. Fortunately, this spacing aligns with the β-sheet conformation
observed in fibroin [17]. According to the results of infrared spectroscopy measurements,
the complexation of fibroin with chitosan favors the β-sheet conformation of the pep-
tide [108,110,111]. The β-sheet order was also found in the case of the complexes optimized
in this study, as visualized by the red band (Figure 2). As inferred from Figures 3 and 4,
the contribution of the ionic contacts and hydrogen bond between chitosan and β-sheet
fragments is quite significant compared to the contacts formed by other fragments of the
peptide (coil, turn). Furthermore, these interactions involve diverse positions in the primary
structure of peptide. The effective arrangement of the chitosan chains with respect to the
fibroin fragments characterized by the β-sheet order is shown in Figure 2.
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The visualization of all main types of interactions formed in the considered systems (ionic
contacts, hydrophobic contacts and hydrogen bonds) was presented in Figures 5 and 6. The
optimized structures of fibroin–chitosan complexes are stabilized by strong hydrogen bonds
and ionic interactions, which are characterized by short interatomic distances ranging from
1.85 to 2.11 Å for hydrogen bonds and from 3.83 to 3.92 Å for ionic contacts. The latter type
of interactions deserve special attention due to their diversity and the direct involvement of
the ions added to the fibroin–chitosan system considered in this study. As established, Ca2+

and HPO4
2− ions facilitate the formation of ionic bridges. The bridges involving HPO4

2−

were formed through interactions between protonated amino groups in chitosan and lysine
(LYS) residues within the fibroin (Figure 6). Interestingly, no analogous interactions were
detected in the case of systems containing CH3COO− ions. In this study, fully deacetylated
chitosan was used. It is worth mentioning that previous studies [61,62] have shown that
a degree of chitosan deacetylation enhances the stability of collagen–chitosan complexes.
This underscores the importance of the presence of protonated amino groups in stabilizing
the system, as can be observed by analyzing key hydrogen bonds (Figure 5) and ionic
interactions (Figure 6). Of course, the impact of deacetylation on the affinity of chitosan
for fibroin requires further investigation. Another interesting aspect to explore is the
ratio of fibroin to chitosan. In this study, a relatively large number of fibroin chains were
used compared to chitosan, allowing for extensive involvement of chitosan in molecular
contacts, as seen in Figure 2. Notably, in the case of composites containing fibroin, chitosan,
and nanohydroxyapatite, increasing the proportion of fibroin is advantageous for the
development of osteogenic cells [87].
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Figure 5. Visualization of silk fibroin helices interacting with chitosan in the presence of acetic acid.
Hydrogen bonds are denoted by pink dotted lines, while ionic contacts are denoted by solid red
lines. Solid green lines stand for hydrophobic contacts and solid blue pi-stacking. Fibroin helices are
presented as solid turquoise lines, whereas chitosan is represented by a ball–stick model with colors
representing the following elements: carbon—turquoise, nitrogen—dark blue, phosphorus—yellow,
oxygen—red, and hydrogen—white. (a) shows interactions involving tyrosine (TYR) and aspartic acid
(ASP) residues, while (b) illustrates interactions involving alanine (ALA) and serine (SER) residues.

The analysis of molecular contacts involving Ca2+ seems to offer valuable insights
into the stabilization of potential biomaterials used for bone regeneration. It is well known
that the addition of calcium salts is advantageous for the solubilization of fibroin [17],
indicating Ca2+/peptide interactions. When considering the impact of Ca2+ ions on the
peptide structure, it is important to note that they can strongly interact with fibroin, leading
to a reduction in the number of β-sheet domains [112]. This, in turn, affects the mechan-
ical properties of the material. Notably, an experimental study by Koeppel et al. [113]
confirms that the carboxylic groups in ASP and GLU in silk peptides form ionic contacts
with Ca2+ and K+, which has a significant impact on their rheological properties. How-
ever, the presence of chitosan has a beneficial effect on β-sheet formation [67,111,114],
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which probably compensates the effect of Ca2+ ions. As expected, in light of the this re-
search, the interactions with Ca2+ can be observed in the regions characterized by β-sheet
conformation (Figure 6c,d). Structural details of the identified ionic bridges (ASP-Ca2+-
ASP, ASP-Ca2+-GLU, ASP-Ca2+-GLY, GLU-Ca2+-GLU, GLU-Ca2+-GLY) are provided in
Supplementary Table S3.
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Figure 6. Visualization of (a) intermolecular fibroin ion bridges with chitosan carried by phosphoric
ions; (b) intramolecular arginine–lysine ion bridge; (c,d) calcium ion-mediated ion bridges. Molecules
are represented by a ball–stick model with colors representing the following elements: carbon—turquoise,
nitrogen—dark blue, phosphorus—yellow, oxygen—red and hydrogen—white, calcium—pink.

To identify hydrogen bonds, a default YASARA protocol based on an energy calcula-
tion with a specified threshold of −6.25 kJ/mol was applied [115]. The molecular dynamics
simulations revealed that ALA, ARG, ASN, ASP, GLN, GLU, GLY, LEU, PRO, SER, THR,
TYR, and VAL form the strongest hydrogen bonds, whether the complexes are stabilized
by CH3COOH or Ca2+/HPO4

2−. The highest binding energy values were observed in
the case of ARG, reaching 22.30 ± 3.45 kJ/mol for acetic-acid-stabilized complexes and
19.49 ± 5.86 kJ/mol for systems stabilized by Ca2+ and HPO4

2− ions. Among these hydro-
gen bonds, interactions formed by ASP were found to be the most significant contributors,
constituting approximately 26.3% of all hydrogen bonding interactions. A considerable
contribution to complex stabilization was also noted for SER residues. In the case of com-
plexes stabilized by acetic acid, hydrogen bonds involving SER exhibited a binding energy
of 18.16 ± 5.45 kJ/mol, accounting for 10.5% of all hydrogen bonds, while those stabilized
by Ca2+ and HPO4

2− ions accounted for 10% (18.36 ± 5.56 kJ/mol). Additionally, THR
residues were observed to form relatively strong hydrogen bonds, with binding energies
of 17.72 ± 5.91 kJ/mol (CH3COOH) and 18.80 ± 5.60 kJ/mol (Ca2+/HPO4

2−). Notably,
both SER and THR play an important structural role in silk fibroin. Since SER and THR
residues contain active hydroxyl groups, they serve as attachment sites for carbohydrates.
Furthermore, SER serves as the phosphorylation site [21]. In hydrogen bonding, SER
and THR can act as both hydrogen donors and acceptors. Moreover, SER is often found
in tight bends or loops, faces outward, forming hydrogen bonds with molecules of the
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medium (water) [21]. THR residue, which is more hydrophobic than SER, often occurs in
an antiparallel β-sheet, facing the inside of the molecule [21].

Unlike ionic interactions and hydrogen bonds, hydrophobic contacts exhibit less
significant differences in distribution between complexes stabilized by HPO4

2−/Ca2+ and
acetic acid (Figure 7). Nevertheless, their contribution to complex stabilization is much
less important compared to previously discussed short-distance interactions. According
to the applied default criteria [115] used for the detection of hydrophobic contacts in the
YASARA software (2021), this type of weak contact involves carbon atoms surrounded by
three or two hydrogen or carbon atoms, or C-H moieties in carbon rings [116]. As expected,
the majority of hydrophobic contacts are formed by aromatic residues in the fibroin chain
(PHE and TYR, Supplementary Table S4). The interatomic distances determined for these
interactions range from 4.33 to 4.54 Å (CH3COOH) and from 4.25 to 4.66 Å (Ca2+/HPO4

2−).
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It is worth noting that, in addition to the aforementioned main types of interactions, a
relatively weak but identifiable cation-π contact can also be distinguished. The distances
determined for these contacts are relatively large and range from 3.80 to 4.19 Å (in the
case of the complexes containing Ca2+ and HPO4

2−) and from 3.91 to 4.23 Å (in the
case of the complexes containing CH3COOH). These interactions involve the positively
charged ammonium group in chitosan and the moieties in fibroin, containing π electrons.
Our analysis reveals that HPO4

2−/Ca2+-influenced complexes involve cation-π contacts
formed by HIS (11.0%), PHE (39.3%), and TYR (49.7%). Interestingly, complexes formed
with CH3COOH exhibit interactions with a wider range of residues, including ASP (7.0%),
GLU (4.1%), GLY (0.2%), HIS (4.3%), PHE (27.3%), and TYR (57.1%).

4. Conclusions

The study focused on the intermolecular interactions in fibroin–chitosan complexes
in the presence of Ca2+ and HPO4

2− ions, which simulate nanohydroxyapatite, and in the
presence of acetic acid. As we found, molecular dynamics simulations performed using the
YASARA program revealed a chemically intuitive description of the structural features and
interactions between the studied biomolecules. Our analysis showed that the formation of
fibroin–chitosan complexes are highly energetically favorable. Furthermore, these systems
are much more stable than the previously studied chitosan–collagen complexes. In order to
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explain the exceptionally high affinity of fibroin for chitosan, the distributions and structural
features of the key interaction types were analyzed. All molecular systems considered in
this study were found to have a dense network of intermolecular contacts. Additionally,
the optimized structural analysis indicated that the complexation of fibroin with chitosan
maintains the β-sheet conformation. Although the obtained results were found to be
consistent with various empirical observations, additional experimental studies could
provide further confirmation and refinement of the structural and energetical features
determined in this study. Molecular dynamics simulations of biomolecule pairs offer
valuable insights into the properties of new materials. The promising results obtained for
fibroin–chitosan complexes in the presence of Ca2+/HPO4

2− and acetic acid suggest the
need for further research on the effects of other ions or molecules. These studies could lead
to the development of novel fibroin composites with tailored properties for a variety of
applications, such as bone regeneration, dentistry and wound dressings.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app14104131/s1, Figure S1: Left: RMSD off all atoms evolution
(RMSDALL parameter) in time for both cases. Right: the radius gyration analysis of the silk fibroin–
chitosan complexes in the presence of HPO4

2− and calcium ions (HPO) and acetic acid aqueous
solution (Acetic); Figure S2: The frequency of particular types of interactions appearance during MD
simulations; Table S1: Description of H-bonds between chitosan and silk fibroins’ amino acids along
with binding energy values per silk fibroin molecule for both cases; Table S2: Description of ionic
interactions between chitosan and silk fibroins’ amino acids; Table S3: Distances between groups
carried by ion bridges; Table S4: Description of hydrophobic (HP) interactions between chitosan and
silk fibroins’ amino acids; Table S5: Description of CationPi interactions between chitosan and silk
fibroins’ amino acids.
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