
materials

Article

Experimental and Theoretical Screening for Green Solvents
Improving Sulfamethizole Solubility

Piotr Cysewski 1,* , Maciej Przybyłek 1 and Rafal Rozalski 2

����������
�������

Citation: Cysewski, P.; Przybyłek,

M.; Rozalski, R. Experimental and

Theoretical Screening for Green

Solvents Improving Sulfamethizole

Solubility. Materials 2021, 14, 5915.

https://doi.org/10.3390/ma14205915

Academic Editor: Mihkel Koel

Received: 3 September 2021

Accepted: 5 October 2021

Published: 9 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz,
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Abstract: Solubility enhancement of poorly soluble active pharmaceutical ingredients is of crucial
importance for drug development and processing. Extensive experimental screening is limited due to
the vast number of potential solvent combinations. Hence, theoretical models can offer valuable hints
for guiding experiments aimed at providing solubility data. In this paper, we explore the possibility
of applying quantum-chemistry-derived molecular descriptors, adequate for development of an
ensemble of neural networks model (ENNM), for solubility computations of sulfamethizole (SMT) in
neat and aqueous binary solvent mixtures. The machine learning procedure utilized information
encoded in σ-potential profiles computed using the COSMO-RS approach. The resulting nonlinear
model is accurate in backcomputing SMT solubility and allowed for extensive screening of green
solvents. Since the experimental characteristics of SMT solubility are limited, the data pool was
extended by new solubility measurements in water, five neat organic solvents (acetonitrile, N,N-
dimethylformamide, dimethyl sulfoxide, 1,4-dioxane, and methanol), and their aqueous binary
mixtures at 298.15, 303.15, 308.15, and 313.15 K. Experimentally determined order of decreasing
SMT solubility in neat solvents is the following: N,N-dimethylformamide > dimethyl sulfoxide
> methanol > acetonitrile > 1,4dioxane >> water, in all studied temperatures. Similar trends are
observed for aqueous binary mixtures. Since N,N-dimethylformamide is not considered as a green
solvent, the more acceptable replacers were searched for using the developed model. This step led to
the conclusion that 4-formylmorpholine is a real alternative to N,N-dimethylformamide, fulfilling all
requirements of both high dissolution potential and environmental friendliness.

Keywords: sulfamethizole; solubility; machine learning; ensemble of neural networks; COSMO-RS;
binary solvents; sigma potentials; green solvents

1. Introduction

Sulfamethizole (SMT, CAS: 144-82-1, DrugBank: DB00576) is a sulfonamide antibiotic
drug that is mainly used for urinary infection treatment. Its bacteriostatic activity is typical
for sulfonamides and is closely associated with the inhibition of dihydropteroate synthetase,
which impedes binding of p-aminobenzoic acid (PABA) and the synthesis of folic acid
involved in bacteria multiplication process. Sulfamethizole is characterized by quite low
aqueous solubility (1050 mg/L at 310.15 K) [1], which is why various formulations were pro-
posed for improving SMT bioavailability and its dissolution properties. For example, new
formulations were prepared via cocrystallization [2–4], complexation with cyclodextrins [5],
solid dispersions [6], and nanoparticles [7]. However, in some cases, the solubility must be
reduced. Therefore, by optimizing binary mixture composition, one can obtain the solvent
with precise characteristics suitable for a particular technological application. This includes
antisolvent crystallization techniques, which have been used to obtain a formulation with
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the appropriate particle size characterized by improved bioavailability [8–10]. Multicom-
ponent solvents have also been applied in liquid drug formulations. Water–organic solvent
mixtures deserve particular attention due to frequent cosolvation and synergistic effects.
The latter is characterized by a nonadditivity of solute–solvent affinities resulting in an
increase of solubility in binary mixture at a certain composition compared to pure solvents.
This behavior is quite common, and it is manifested by the appearance of a maximum on
the molar fraction solubility plotted as a function of binary solvent composition. Some
recent examples reported in the literature of such behavior include aqueous binary mix-
tures of nicotinamide in dimethyl sulfoxide (DMSO) [11], theophylline in 1-butanol [12],
phenacetin in 1,4-dioxane [13,14], sulfanilamide in 1,4-dioxane [15], paracetamol in ethanol
and propylene glycol [16], 4-(hydroxymethyl)benzoic acid in ethanol [17], and piroxicam
in ethanol [18].

It should be noted that solubility enhancement is not the only criterion for solvent
utilization since potential toxicity is another key factor restricting their utilization in phar-
maceutical and chemical industry. Hence, screening of efficient solubilizers should adhere
to the sustainable chemistry concept and ought to be as environmentally neutral as possible.
For this reason, variety of solvent selection strategies are used for an assessment of a wide
range of hazards including aquatic, air, persistency, irritation, chronic and acute toxicity,
flammability, reactivity, and release potential [19]. Application of aqueous mixtures, replac-
ing hazardous organic solvents, is one of the main strategies. Alternatively, natural deep
eutectic solvents (NADES) have also been applied [12,20–26] for this purpose. In general,
many multicomponent liquid mixtures, such as NADES [27–32], ionic liquids [30,33–35],
and organic solvent mixtures [36–38] are considered as promising green solvents. Another
reason for binary solvents research is the optimization of reactants concentrations and
crystallization efficiency [39–44].

In the recent decade, the solubility of various sulfonamides in neat and binary solvents
has been widely studied, both experimentally and theoretically [15,45–70]. However, in
the case of sulfamethizole, only a few published solubility series are available. Data
reporting multicomponent solvents (1,4-dioxane + water [71], methanol + water [56],
propylene glycol + water [64,72]) are especially limited. Hence, this study fills this gap
and extends the pool of available experimental solubility of sulfamethizole in neat and
aqueous binary mixtures. The second goal of this study is to find green solvent alternatives
by an extensive screening of a variety of solvent mixtures. Since it is impractical to measure
the whole variety of solvent combinations, the machine learning protocol is used for the
development of a solubility predictive model. Hence, the second aim of this study is the
development of an accurate ensemble of neural networks model (ENNM), adequate both
for backcomputations and screening of SMT solubility.

2. Materials and Methods
2.1. Materials

All chemicals used in this study were of analytical grade and were used without pu-
rification. Sulfamethizole (SMT, CAS: 144-82-1) and 1,4-dioxane (CAS: 123-91-1) were
purchased from Sigma-Aldrich (Poznań, Poland). Acetonitrile (CAS: 75-05-08), N,N-
dimethylformamide (DMF, CAS: 68-12-2), dimethyl sulfoxide (DMSO, CAS: 67-68-5), and
methanol (CAS: 67-56-1) were obtained from Avantor (Gliwice, Poland). The nitrogen
(grade 5.0) used in differential scanning calorimetry DSC measurements was obtained from
Linde (Warsaw, Poland). All details were summarized in Table 1.
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Table 1. The characteristics of chemicals used in the study.

IUPAC Name CAS Code Vendor Initial Purity
(Mass Fraction)

Purification
Method

4-Amino-N-(5-methyl-1,3,4-
thiadiazol-2-yl)benzenesulfonamide

(SMT)
144-82-1 Sigma-Aldrich (Poznań, Poland) ≥0.99 none

1,4-Dioxane 123-91-1 Sigma-Aldrich (Poznań, Poland) 0.998 none

Acetonitrile 75-05-08 Avantor (Gliwice, Poland) ≥0.995 none

N,N-Dimethylformamide
(DMF) 68-12-2 Avantor (Gliwice, Poland) ≥0.998 none

(Methylsulfinyl)methane
(DMSO) 67-68-5 Avantor (Gliwice, Poland) ≥0.997 none

Methanol 67-56-1 Avantor (Gliwice, Poland) ≥0.998 none

Nitrogen 7727-37-9 Linde (Warsaw, Poland) 0.99999 none

2.2. Sulfamethizole Solubility Determination

The solubility measurements were performed based on the shake-flask procedure
reported in our previous papers [11–13,15]. First, the mixtures containing SMT solution
and undissolved excess of solid were prepared in glass test tubes. For this purpose, 2000 µL
of the solvent and appropriate amount of SMT were added to each tube. Then, the mixtures
containing SMT solution and undissolved solid were placed in an Orbital Shaker Incubator
ES-20/60 from Biosan (Riga, Latvia). The agitation speed was set to 60 rpm. After 24 h, the
samples were filtered using preheated syringes and syringe filters (0.22 µm PTFE). Then,
100 µL of the filtrate was diluted in 2000 µL of methanol, while 500 µL was used for the
pycnometric measurements carried out to determine the density of the solutions, which
was necessary to determine the molar fraction solubility values. In all cases, the filtrate was
collected using an automatic pipette with a preheated tip. The molar concentration of SMT
in the samples was determined spectrophotometrically (λmax = 284 nm) applying A360
UV-VIS device (AOE Instruments, Shanghai, China). In all cases, the samples were diluted
with methanol, so that the absorbance was measurable and did not exceed the calibration
curve range.

2.3. FTIR and DSC Characteristics of Solid Residues Obtained after Flask-Shake Procedure

After determining the solubility, the sediments remaining in the test tubes (in the case
of pure solvents) were dried on air and subjected to Fourier transform infrared spectroscopy
(FTIR) and differential scanning calorimetry (DSC) measurements. The FTIR spectra were
recorded using the diamond attenuated total reflection (ATR) technique. For this purpose,
a PerkinElmer (Waltham, MA, USA) spectrophotometer was used. DSC thermograms were
determined using a DSC 6000 Perkin Elmer (Waltham, MA, USA) calorimeter. Nitrogen
flow was set to 20 mL/min, and the heating rate was 5 K/min. The DSC device was
calibrated using indium and zinc reference standards supplied by Perkin Elmer (Waltham,
MA, USA). All measurements were performed in standard aluminum pans.

2.4. COSMO-RS Solubility Computations

The COSMO-RS (conductor-like screening model for real solvents) [73–75] is an ap-
proach used for studying neat or multicomponent bulk systems by taking advantage of
both quantum chemistry and statistical thermodynamics. The part utilizing quantum
chemical computations belongs to continuum solvation models in which physicochemical
properties of the solute molecule are estimated using a molecule embedded in a perfect
virtual conductor. The interface of molecular contact with environment is approximated by
a discrete collection of segments of a given area, and the screening charge density was used
for computation of interaction energies between closely packed molecules. In the second
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stage, such microscopic state properties are related to macroscopic thermodynamic proper-
ties by statistical thermodynamics [76]. The entire collection of surface pieces characterizing
a liquid system is used for determination of the distribution function termed σ-profile,
Ps(σ′). In the case of mixtures, the σ-profile is summarized with concentration-dependent
weighting. Such distribution functions are used for derivation of the σ-chemical potential,
µS(σ), by iteratively solving the exact equation:

µs(σ) = −
RT
aa f f

ln
[∫

Ps
(
σ′
)
exp
{ aa f f

RT
[
µs
(
σ′
)
− e
(
σ, σ′

)]}
dσ′
]

(1)

where µS(σ) represents the chemical potential of an average molecular contact area of size
aeff in the ensemble S at temperature T, e(σ, σ′) is the sum of the three (misfit, hydrogen
bonding, and dispersion) contributions to the intermolecular interaction. The resulting
integral function defined in Equation (1) enables complete description of the thermody-
namics of the system including the residual part of the chemical potential. It is essential to
note that µS(σ) contains the crucial representation of molecular interactions [76]. The µS(σ)
distribution is typically provided in a discrete representation as a set of 61 points in the
range of charge density between σ = ±0.03 e/Å2. However, heuristic analysis [76] suggests
that three fundamental regions are to be distinguished. Indeed, regions σ∈<−0.03,−0.01>
characterize affinity for HB donors (HBD), the range σ∈<−0.01,0.01> characterizes non-
polar interactions and is regarded as a measure of hydrophobicity (HYD), and the high
positive polarity interval σ∈<0.01,0.03> quantifies affinity for HB acceptors (HBA). Since
the whole 61-point µS(σ) distribution possesses redundant information, data reduction is
to be applied prior to the practical application as molecular descriptors used for machine
learning purposes. Here, a simple approach was adopted by averaging µ(σ) values within
∆σ = 0.02 regions. Hence, the resulting six descriptors can be summarized as follows:

spot1 = µ(σ ∈ 〈−0.03,−0.02〉); spot2 = µ(σ ∈ 〈−0.02,−0.01〉);
spot3 = µ(σ ∈ 〈−0.01, 0.00〉); spot4 = µ(σ ∈ 〈0.00,+0.01〉)

spot5 = µ(σ ∈ 〈+0.01,+0.02〉); spot6 = µ(σ ∈ 〈+0.02,+0.03〉)
(2)

It is also worthwhile to further group the above descriptors into three categories:

HBA = µ(σ ∈ 〈−0.03,−0.01〉) = spot1 + spot2
HYD = µ(σ ∈ 〈−0.01,+0.01〉) = spot3 + spot4
HBD = µ(σ ∈ 〈+0.01,+0.03〉) = spot5 + spot6

(3)

It is worth mentioning that, for the practical calculations of these properties, a proper
representation of the molecular structure is indispensable, both in the gas and condensed
phases. For this purpose, COSMOconf is used for generation of the most energetically
favorable conformations. This program performs quantum chemistry calculations using
TURBOMOLE rev. V7.5.1 (Karlsruhe, Germany) interfaced with BIOVIA TmoleX 2021
(version 21.0.1, BIOVIA, San Diego, CA, USA). The level of theory used at this stage
corresponded to RI-DFT BP86 (B88-VWN-P86) with def-TZVP basis set for geometry
optimization and def2-TZVPD basis set for single point calculations with inclusion of
the fine grid tetrahedron cavity and inclusion of parameter sets with hydrogen bond
interaction and van der Waals dispersion term based on the “D3” method of Grimme
et al. [77]. This method of computations is further referred to as the BP level. All of the
solubility calculations were performed using COSMOtherm (version 20.0.0, revision 5273M,
BIOVIA, San Diego, CA, USA) [78] with BP_TZVPD_FINE_20.ctd parametrization.

Pairs formation was assessed by computing the affinity of SMT for the solvent
molecule using a standard thermodynamic cycle. The same level of computations was used
as for other types of computations but augmented with correction for zero point vibrational
energy ZPE. Hence, the values of Gibbs free energies of reaction A + B = AB (A = SMT, B =
solvent molecule) were computed using a concentration-independent protocol offered by
COSMOtherm. Affinities of SMF dimers formation were computed in a similar manner.
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2.5. Affinity Indices

Molecular descriptors coming from simplified potentials (after data reduction) were
used for quantification of solute–solvent affinities. Three major contributions can be distin-
guished coming from specific and nonspecific interactions. The former can be attributed
to hydrogen bonding of the solute molecule, which can act either as a donor or acceptor
with solvent molecules, offering its acceptor or donor sites, respectively. For nonspecific
interactions, the low polar regions of molecular centers should be considered. Hence,
mutual affinities can be defined by introducing the following indices:

• DA index as the measure of mutual affinity of HB donor of solute (HBDsolute) and HB
acceptor of the binary solvent (HBAsolvent), DA = HBDsolute − HBAsolvent.

• AD index as the measure of mutual affinity of HB acceptor of solute (HBDsolute) and
HB donor of the binary solvent (HBAsolvent), AD = HBAsolute − HBDsolvent

• HH stands for hydrophobicity measure, HH = HYDsolute − HYDsolvent
• Affinity complementarity index is simply the sum of the three above, AC = AD + DA

+ HH.

2.6. Machine Learning Protocol

The machine learning was conducted in two stages. Initially, Statistica software,
TIBCO Software Inc., Palo Alto, CA, USA (version 13) was used for Statistica Automated
Neural Networks (SANNs) growth. In this study, default SANN settings were assumed.
This includes one layer architecture, multilayer perceptron (MLP), 70:15:15 data set splitting
into training, validation, and test sets, and the sum of squares (SOS) error function. For the
input layer, six COSMO-RS descriptors were used. The output layer was the logarithm of
molar fraction solubility. The second stage involved successful accumulation of networks
fulfilling the following formal criterions of SANN acceptance:

1. accuracy: RMSD < 0.035 (root mean square deviation);
2. precision: number of outliers out of domain ≤3 (of 175), ~less than 1.7%;
3. reliability: predicted solubility within the formal range of log(x) between 0 and 1 for

at least 99% of predicted or backcomputed values.

In order to evaluate the applicability domain, the well-known protocol based on h*
statistics was used [79–81].

3. Results and Discussion

The organization of the paper reflects the steps undertaken for realization of the
desired goals. First, the data set of sulfamethizole solubility was collected by new mea-
surements in five aqueous binary mixtures with organic solvents. Then, an ensemble of
artificial neural networks, ENN, was developed, taking advantage of molecular descriptors
characterizing σ-sigma potentials. Finally, extensive screening was performed for find-
ing new promising binary solvents as potential solubility enhancers of SMT. Particular
attention was paid to the green nature of solvents.

3.1. Sulfamethizole Solubility

The starting point of this study was the augmentation of a limited pool of available
solubility data of SMT with new measurements. Aqueous binary systems were selected
due to the most probable practical implications. The obtained results were collected in
Table 2. Additionally, the solubility data for aqueous solutions of SMT in 1,4-dioxane and
methanol were presented graphically (Figures 1 and 2) for comparison of our results with
already published ones [56,71]. As can be inferred from Figures 1 and 2, solubility trends of
this paper are quite consistent with previously reported data. The solubility profiles of the
rest of the measured systems were collected in the Supporting Materials (see Figures S1–S3).
From provided data, it is clearly visible that SMT is poorly soluble in water and, at room
temperature, solubility is as low as xSMT = 3.4 × 10−5. Hence, it is not surprising that any
of the utilized organic solvents can act as an efficient cosolvent with the highest solubility
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enhancement observed in the case of DMF and DMSO. For these organic solvents, the
solubility advantage, defined as the logarithm of molar fraction solubility,

SA = log
(

log(xSMT(organics, T = 298.15 K)

xSMT(water, T = 298.15 K))

)
(4)

is as high as 3.8 and 3.7, respectively. The values of SA for 1,4-dioxane and acetonitrile are
much lower and are equal to 1.5 and 1.9, respectively. Utilization of methanol as a solvent
results in enhancement of solubility by about two orders of magnitude compared to the
solubility provided by water (SA = 2.1). The solubility advantage offered by propylene
glycol is also comparable (SA = 2.3), which can also be inferred from published data [64,72].
Hence, water can be regarded as an efficient antisolvent for any of the studied solvents,
which might be used for recrystallization purposes. It is also interesting to note that 1,4-
dioxane exhibits a synergistic effect, with the highest solubility corresponding to x2

* = 0.6
(x2* represents the mole fraction of organic solvent in solute free binary solution). In such a
composition, solubility of SMT is 220 times higher than in pure water (SA = 2.3) and exceeds
the solubility in neat 1,4-dioxane by about seven times. In the case of an acetonitrile–water
system, a similar cosolvation behavior can be observed. The highest solubility advantage,
SA = 2.55, can be observed for x2* = 0.6. Hence, both the 1,4-dioxane–water system
and the acetonitrile–water system can offer additional benefits worth consideration in
practical applications. In the case of methanol–water solvents, moderate deviations from
the linear trend can be observed for both low and high organic solvent contributions in the
binary mixture.

Table 2. Values of experimentally determined sulfamethizole solubility in five studied aqueous or-
ganic solvents binary mixtures. The first column comprises mole fractions of organic solvent in solute
free solutions. (x2* represents the mole fraction of organic solvent in solute-free binary solution).

x2* 298.15 K 303.15 K 313.15 K 313.15 K

1,4-Dioxane + water, xSMT × 104

0.0 0.34 ± 0.01 0.41 ± 0.02 0.48 ± 0.01 0.58 ± 0.02
0.2 36.00 ± 1.06 40.20 ± 1.61 43.88 ± 2.51 49.37 ± 2.90
0.4 69.74 ± 2.14 79.01 ± 2.74 89.97 ± 2.50 103.25 ± 2.35
0.6 74.69 ± 3.14 86.23 ± 2.56 99.46 ± 3.01 115.37 ± 3.04
0.8 47.15 ± 1.50 52.31 ± 1.66 57.73 ± 2.33 64.57 ± 2.94
1.0 10.03 ± 0.32 10.79 ± 0.39 11.63 ± 0.64 12.49 ± 0.57

Methanol + water, xSMT × 104

0.2 2.12 ± 0.13 2.57 ± 0.14 3.06 ± 0.12 3.69 ±0.23
0.4 8.58 ± 0.43 9.50 ± 0.38 10.36 ± 0.48 11.50 ± 0.58
0.6 21.88 ± 0.68 23.29 ± 0.68 24.86 ± 0.56 26.53 ± 0.57
0.8 33.36 ± 0.68 35.54 ± 0.82 37.89 ± 0.78 40.62 ± 1.12
1.0 38.72 ± 0.91 41.10 ± 1.35 43.68 ± 1.30 46.70 ± 1.20

DMF + water, xSMT × 102

0.2 3.99 ± 0.21 4.99 ± 0.26 6.19 ± 0.21 7.68± 0.17
0.4 8.04 ± 0.57 11.13 ± 0.36 14.31 ± 0.19 18.16 ± 0.98
0.6 12.37 ± 0.78 17.57 ± 0.68 22.71 ± 0.99 28.58 ± 0.61
0.8 17.22 ± 0.82 23.45 ± 0.64 30.53 ± 0.98 37.94 ± 0.48
1.0 22.69 ± 0.87 29.91 ± 1.02 38.05 ± 0.86 46.50 ± 1.16

DMSO + water, xSMT × 102

0.2 0.45 ± 0.02 0.81 ± 0.04 1.31 ± 0.04 1.89 ± 0.02
0.4 1.08 ± 0.05 2.41 ± 0.14 3.69 ± 0.15 5.22 ± 0.20
0.6 3.40 ± 0.16 4.98 ± 0.03 6.89 ± 0.25 9.32 ± 0.23
0.8 7.89 ± 0.34 10.16 ± 0.55 12.98 ± 0.69 16.54 ± 0.57
1.0 17.97 ± 0.66 21.05 ± 0.57 24.81 ± 0.10 29.30 ± 0.60

Acetonitrile + water, xSMT × 103

0.2 3.24 ± 0.18 3.62 ± 0.10 4.03 ± 0.14 4.54 ± 0.17
0.4 9.02 ± 0.39 10.05 ± 0.23 11.22 ± 0.29 12.51 ± 0.38
0.6 12.04 ± 0.24 13.29 ± 0.36 14.62 ± 0.39 16.16 ± 0.18
0.8 6.92 ± 0.26 7.89 ± 0.37 8.91 ± 0.41 10.05 ± 0.43
1.0 2.83 ± 0.08 3.04 ± 0.07 3.21 ± 0.09 3.43 ± 0.08
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Figure 1. Molar fraction solubility of sulfamethizole in aqueous 1,4-dioxane binary mixtures. On 
the ordinate, x2* represents the mole fraction of organic solvent in solute-free binary solution. The 
available literature values published by Delgado in 2014 [71] for 298.15 K were marked with gray 
crosses. 

 
Figure 2. Molar fraction solubility of sulfamethizole in aqueous methanolic binary mixtures. On 
the ordinate, x2* represents the mole fraction of organic solvent in solute-free binary solution. The 
available literature values published by Cárdenas in 2016 [56] for 298.15 K were marked with gray 
crosses. 

3.2. Predictive Solubility Model 
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Although it is interesting to notice a high solubility of SMT in DMF, this particular
solvent is regarded as hazardous and reprotoxic with restriction consideration imposed
by the European Chemicals Agency’s (ECHA) Registration, Evaluation, Authorization
and Restriction of Chemicals (REACH) [82]. Hence, utilization of this solvent in the phar-
maceutical industry is seriously limited. Fortunately, the second best solvent found for
sulfamethizole, DMSO, does not undergo such serious restrictions and offers comparable
solubility of SMT. In this case, the solubility enhancement is about 5300 times higher com-
pared to water at room temperature. According to several reports, DMSO is considered as a
green solvent [83–85]. Noteworthily, DMSO has been widely applied in the pharmaceutical
industry [86]. Furthermore, this compound is listed in the DrugBank database [87,88] and
exhibits analgesic, antioxidant, and anti-inflammatory activities. The beneficial proper-
ties of DMSO, as a pharmaceutical excipient, are associated with the skin permeability
enhancement capabilities. Noteworthily, both sulfonamides and DMSO have been used
for the treatment of dermatological diseases [89–92]. This coincidence appears to be of
interest in the context of considering the sulfamethizole–DMSO system as a pharmaceutical
formulation candidate.

Since the aim of this work is to develop a solubility model of SMT based only on the
COSMO-RS solution characteristics, it is important to determine whether the solid state that
is in equilibrium with liquid has not undergone any polymorphic or pseudopolymorphic
transformations. For this purpose, the FTIR and DSC measurements were carried out
for the solid residues obtained after the shake-flask solubility determination procedure
was performed for neat solvents. Fortunately, in all cases, both IR spectra and DSC
thermograms for precipitates are similar to those recorded for pure SMT (see Figure S4 in
Supplementary Materials).

3.2. Predictive Solubility Model

From the provided experimental data, it was concluded that after excluding DMF due
to its nongreen character, DMSO becomes the first choice solvent for SMT. On the other
hand, in the literature, there were many examples [19,93,94] of replacements of hazardous
solvents with ones of lesser toxicity and more environmental friendliness. It is interesting
to see if there is any replacer for DMF also exhibiting such high solubility. For this purpose,
nonlinear modeling was used with the methodology similar to already applied for solubility
screening of theophylline [12]. This method relies on the machine learning protocol applied
for development of an ensemble of neural networks (ENN). In this approach, a series of
artificial neural networks fulfilling the inclusion criteria are collected and used for final
solubility predictions. The main difference between the former work [12] and this paper
is in the type of information used for machine learning. Here, a much simpler and more
intuitive set of molecular descriptors was used. They come from sigma potentials, µ(σ),
computed according to COSMO-RS theory [95] with an aid of COSMOtherm software [78].
In Figure 3, the distributions of µ(σ) as a function of charge density were plotted for solvents
used in this study. The analysis also includes sulfamethizole in aqueous binary solvents
containing propylene glycol for which the solubility values have been documented by
Delgado et al. [64,72]. Additionally, a reversed trend of sulfamethizole was also added
for comparison. Such a method of presentation allows for direct qualitative analysis of
putative intermolecular interactions due to hydrogen bonding. This is supposed to be the
dominant factor in the case of systems with proton-accepting and proton-donating centers.
As is commonly recognized [74,95], the affinity for hydrogen bonding donors, HB accepting
ability, corresponds to negative charge density regions, and vice versa—the affinity for
hydrogen bonding acceptors, HB donating ability, corresponds to positive charge densities.
Hence, a lower value of µ(σ) in Figure 3 corresponds to a stronger affinity of a given
type. The reversing trend used for the solute enables inspection of the direct match with
solvent molecules via complementary centers. In other words, in Figure 3a, a higher
distance between SMT plots and the ones characterizing a given solvent corresponds
to a higher overall HB tendency of solute–solvent interactions, which might indicate
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higher solubility. Indeed, in Figure 3b, two plots showing interesting correspondence were
presented. The gray line, representing solubility, is associated with the right ordinate. The
second line drawn in black color denotes the area between µ(σ) of solvent with respect of
solute and is associated with the left ordinate. Both lines represent quite similar trends
allowing for qualitative ranking of solvents. Two the most efficient solvents might be
properly selected for experimental tests, even though such inference is only qualitatively
correct. Nevertheless, there is a quite rational expectation that information provided by µ(σ)
functions might be used as valuable molecular descriptors for machine learning protocol.
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From Figure 3a, it can be inferred that HB donating potential of SMT is rather modest
compared to water or methanol, for which it is expected to be the highest among studied
systems. This property of SMT is granted from the hydrogen atom attached to the nitrogen
center located in the amide linkage. The propensity of SMT for hydrogen bonding is strong
enough for dimerization, as is documented in Figure 4. SMT is rich in electronegative
centers, but it is a rather weak HB acceptor due to positive values of potential in the region
of µ(σ) positive values of charge density distribution. To the contrary, it acts as a proton
donor with all considered solvents molecules. The schematic representations of the most
energetically favorable structures are characterized in Figure 4. It is clearly visible that the
hydrogen bonding pattern is the same for all pairs. Hydrogen bonds are short with almost
perfectly open angles between hydrogen H-N covalent bonds of SMT. Additionally, the
strong nature of formed hydrogen bonds is confirmed by the value of Gibbs free energy
of pairs formation. As was mentioned in the methodology part, the affinity values are
computed as concentration-independent activity equilibrium constants of SMT-X molecular
complex formation. In the case of a dimer, X = SMT; otherwise, the solvent molecule is
represented by the X symbol. All heteromolecular pairs are also probable in aqueous
solutions, which is indicated by ∆Gr values provided in Figure 4, which also indicate much
stronger affinity of SMT to organic solvents rather than water. This might be the reason of
low solubility of SMT in neat water. It is also not surprising that the strongest complexes
of SMT are formed with DMSO and DMF. Again, a qualitative relationship is obtained
between SMT affinities for solvent molecules and observed solubility. Unfortunately, there
are no linear relationships between these data, and that is why ENN was developed for
precise solubility backcomputations and predictions.

Machine learning protocol utilized the distributions of µ(σ), which, after data reduc-
tion, resulted only in six molecular descriptors per system. The representative distributions
of these six measures were presented in Figure 5 for methanol–water solutions at room
temperature in six compositions. The rest of the studied systems were characterized in
the Supporting Materials (see Figures S5–S9). As can be inferred from Figure 5, the µ(σ)
profiles of protic solvents (methanol, propylene glycol) are significantly different from the
ones corresponding to aprotic media (DMF, DMSO, 1,4-dioxane, acetonitrile). This effect
is particularly pronounced in the case of neat solvents (1.0), as evidenced by an upward
trend for large σ intervals (HB acceptors affinity area) for aprotic solvents and an opposite
downward trend for protic ones.

The ENN was constructed by successful collection of SANNs fulfilling the acceptance
criterions. Since accuracy expressed in terms of RMSD was not the only inclusion criterion,
it is expected that obtained ENN is sufficiently coherent for predictive purposes. The
quality of obtained ENN was documented in Figure 6. The applicability domain was
characterized in the form of a relationship between standard residuals and hat values.
There is almost a perfect match between backcomputed solubility values for the set of
175 data points and experimental ones. For further documentation of the accuracy of
the developed model, SMT solubilities in studied systems were plotted in Figure 7. The
developed ENN is characterized in greater detail in the Supporting Materials (see Table S1).
It is worth mentioning that the obtained ENN is quite heterogeneous, which can be inferred
from the fact that diverse neural networks were included in the final ensemble differing in
mathematical formulations. Indeed, the tanh function was used as an activation in 91% of
included SANNs and logistic functions was implemented in remaining 9%. About 62%
of networks included in the ENN utilized a linear output function, 33% were constructed
based on an exponential function, and only 5% were constructed based on a logistic
function. It is also interesting to note that all molecular descriptors made significant
contributions to the final ENNM. This can be inferred from the sensitivity analysis provided
in Figure 8. It is directly visible on the provided plots that all three regions of µ(σ),
characterizing HB accepting and HB donating abilities and hydrophobicity, are utilized
in SANN development. It seems that the contribution coming from HB accepting ability
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is slightly more pronounced, which was already addressed by inspection of the potential
occurrence of intermolecular complexes.
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commutated at the BP level.
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3.3. Sulfamethizole Solubility Screening

The accuracy of developed ENN encourages prediction of SMT solubility for systems
not studied experimentally. This was performed via computations of molecular descriptors
values for a variety of binary mixtures comprising combinations of 180 solvents used in
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practice for solubility determination. The list of solvents comes from the in-house database
of solubility data published in the literature. From the perspective of the aim of this paper,
binary mixtures are the most interesting. However, it is not practical to test all possible
combinations of neat solvents given the restriction not from the computational perspective
but from that of the potential miscibility limitations. In order to avoid studying artificial
combinations, which, in practice, might result in binary biphasic systems, only pairs of
miscible liquids were considered. This was ensured by an additional literature search.
Hence, for the screening purposes, 275 binary systems were studied in six compositions at
room temperature. Additionally, the pool of considered solvents was extended by including
solvents suggested by the PARISIII application [96–100] as potential greener alternatives
for two solvents with the highest solubility of SMT. This software was developed by the
U.S. Environmental Protection Agency (EPA) [101] and was designed mainly for screening
for more environmental friendly solvents, which can potentially replace problematic ones.
Hence, neat and aqueous binary mixtures of DMF or DMSO were included in the search for
greener alternatives. All aqueous binary composition considered for experimental solubility
measures were used as the initial mixtures for PARISIII inputs. All solvents classified in
the program as green ones were used in the screening phase. This is a somewhat laborious
procedure due to the lack of automatic mechanisms offered by the current version of the
software. Hence, this procedure was repeated for every initial mixture, and as a result,
one hundred suggested binary solvent mixtures in compositions proposed by the program
were collected. As a result, this phase seriously extended the pool of considered solvents
used for SMT solubility screening.

For each solvent included in the final list, the values of six molecular descriptors were
determined analogically to the training set and were used as inputs for the development
of the ENNM. Estimated SMT solubilities were confronted with solubility in DMF to find
solvents with comparable or better effectiveness. It is interesting to summarize that during
this phase, several systems were identified as potential solubility enhancers of SMT. The
results of the solubility computations for selected binary systems are provided in Figure 9.
The presented values are computed by successful averaging with inclusion of an increasing
number of SANNs, which were sorted according to increasing values of RMSD. Hence,
the presented trend starts with prediction of the most precise SANN and ends on the
values averaged over all networks constituting the entire ENNM. It is visible that stable
predictions are provided for the majority of systems including backcomputed values for
SMT solubility in neat DMF and DMSO. In these cases, few SANNs are indispensable for
convergence of predicted solubility values. In other cases, a more extended set of SANNs is
necessary for stabilizing the mean values. At least 20 networks are necessary in the majority
of cases. It is worth mentioning that extension of the number of SANNs constituting ENN
is straightforward and not time-consuming. Hence, it does not stand as a limiting factor
due to automation of the whole procedure of ENNM production. As is documented in
Figure 9, three neat solvents (4-formylmorpholine, formamide, and N-methylformamide)
were identified as more efficient SMT solubilizers compared to DMF. The model found
4-formylmorpholine as the solvent with the highest solubility potential. It is worth noting
that 4-formylmorpholine has been already used as a green solvent for solid phase peptide
synthesis [102,103] and in patented agricultural formulations [104]. The only problem
with this solvent is its high melting temperature, which is close to ambient conditions
(MP = 294 K). The other two, N-methylformamide and formamide, are not classified as
green solvents [105,106]. For more detailed characteristics of this aspect, all of the most
interesting solvents were evaluated using PARISIII. The screening results were presented
in the Supplementary Materials in Table S2. According to the overall environmental safety
expressed by the environmental index (EI) provided in parenthesis, the considered solvents
can be ranked in the following order: water (0.020) < 4-formylmorpholine (0.509) < N-
methylformamide (0.959) < methanol-N-methylformamide (x2* = 0.2) mixture (1.071) <
acetonitrile–water (x2* = 0.6) mixture (1.461) < DMF-N-methylformamide (x2* = 0.4) mixture
(1.500) < acetonitrile (1.881) < methanol (1.893) < DMF (2.156) < methanol-formamide
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(x2* = 0.4) mixture (2.164) < DMF-formamide (x2* = 0.8) mixture (2.174) < formamide
(2.295) < propylene glycol (4.499) < 1,4-dioxane–water (x2* = 0.6) mixture (4.633) < 1,4-
dioxane (5.267) < DMSO (11.660). The unexpected scoring of DMSO, which is generally
considered as a safe solvent, is worth commentary. According to the algorithm applied
in the PARISIII program, DMSO was ranked as the least green solvent among all of
the solvents mentioned above. This counterintuitive conclusion originates from the fact
that the default settings assume equal contribution of all environmental impact scores
to the overall environmental index. The only serious environmental aspect of DMSO
is related to the extremely high value of the photochemical oxidation potential index
(PCOP). However, from the perspective of pharmaceutical practice, this index seems to be
of minor importance. If PCOP is excluded from the analysis for the re-evaluation of the
environmental index values, the following series is obtained: water (0.020) < propylene
glycol (0.189) < DMSO (0.260) < 4-formylmorpholine (0.509) < methanol (0.763) < 1,4-
dioxane–water (x2* = 0.6) mixture (0.853) < methanol-N-methylformamide (x2* = 0.2)
mixture (0.936) < N-methylformamide (0.959) < 1,4-dioxane (0.967) < acetonitrile–water
(x2*=0.6) mixture (1.461) < DMF-N-methylformamide (x2* = 0.4) mixture (1.500) < methanol-
formamide (x2* = 0.4) mixture (1.801) < acetonitrile (1.881) < DMF (2.156) < DMF-formamide
(x2* = 0.8) mixture (2.174) < formamide (2.295). It is worth noting that, regardless of the
total environmental index evaluation, 4-formylmorpholine is the top ranged solvent and
can be regarded as a green alternative for DMF.
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Figure 9. Results of solubility screening with an aid of developed ENN. Individual SANNs are
sorted with rising RMSD, and values are averaged systematically, including increasing number of
SANNs. The mean value predicted by ENN corresponds to number 40. The following systems are
presented: exp1: DMF, exp2: DMSO, 1: 4-formylmorpholine, 2: formamide, 3: N-methylformamide,
4: DMF + formamide (x2* = 0.8), 5: DMF + N-methylformamide (x2* = 0.4), 6: methanol + formamide
(x2* = 0.4), 7: methanol + N-methylformamide (x2* = 0.2).

To complete the screening, an additional analysis was performed. The values of SMT
solubility predicted using ENNM were plotted as a function of the affinity complementarity
index. As was mentioned in the methodology section, AC is the sum of the relative acceptor,
donor, and nonpolar indices describing the overall similarity of SMT affinity profiles with
respect to a given solvent molecule. The cloud of points was generated using ENNM
for hundreds of solvent mixtures at room temperature, as shown in Figure 10, where the
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distribution of AC was presented as the function of computed solubility. It is interesting to
note that one can identify a high solubility zone, marked as a green region, within which all
previously discussed SMT solubilizers are located, including DMSO and DMF. However,
restricting interests only to the part of the green zone, which is characterized by close
to zero values of the AC region, one can find the systems exhibiting the highest solute–
solvent complementarity. This was marked with a green oval. It is quite understandable
that small values of AC suggest high complementarity of µ(σ) profiles, which is a good
indicator of potential solubilizing abilities. There are many potential binary systems with
solubility advantages similar to that of DMF and the majority of them comprise DMF,
DMSO, 4-formylmorpholine, formamide, and N-methylformamide in binary mixtures with
themselves or other solvents such as water or light alcohols. It is also worth adding that all
systems for which the values were plotted in Figure 10 belong to the applicability domain.
Here, the critical hat value computed for training set is equal to h* = 0.122. All systems used
in the screening procedure for which the computed hat value exceeded this threshold were
excluded from the analysis. In this group, binary mixtures involving nonpolar solvents
such as cyclohexane, toluene, benzene, and other hydrocarbons were found in a variety
of binary formulations. This is rather expected due to character of the data set used
at the training stage. Halogenated solvents were typically rejected from the analysis—
for example, chloroform, carbon tetrachloride, and chlorocyclohexane mixed with other
solvents. Additionally, promising green hydrotropes such as dihydrolevoglucosenone,
gamma-valerolactone, sulfolane, glyme, diglyme, and transcutol were also identified as
unsuitable for the detailed analysis due to high hat values. Some esters were located outside
of the applicability domain—for example, ethyl acetate and propyl acetate. However, some
surprising exclusions were found—for example, DMSO mixture with ethanol (h = 0.19,
x2* = 0.8) or 2-propanol (h = 0.18, x2* = 0.6), as well as some light alcohols mixtures such as
methanol + ethanol and methanol + propanol. This is probably due to the limited diversity
of the training set of SMT solubility data. Identification of formally acceptable solubility
enhancers compensated for these surprising exclusions.
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Finally, it is also interesting to provide information about the affinities of SMT for the
solvents found during the screening phase. Hence, in Figure 11, structural land energetic
data are presented along with graphical representations of charge density distributions.
A summarization of all computed affinities is also provided in Figure 11. It is clearly
visible that the formyl group can act as an efficient hydrogen bonding acceptor due to the
electronegativity of the oxygen atom. The higher solubilizers of SMT are characterized
by the highest values of SMT affinity for formation of heteromolecular pairs with solvent
molecules.
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4. Conclusions

The search for efficient and green solvents is a general tenet of the sustainable chem-
istry concept. This is as important, as it is a not trivial and not straightforward task. The
necessary compromise between often contradictory constraints prohibits easy replacement
of hazardous solvents with greener ones. In this study, the general approach for this task
is offered with quite spectacular success. Here, in the case of sulfamethizole, similarly
to the already documented case of theophylline [12], the ensemble of neural networks
concept was implemented for not only backcomputation of experimental data but also for
efficient screening purposes. Carefully controlling hat values enables exclusion of systems
not belonging to the applicability domain. The efficient utilization of the machine learning
protocol requires an adequate pool of experimental data.

Since the knowledge of SMT solubility was too limited, the results of new measure-
ments were provided for five aqueous binary systems. This analysis was enriched with
green solvents screening procedure based on the several common environmental risks
assessment. The application of water–organic mixtures seems to be a promising strategy
in seeking greener solvents. For instance, two of the binary water–organic mixtures, 1,4-
dioxane–water (x2* = 0.6) and acetonitrile–water (x2* = 0.6), were found to be more efficient
and were ranked as more environmentally friendly than pure organic components.

In this study, the range of SMT solubility values was extended to include much
more effective solvents. Following the performed experiments, the high solubilizing
potentials of DMF and DMSO were documented. Since the former solvent cannot be used
in pharmaceutical practice, the search was undertaken for greener replacement with high
solubility enhancement. The application of ENN enabled finding real alternatives for DMF
with even higher solubilizing power. Hence, finding 4-formylmorpholine is the main
outcome of this study, showing the efficacy of the proposed approach.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14205915/s1, Figure S1: Molar fraction solubility of Sulfamethizole in aqueous DMF
binary solvents, Figure S2: Molar fraction solubility of Sulfamethizole in aqueous DMSO binary
solvents, Figure S3: Molar fraction solubility of Sulfamethizole in aqueous acetonitrile binary solvents,
Figure S4: Characteristics of solid Sulfamethizole residues obtained after shake-flask procedure,
Figure S5: Distributions of the values of descriptors characterizing SMT in aqueous DMF binary
mixtures at room temperature, Figure S6: Distributions of the values of descriptors characterizing
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SMT in aqueous DMSO binary mixtures at room temperature, Figure S7: Distributions of the values
of descriptors characterizing SMT in aqueous 1,4-dioxane binary mixtures at room temperature,
Figure S8: Distributions of the values of descriptors characterizing SMT in aqueous acetonitrile binary
mixtures at room temperature, Figure S9: Distributions of the values of descriptors characterizing
SMT in aqueous propylene glycol binary mixtures at room temperature, Table S1: List of SANN
included in the ensemble of neural networks (ENN) for Sulfamethizole solubility prediction, Table S2:
The environmental impact scores calculated using PARIS III (https://www.epa.gov/).
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