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Abstract

The pure cross-anisotropy is understood as a special scaling of strain (or
stress). The scaled tensor is used as an argument in the elastic stiffness (or
compliance). Such anisotropy can be overlaid on the top of any elastic stiff-
ness, in particular on one obtained from an elastic potential with its own
stress-induced anisotropy. This superposition does not violate the Second
Law. The method can be also applied to other functions like plastic poten-
tials or yield surfaces, wherever some cross-anisotropy is desired. The pure
cross-anisotropy is described by the sedimentation vector and at most two
constants. Scaling with more than two purely anisotropic constants is shown
impossible.

The formulation was compared with experiments and alternative ap-
proaches. Static and dynamic calibration of the pure anisotropy is also
discussed. Graphic representation of stiffness with the popular response en-
velopes requires some enhancement for anisotropy. Several examples are pre-
sented. All derivations and examples were accomplished using the algebra
program MATHEMATICA.
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1 Introduction

Elastic response is an essential part of most constitutive models for soils.
It is particularly important for soil dynamics, for stability analysis [2] and
for material response in the range of small-strains. This range corresponds
roughly to strain amplitudes of 10~ for sand and 10~ for clays. Under such
loading soil can be much stiffer than at amplitudes of say 1073. This paper
deals with small-strain elastic (incrementally linear) stiffness only. For larger
amplitudes, hysteretic [23] or cumulative models [24] are necessary. Stiffness
may be a function E(o) of stress (or strain) but it interrelates rates (or tiny
increments) of stress and strain rather than stress and strain themselves.

In the elastic regime, stress should be a continuous 1-1 function o (e)
of strain. Otherwise, some stress could be accumulated within a closed
strain-loop, see Section[2 A thermodynamically sound elastic material model
should not allow for the accumulation of stress or energy upon any closed
strain loop. The energetic requirement is not trivial for soils with a barotropic
(pressure-dependent) stiffness. It is well known that the barotropic elastic
modulus, £ ~ p or £/ ~ /p, with a constant Poisson number v violates the
Second Law [13,31]. In order to avoid this problem, several elastic potentials
have been proposed in the literature, see Section 2.1} A tangential stiffness
obtained from such potential is a function of stress (not only of stress invari-
ants) and one may speak of the stress-induced anisotropyﬂ (oA). It should
be distinguished from the inherent cross—anisotropyﬂ (xA), which is caused
by sedimentation process and/or geological petrification (cementation) of the
geostatic Ky-state. The XA is independent of the current stress or strain.

Any constant cross-anisotropic stiffness E;;Z\l can be described by five
material constants, usually denoted as E,, By, vy, vy, and G, see Section [4
The main objective of this paper is to represent this stiffness in the formE|

E><A — QT . Eiso : Q, (1)

wherein the elastic propertiesﬁ are given in the isotropic stiffness E° and
all pure anisotropic properties are moved to the anisotropy tensor Q. The
advantage of such separated description follows from the fact that the same Q
can be applied to any hyperelastic (and barotropic) stiffness without violating

Lorthotropy with respect to directions of principal stresses
2also called transverse isotropy, polar anisotropy

3see Section for notation

“here, Young modulus, F, and the Poisson number, v


http://mostwiedzy.pl

A\ MOST

the Second Law. This is proven in Section [3 In other words, any basic
tangential stiffness (or compliance), possibly with its own induced anisotropy,
can be superposed by the pure inherent anisotropy. Here, this pure cross-
anisotropy is denoted as XAy, wherein M is the number of constants required
for the anisotropy tensoxﬂ Q. Two anisotropy tensors Q, for xA; and xAs,
are analytically derived in Sections 5] and [, Unfortunately, the derivation of
Q for the general case xAj is not feasible as demonstrated in Section [7]

Calibration of the parameters of Q from static (cyclic) triaxial tests on
samples cut in different directions or from wave velocities in different di-
rections [8,27] is commented in Section [8| A few remarks on experimental
data for xA are given in Section [9] and the advantage of xA, over xA; is
demonstrated.

The graphic representation of stiffness in the form of polar response en-
velopes [11] is well known in the geotechnical literature. In the case of xA,
some complications may arise from the fact that the stress rate, o(o°, &, M),
may not be axisymmetric for the axisymmetric initial stress, o, and co-
axz’symmetricﬂ strain rate, €. The problem is caused by the dependence on
the direction of sedimentation, m, appearing here in the form of the sedimen-
tation dyad, M = mm. This may also cause a loss of coaziality. Therefore,
an enhanced graphic representation is proposed in Section [I0] Some exam-
ples of extended response envelopes with xA, and polar diagrams of wave
velocities are shown.

Finally, xA, is applied to stress and substituted to the Matsuoka-Nakai
yield surface. The modified surface is shown graphically in Section [T} ~All
relevant packages and notebooks for the algebra program MATHEMATICA are
available from the authors.

1.1 Notation

Bold-face letters like o are vectors or second rank tensors. Sans serif letters,
e.g. E, are the fourth order tensors. Gibbs notation like ¢ = E : € or
index notation ¢;; = Ejjpcr in the Cartesian coordinate system with usual
summation over repeated (dummy) indices is used. The geotechnical sign
convention is applied to o and € with compression positive. A fourth order
tensor E can appear in a form of a 9 x 9 matrix (no Voigt 6 x 6 notation)
denoted as [E]. The 9x 9 form facilitates some transformations in the algebra
program MATHEMATICA. Similarly, [o] is the 3 x 3 matrix obtained from
the tensor o. The essential variables are:

Salso called anisotropy operator in the literature [25]
6=axisymmetric with respect to the samgsymmetry axis
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1,1 iddentity operators

« irection cosines anisotropy tensor

a, B, constants for xA % — ||lo|| stress ng}rfn

g %lastlc iomphagc? o stress tensor

o s TONECKEL Symbo o modified stress

{ep.ep, ept Dasis for a stress space 04,0 axial and radial stress

E v, C?, K isotropic el. constants components

E elastic stiffness v wave velocity

€ strain tensor W(e) elastic energy

€ modified strain tensor W(o) complementary energy

€a,Er axial and Eadlal strain ] material rate of LI
components .

Evols Eq Roscoe strains |L|_| | i Froben%us norm of L

£p,EQ isometric strains U=y normalized U

r acoustic tensor

m sedimentation vector .

M=mm sedimentation dyad xA pure inherent

n direction of wave A c}goss—a'n:asotr%py
propagation _ g 3;12%813_ 1{2 uce

p,q >0 Roscoe stress invariants A py <l

P,Q isometric stresses XAMm Cross-anisotropy wit

P*, Q*, R*  isometric coordinates M constants
for stress increments

2 Elastic potential

Let us consider an incrementally linear relation

0ij = Bijri€ (2)

between the stress rate ¢,;; and the strain rate €. The tangential stiffness
FEiji needs not be constant. It may be a function of stress or strain but it
cannot be a function of their rates. Such incrementally linear model is called
hypoelastic.

Let the strain evolve along the pathﬂ g,;(7), Fig. [lp. After a 180° re-
versal, identical negative strain increments can be applied in the opposite
sequence and the strain evolves back along exactly the same path. The re-
lation 6;;(—ég) = —0yj(¢x) holds due to the incremental linearity. Hence,
the same stress path is followed and, eventually, the original state o;;(to) is
reached. The energy density, dW = o;;¢;;dt, is also recovered. However, if
one departs from &;;(¢y) upon one path and returns to ¢;;(ty) upon another

"parametrized by a time-like variable 7 € {tg,t1}

4
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path, Fig. [Ip, then neither the initial stress nor the energy is in general re-
covered. At least, one cannot conclude such recovery from the incremental
linearity alone.

(a) (b) AW

Figure 1: Strain paths tested with incrementally linear elasticity

In hyperelastic models, apart from the linear relation , some additional
conditions must be imposed on Ej;;. In isothermal elastic materials, strain
is the only independent state variable, i.e. ¢;; alone dictates the internal
elastic energy W. This dependence must be a function W (e), i.e. the elastic
energy cannot depend on the strain path ;;(7). The change in W upon the
path from 8%- = €ij(t0) to 81-1j = €¢j<t1) is

N / oiidei; — / Y s (7w (r)dr (3)

to

and this AW is identical upon any strain path ¢;;(7). If the choice of a path
€ij(T) between 5% and 5% could influence the integral AW, then one could
input less energy upon one path, 0 — 1, than could be recovered on the
way back, 1 — 0. Such gain of energy without any change of state (strain
returns to &;) violates the Second Law. Even if this gain occurred at the cost
of thermal energy, it would be a violence of the Second Law (a perpetuum
mobile of the second kind). Hence, the integral in should indeed be
path-independent, which implies the existence of a function W(e). Being a
function, W (e) has the total differential

From the comparison of with for any de;;, it follows that
045 = 8W/85U (5)

5
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As a derivative of a function of strain, stress also must be a function o(e).
Stress rate can be calculated using the chain rule, ¢,; = (00;;/0¢k1)€. From
the comparison with

dij = [82W/(8€ij85kl)} ékl, fOHOWS Eijkl = 82W/(85ij85kl). (6)

It is evident from @2 that £, must be symmetric. Note, however, that
the symmetry, Ey; = Eiju, is only a necessary (but not sufficient) condition
for the existence of an elastic potential. Let a symmetric stiffness Ej;;(e) be
a primary function. For the existence of W (e), also a function o;;(e) must
exist. For the integrability

/Eijkldfkl — Uij(fkl)a (7)

all mixed second derivatives of 0;;(¢j;) must be identical

820'”'/(66]61887«3) = 8Eijkl/85m = 8Eijrs/85kl = 8202-j/(85m(95kl), (8)

which is not guaranteed by the symmetry FEj;; = FE;j. For example,
Eijui(e) = enn [3K10;i61/(1 +v) + 2G1,j] is symmetric but it is not hy-
perelastic because it does not satisfy the condition .

Functions W (e) cannot be directly measured. They are usually formu-
lated by trial and error. An educated guess can be based on the measure-
ments of the second derivatives E;ji @2 at different strains. Alternatively,
the complementary energy W (o) may be used,

W = 04j€ij — W with €ij = 8W/80” and Ez;l}:l = 82W/(8U¢j80kl). (9)

In granular materials, the main difficulty in the formulation of W (g) or W (o)
arises from the pressure dependence (the so-called barotropy) of the stiffness.

2.1 Geotechnical hyperelastic models

Several hyperelastic models have been proposed in the literature. A critical
review can be found in [20] and more recently in [9]. It is helpful to assume
the hyperelastic stiffness as a homogeneous function of stress, i.e. VA > 0 :
E(Ao) = AN™E(o). The order m of homogeneity is usually m =~ 0.6 for sand
and m = 1 for clays. The compliance, C = E~!, is homogeneous of order —m,

6
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of course. It can be prove that the corresponding elastic potentials, W (o)
and W (e), are homogeneous functions of order 2 —m and (2 —m)/(1 —m),
respectively.

A simple hyperelasticity was proposed by Vermeer [28]. The hyperelastic
potential is given explicitly,

W(o) = ¢ R7™/? (10)

with a material constant ¢;. The order of homogeneity of E(o) must be
m # 1.

Borja et. al [4] proposed a hyperelastic model based on elastic potential
formulated in terms of the strain invariants,

W (e) = czexp (eyor/C2) + [ca + csexp (evor/c2)] |€¥]]*  Wwith ey = €3, (11)

wherein €* is the deviatoric part of €. In this case, the stiffness appears to
be inhomogeneous in stress.
Niemunis and Cudny [20] introduced a potential for clays,

W(a) = cgR?/P + ci R+ cgI'® + cgP + 19 In (P)
with P = O'”/\/g and [ = 0450 k0 ki, (12)

that yields stiffness E(o) with a homogeneity of order m = 1.
The following expression for the complementary energy was proposed for
sand by Niemunis et al. [21]

W(O') = 611P012R2_m_612, (13)

wherein m # 1 is the order of homogeneity of E(o).

Response envelopes [11] are polar representations of stiffness at different
stresses, see Section [I0] They can be measured (here for medium dense
sand [14,[15]) and calculated analytically, e.g. using (13)). A comparison like
in Fig. [2l may be used for the calibration.

8For this purpose, one may use (2—m)(1—-m)W (o) = o: 8%2'24/7 o =o0:C: o, whichis
analogous to the well known Euler formula for homogeneous functions, here applied twice
to W(o). The homogeneity of W (o) of order 2 — m is sufficient (but not necessary) for
the homogeneity of order m in E(o). After adding a constant to W (o), the homogeneity

of W (o) is lost but homogeneity of E(o) is preserved.

7
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g
x 100
6}
0
-100

0 100 200 600

P (kPa)

Figure 2: Comparison between response envelopes of the experiments for
medium dense sand [15] and theoretical response envelopes from : The
presence of oA is evident and no XA is needed.

Selected terms from and have been recently combined for kaolin
by Gehring [9] into

W(o) = c; P2R* ™ “2 4 c;3PIn(P). (14)

This potential is suitable for cohesive materials because the second summand
removes the singularity of C at m = 1. Experimental (for kaolin [9]) response
envelopes are compared with the theoretical ones obtained with , Fig. .
A strong inherent anisotropy was caused by Ky-consolidation of kaolin. The
required anisotropy tensor Q given in is described in Section .

The proposed superposition of cA and XA is a convenient alternative to
a direct postulation of W (e, M) with the sedimentation dyad M = mm as
an additional argument. For example such function

W(O', M) = Rl—m/? Wlth R - cl4R + CISMabchO_ca (15)

was proposed by Cudny and Staszewska [7] for m # 1. Similar approach
related to the microscopic description has been recently proposed by Amorosi,
Houlsby and Rollo [1.|12].
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100 - —— Experiment ]
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Figure 3: Comparison between response envelopes of the experiments on
kaolin [9] and theoretical response envelopes from (14): The effect of xA
from Section [} is essential.

Instead of using an explicit potential W (o), Boyce [5] postulated a 1-1
homogeneous function e(o) of order 1 — m. In this case, existence of the
complementary elastic potential W (o) should be proven. For such formu-
lation, the superposition described in the next sections can also be applied
using identical tensor Q.

3 Anisotropy tensor Q

Stiffness Ejjpy, and a family of transformations Egjmn = GO Oy Ol Bl

with directional cosines «;; build a symmetry group, if the components of

9
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stiffness are preserved, that is, if E]

timn = Fijmn. For an isotropic stiffness

iso o . . . . <A
B, it is true for any «;;. For an inherent cross-anisotropic stiffness £,
with sedimentation direction m = {0,0, 1}, a;; corresponds to an arbitrary

rotationlﬂ around m by angle 1,
[ cosy sin O]

[a] = | —siney costy 0 (16)
0 0 1
In this paper, the pure inherent cross-anisotropy xA in a form of tensor
Q is proposed. It is a function of m and some constants. This XA can be
”added” to any stiffness, e.g. to one obtained from a potential W (e) or W (o)
with its own oA, see Section 2.1} The constants in Q can be determined from

the transformation
Ezil/:l = Quvij BapeqQeart (17)

of the isotropic stiffness £, to the desired E;,ﬁl Tensor Q should scale any
stiffness in a similar manner. All components of Q are independent of ¢;;, £
and v, and hence, Q stores the pure anisotropy.

Let us apply Q to the strain, &; = Qijrucr, and then substitute &; into
an elastic potential W (g). Differentiating W (&) with respect to ¢;; and using
the chain rule, one obtains the stiffness with the combined effect of oA and
XA,

EXA+0’A _ 82W(é) _ aQW(é) 88—(11) aé:cd
ikl - &sijaekl - aé:abécd aEij a€kl

= E%1Quvij Qi (18)

wherein E°% , is the stiffness with oA only. Note that deviations from isotropy
are superposed and hence, the symmetry group is restricted rather than
extended. Tensors Q have relatively simple forms for xA; and xA, with the
major symmetry, Qijap = Qabij, see Sections [5 and [f]

Inverting both sides of , one may use ijiz for the complianc,

Coitt = Quvi;CapedQeatia- (19)

The same Qi_j}d can be applied to stress, 7;; = ijilakl, and the modified
stress ;; can be substituted into the given complementary potential W (&).

9This family of a; can be completed by rotations or reflection that reverse the sense
of x5 axis.
10The tensors Q proposed for xA; and xA, can be analytically inverted, see Section@

10
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Differentiating with the chain rule, one obtains the compliance with super-
posed effects of oA and XA,

on _ PW(a) _ PW(0) 00w 00ca _ rop -1 -
z>j<l?l+ A= = = Cal;Achablz'chdllcl’ (20)

80ijao-kl aé_aba-cd 6017 6akl

wherein C%%, is the compliance with oA only.

Summing up, the most important advantage of the pure anisotropy is
the fact that it can be "added” a posteriori to any hyperelastic stiffness
E°A or compliancd'l] C°* without violating the Second Law. Moreover, a
fairly easy implementation of Q to existing constitutive models can be ex-
pected. Tensor Q can be interpreted as a modifier of the strain tensoﬂ
eij = —3 (Ou;/0x; 4 Ou;/0x;). In the case of XA, a special form of Q de-
rived in Section [5f allows to interpret this strain transformation as scaling of
the displacements u; and the coordinates x;. This has already been observed
by Lodge [17] and used for scaling of boundary value problems. Contrarily
to the current approach, Lodge started by scaling of displacements u and
coordinates x, which imposes an unnecessary constraint on the scaling of
strains €. For example, the anisotropy xAs; cannot be squeezed into the
class of anisotropic elastic solids discussed in [17], see Section [6]

A different cross-anisotropic scaling was proposed by Osinov and Wu [25].
They applied a diagonal fourth rank tensor P to the resulting hypoplastic
stress rate o as follows

6=P:(E:e+NJ|e). (21)

Our tensor Q could be applied to o, i.e. to the argument in E(o) in (21)).
The thermodynamic aspects of P : E were ignored in [25].

4 Cross-anisotropic constant stiffness

It is well known that a constant (stress-independent) cross-anisotropic elastic
stiffness (22) requires five material constants, E,, Ey, v, vy, and G,. The
vertical coordinate is z, (=direction of sedimentation) and the horizontal
coordinate is xp,, Fig. [l These material constants will be separated into two

Hor a priori to the strain or stress tensor

Zhefore it is substituted into a strain potential of interest

11
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J——

X1=Xh

Figure 4: Axes for cross-anisotropy and the definition of the indexed Poisson
number v;;

elastic parameters and three purely anisotropic ones. This pure anisotropy
is denoted as xAs. For z3 = x,, i.e. for the sedimentation direction m =

{0,0,1}, equation ¢;; = Ei?,ﬁ\l?’ékl has the matrix form

5 Enk Enk Enk :
J11 hFhh hKRhv hRvh €11
F22 Enkhy  Enpknn Epkon 22
033 Enkon  Enkon  5Ey(1—v7) €33
012 Gn Gp €12
g21 o = Gn  Gh 4 €21 (22)
J13 Gy Gy €13
031 Gy, Gy €31
023 Gy Gy €23
032 Gy, Gy €32
wherein

Knh = (1 = Unolon) K,

Kho = (Un + UnoVon) K,

Koh = (Von + Vnlyn) K and

k=1/(1 =V} — 2o — 2UpUnoVpn) With vy = v

The elastic Young moduli along xj, and z, are Ej, and E,, respectively. Shear
modulus in horizontal plane is G, = Ej/(2(1 4+ v4)) and from symmetry
follows

Vvh/Ev = th/Eh~ (23)

Stability of the material behaviour requires elastic stiffness matrix to
be positive-definite. This implies the following conditions on the material
constants

Ez‘, Gi, k>0 and (Vij)Q < EZ/EJ with Z,j =, h. (24)

The pure anisotropy tensor Q corresponding to xAjz is discussed in Section
[7] after the presentation of xA; and XA, in Sections [p] and [6]

12
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5 Anisotropy tensor for xA;

A three-constant elastic cross-anisotropic stiffness has been proposed by Gra-
ham and Houlsby [10] using the anisotropy parameter « in the following

relations
a=Cr_ B _ % @V (25)
G’U E’U Vyh Vp,

The single parameter « relates the material constants in the horizontal, L,
and in the vertical (parallel to sedimentation), L,, direction. The represen-
tation of stiffness for m = {0,0, 1} with x3 = z, is analogous to . In this
X A1 case, constant elastic stiffness matrix, Eg,é\ll = Qubi; EE2 4Qcari, has the
form

_odv _av
A ) A

_odv o=l o

A VRS
A A A

[EM] = FE , (26)

WIEUTES
w38

Wl
w|wle

(e
tolstmle

wherein A = 2024+ v —1 and B = 2(v+1). The total number of independent
material constants is reduced from five to three: £ = E,,v = v, and a. Two
constants describe the isotropic elasticity and just one pertains to the pure
anisotropy, and hence the notation xA;.

Separation of the material constants is essential. Conversion of the isotropic
stiffness E®° into xA; has been only mentioned in [10] without giving an ex-
plicit form. Anisotropy tensor Q has been recently derived in |21], viz.

EXAl = Q:E® . Q with Qijir = pirpn  and  p; = Vad;; + (1 — va)mym;.(27)

Tensor Q for xA; depends on m and « only. In the special case of a = 1, the
anisotropy tensor is reduced to identity tensor d;;0;. Due to the symmetry
ij = i, the major symmetry

Qijkl = Hikllji = Hrifly; = leij or QT =Q (28)

13
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holds. Note that p;; transforms e into &;; analogously as the directional
cosines a; do, i.e. & = [ipfLii€ri, See Section . Hence, p;; could be used to
scale the displacements u; or the coordinate axes x;.

The stability conditions can be simplified for as

a,E>0 and —1<v<0.5. (29)

Even the simplest version xA; is reported to work well for geomaterials
[9,(10L19].

6 Anisotropy tensor for xA,

It is argued [8}[19] that xA; is overly restrictive. Therefore, an xA, with two
anisotropy constants, a and f, is proposed. These constants provide more
flexibility for modelling of pure anisotropy. For § = 1, the xA; is recovered
and for o = B = 1, the tensor Q;;i; is reduced to the identity. The new
parameter (3 is added to (25)) as an exponent,

Y @ _ & B/2 _ v B by Uhe B (30)
Gv Ev Vuh Vp ‘

Two isotropic elastic parameters, £ = FE, and v = v, are supplemented
by two anisotropy constants, « and . For such xA,, an anisotropy tensor
Qi must be found. If applied to constant isotropic elasticity, the resulting
stiffness EZ.?,’?ZQ = Qubi; E521Qcars should be

[ Q2(v—1) 9% 7
A 9 A A
Q% Qw-1)
ot o d
A A A

||,
||,

[E*] = FE (31)

ewEow B
| |

<l
W<l

with the same A, B as defined in and Q = a'/?, 0 = 21,

14
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By trial and error, the following anisotropy tensor has been found
Qijii = Mg + clijrg - with  p, = ady, + bmymy, (32)

and a, b, ¢ are functions of the constants o and 3, namely corected 2.01.2022

a = —\/04Z ((\/a—1)2—1-204%_%—1—(04—3)04%)/&

b = —a_i%a<a+\/a—a/%+%+a%+l—2a%> [(a—1),
c = ai? (a - a%> <\/5+ aits 4205 /d  with (33)
d = a+(a— 4)04% +2a7! (34)

The major symmetry Q;jr = Qki; is preserved due to symmetry pi, = fii
given in . For m = {0,0, 1}, tensor @i can be represented as a diagonal
matrix and easil inverted to Q;jil. Otherwise, the analytical inversion
requires diagonalization@. The new exponent 3 does not affect the stability
condition . Assuming =1 in , the xA; given in is recovered.

The improved flexibility of XAy goes at the expense of more complex
calibration. One possibility is to assume the value of § from the literature,
see Section O

The class of anisotropic elastic solids proposed by Lodge [17] was based
on individual scaling of displacements and coordinates. This led to &; =
airbjsers. Our relation &;; = Qijrsers With Q.5 from cannot be brought
to the same form. This fact can be demonstrated using the transposition
Uirji = Qijw- There are two non-zero eigenvalues of U, which precludes U
from being a dyad.

7 No pure anisotropy tensor for xAj;

Boehler and Sawczuk [3] formulated the following general representation of
isotropic tensorial function of two arguments

F(e,M) = fol + fIM + foe + f3(e - M +M-€) + fi* + f5(e* - M + M - £%)(35)

by replacing a with 1/«

!4The diagonalization can be performed using the Hausholder reflection matrix, H;; =
dij — 2h;hj with h = (e3 —m)~. In the diagonal form, the anisotropy tensor, Qg}ffd =
QijriHqi Hyj Hep Hyp, can be easily inverted and then reflected back to the initial coordinate

system.

15
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for M = mm being the dyad of sedimentation. In such case, M = M - M
and tr M = 1 is the only non-zero eigenvalue. The scalars f; in are
functions of the following invariants

tr (), tr (€%),tr (e),tr (M - €), tr (M - €%). (36)

We need € = F(e,M) to be linear with respect to € because Q = 0g/0e
should be independent of €. Hence, can be reduced to the following
bilinear function

F(EZ,M) :f01+f1M+f2€+f3(€'M+M'€), (37)
wherein only fy and f; may depend on invariants tre and tr (M - €), i.e.

F(e,M) = Citr(e)l + Cotr (M - €)1 4 Cstr ()M + Cytr (M - )M
+2C5e +2Cs(e - M+ M - ¢) (38)

with six material constants C;. The derivative of the stress rate function o =
F(¢,M) in the representation leads to the linear stiffness E = d&/0¢€,
namely

Eijuw = C10ij0k + Co0ii My 4+ CsM;;6 + CyM;j My + C5(0:ir051 + 6udj) +
Co( M50 + Mydji, + 6 M + 05 M), (39)

wherein Cy = (3 follows from the symmetry Eijn = Ejj.
In our case, function € = F(e,M) in the representation is differ-

entiated to Q = 0&/0e keeping Cy # (s, i.e. the tensor Q has the matrix

form

B C1 + 205 Cl 01 + CQ 7

C, C,+2Cs Cy + Cy
Ci+C; C1+0C4 C

L Cs Cg

wherein C7; = C + Cy 4+ U354+ Cy + 2C5 + 4Cs and Cy = C5 + (. Of course,
holds for m = {0,0,1} only. With in hand, one may attempt to
find the constants C}, for which the postulated separation

E><A3 — QT: Eisoi Q (41)
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of elasticity and pure anisotropy is valid. Although the matrices EX*3 and
E'° are congruent, it can be shown that the separation of elastic constants,
E = FE,,v = v, and purely anisotropic constants, «, 3,7, from

B

o= G _ (@) _ (i)ﬁ 63 (’i) T with v £ 8/2 (42)

Gv Ev Vyh Vp,

is not possible using Q given in . In order to demonstrate this fact, it
is convenient to investigate the compliances, Ci° and C*A3, rather than the
stiffnesses, E° and E*A%. For the special case of E = 1, the constant isotropic
compliance matrix is

ri1 —v —v b
v 1 —v
—v —v 1
I+v I+v
iso 1<2H/ 1<2H/
[C ]: 2 2 14+v 14v (43)
1fv 1+v
2 2 1+v 14v
1—&2—V 1—&2—V
L 2 2

and the cross-anisotropic elastic compliance for m = {0,0, 1} is [C**%] =

r 1 -V —w
—v 1 —vw
YW —Vw QY
vHl  vHI
o kSR ST
a™ 2 2
%a(u +1) %a(v +1)
sa(v+1) sav+1)
%a(y +1) %a(u +1)
L za(v+1) sav+1) |

wherein w = o '/#*1/7 The matrices, (43) and (44)), should be coupled
analogously to . Such coupling is possible, if a set of components of the
inverse anisotropy matrix [Q™!] can be found that satisfies

[CA =[] - [C]-[Q7]. (45)
The inverse matrix [Q '] has identical formal representation as [Q]. The
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uniqueness of the solution is not necessary. The following guess

-1 -
1
w

DO | 0 |
NI IS

(46)

ofsl
ofs

ofsl
ofols

nearly satisfies (45)). Using [Q '] given in (46), the product [Q~*]7-[C*]-[Q ]
is almost identical as [C*A%] given in . Only one component of
[Q~YT - [C*°] - [Q!] differs from the respective component of [C*A3]. These
components may be set equal, w? = «!/7, which leads to v = 3/2 but this
corresponds to the constraint imposed on the cross-anisotropy by xA,, as
described in Section [6l

The formal structure of [Q '] given in with only a few independent C;
poses a strong limitation on the congruence relation. The congruence requires
[Q7'] to be a nonsingular matrix only. However, identical zero blocks in [Q 7]
from (40) and in [C*°] provide a major advantage for the determination of
C;, namely, the search for the 9 x 9 coupling matrix [Q™!] can be split into
two independent and smaller tasks:

1) coupling of the upper left 3 x 3 blocks
2) coupling of the lower right 6 x 6 blocks.

The solution of the second task can be taken as the lower right 6 x 6 block
of [Q71] from (46). Unfortunately, the first task is less trivial. The upper
left 3 x 3 block of [C*°] from should be coupled with the upper left
3 x 3 block of [C*A%] from using just the upper left 3 x 3 block of [Q7?]
independently of the remaining components. Obeying the structure of [Q ']
from , the first task takes the form

1 -V —rw acd 1 —v —v a c e
—v 1 VWil =|cad -{—1/ 1 _V].[cae}, (47)
—Vw —rw eeb —v v 1 ddb

from which five independent unknown components, a,b,c,d and e, should
be found. It is a system of nonlinear equations. After removing duplicates,
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only four equations remain. For the true separation of elasticity and pure
anisotropy, the unknowns a, b, c,d and e cannot depend on v. Hence, one
may compare independently free coefficients and coefficients at v in each of
four equations. This generates the following system of 8 equations with 5
independent unknowns

1 |+0v a?+ A+ d? | —2[ac+ ad + cd] v

0 | —=lv { _ d? +2ac | —[a® + 2ad + ¢* + 2cd) v 48)
0 | =wv =9 bd+ae+ce| —|ab+ bc+ ae + ce + 2de] v [ (
ar | +0v b+ 2e* | —[4be + 2e*| v

Using the powerful command Reduce[] from MATHEMATICA, one can alge-
braically reduce the system. This reduction leads to the constraint, w? =
a7, imposed on a, 3 and 7, identical as in xA, described in Section @
Hence, the construction of the inverse anisotropy tensor Q! for xA; with-
out constraints, i.e. preserving all pure anisotropy parameters, a, 5 and -, is
not possible.

If the elastic constant v was allowed| to enter Q, then EXA% given in (22)
could be decomposed

VEM/E,: (E,): VEXA/E, = EX? (49)

and Q = /EXA3/E, could be interprete. Tensor E,| describes the isotropic
elastic stiffness for the special case with v =0 and E = E,.

8 Calibration of pure cross-anisotropy

Two methods of calibration of the XA constants will be presented: static
triaxial tests with small stress cycles applied in different directions and dy-
namic tests with different wave types propagated in different directions. In
both cases, the average stress should be isotropic. Otherwise, the xA must
be calibrated jointly with the oA, which is much more difficult.

A combined partly dynamic and partly static, cyclic calibration should
be avoided because the anisotropy of the small-strain stiffness may change
with the size of the amplitude. Strain amplitudes due to wave propagation
are usually much smaller than the ones from static cycles.

15

no true separation of elasticity and pure anisotropy anymore

16The root of a symmetric matrix A can be found from spectral decomposition, VA =
GT . /D - G, where D is the diagonal matrix with eigenvalues of A and G contains the
corresponding orthonormalized eigenvectors in rows.
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8.1 Static calibration of xA;

In this section, two methods to determine «, E, and v, for the xA; are
presented. The first one is based on two saturated, undrained triaxial
tests and the second one needs two drained triaxial tests with measurement
of the volume change. In isotropic elasticity, the volumetric and deviatoric
behaviour can be described separately. Isochoric (at constant volume =
undrained ) stress paths are perpendicular to the hydrostatic axis. In
anisotropic elasticity, the inclination

n=p/qg=p""/¢"" £ 0 (50)

may be measured, see Fig. |5l The inclination 7 is different for the v-sample

. m

n=p/q m Xs
J—Xz
X4

h-sample v-sample

Figure 5: Samples cut parallel (v-sample) and perpendicular (h-sample) to
the direction of sedimentation m: Inclination of the stress path n in triaxial
undrained loading is shown.

cut parallel and for the h-sample cut perpendicular to the direction of sedi-
mentation from the same material. This can be illustrated with the results
from cyclic stress tests on kaolin , see Fig. @ The inclinations are inter-
related by

nv/nh = -2 (51)

and holds for any xA. Hence 7, and 7, provide equivalent information
for the calibration of o and v, for which two conditions are required. In the
coordinate system from Fig. [5| the first condition can be formulated for the
v-sample

dav + erv
3((5'(11) - Um))
Assuming F, = 1, the right-hand side of 2 is a function of « and vy,
only and 7, is known. The second condition is based on the observation

o 1), = with ¢, =E":¢, and &,= diag(—3,—3,1).(52)
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q [kPa e v-sample.  |q [kPa] ,,,// h-sample
Ve
50— Ty
N\
3 \p [kPa] p [kPa]
50 <
~
50  100~.150 200 50 100~ 150 200

Figure 6: Undrained triaxial tests on kaolin samples cut parallel (v-sample)
and perpendicular (h-sample) to the direction of sedimentation after [29]

that identical stress amplitudes ¢*' cause different strain amplitudes in the
v- and h-sample. The ratio r = gm»! /szzlpl # 1 can be measured in the
undrained test. Again, in the coordinate system from Fig. 5 the second

condition can be expressed by three equations
o tre, =0 tré, =0 Eav/Ean =T, (53)

wherein €, and €, are strain rates in v-sample and h-sample caused by the

same stress rate ¢, = ¢, = 0" — ¢°" = 1. In the conventional undrained
triaxial tests with f°" = 0, one may express these strain rates as

- vl s S

€, =C":0, and &,=C":ay, (54)

wherein the effective stress rates
o, = diag(—t,, —u,, 1 —u,) and &, = diag(—up, —up, 1 —up) (55)

and the rates of pore pressures 1, # 1 may be different in v- and h-samples
(in spite of the same ¢). Using the e conditions, one may express « and vy,
by analytical formulas, see Appendix [A]

With o and v, in hand, one may determine the module E, = s /z,,.
The rates ¢:°" and &,, should be measured from the undrained v-sample. The
scaling factor s(v, ) can be determined substituting into ¢, = E" : &, the

following relations
€, = £q diag(—3,—3,1) and o, = diag(—i,, —ty, 60" — @) .  (56)

The system o, = EY : €, can be solved for F, after elimination of u,. The
complete solution is given in Appendix [A]
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Alternatively, the xA; parameter along with the elastic constants can be
determined from the conventional drained triaxial tests (at ¢, = 0). From
a compresssion of a v-sample and a h-sample, one obtains E, = 64,/
and Ej, = d,1,/Ean, respectively. The measurement of volumetric and axial
deformations leads to the following system

Evolh, = Ean(l — vh — Upy)
évolv - éav(l - 2Vvh) (57)
vy, = Vph X = Upy /X

which can be solved for o, vy, Vhy, Vnn, see Appendix [A]

8.2 Dynamic calibration of xA,

In this section only the dynamic calibration of xA, is discussed. A static
calibration of § via GG, is possible but it needs a hollow-cylinder torsion test
on a v-sample.

Anisotropic elastic parameters can be determined from the measurements
of wave velocities (dynamic tests) in different direction of propagation n.
Using this direction, the acoustic tensor can be built

Uje = niEijrm, (58)

wherein E is the stiffness and n is unit vector. The eigenvalues of I';, are
related to the velocities of different waves propagating along n. A (phase) ve-
locity v can be determined from the following eigenvalue problem (Christoffel
equation for plane waves) [6]

(ij - pUZ(Sjk) Ak = Oz‘; (59)

wherein p is the mass density. Three eigenvalues pv? may be obtained from
det (Tjr — pv?d;x) = 0. They may correspond, in general, to three different
waves with different velocities, all propagating along n. The corresponding
eigenvectors A describe the polarizations of displacement amplitudes. In the
case of isotropic elasticity, it is one P-wave with A|ln and two S-waves with
A 1 n, Fig. |7l The velocities vg and vp are independent of n.

In a cross-anisotropic medium with EXA2, the velocities of propagation
and the polarization directions depend on the anisotropy parameters, a and
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> {f 1 «—>
n
AS1 Asz Ae
Vsi Vso Ve

Figure 7: Direction of propagation n with two shear waves, vg; and vgs,
and one pressure wave, vp, for isotropic elasticity

B, and on the angle between n and m. The explicit expressions for I';; in the
case of any n and m = {0,0, 1} are given in Appendix [Bl We examine two
directions of propagation, n|jm (index v) and n L m (index h) with m =
{0,0, 1}, Fig. |8l For such n, the polarization A can be either perpendicular

A
X3
m n
V.

Vsvh S Vshh

n

X,
Vsvh
1

YX '

Figure 8: Anisotropy due to sedimentation along the w3 axis: Polarization
of different S-waves is shown.

or parallel to n. The respective eigenvalues are denoted as pv%ij and pvl%ij,
wherein 7 is the direction of propagation and j is the direction of polarization,
both taking the values h or v. The velocities for XA, can be easily found as
the eigenvalues of tensors given in in Appendix

9 EQ? 9 9 Eo
PUSHE = B PUShy = PVUsvh = B
EQ2(v—1 Elv—1
pUJQth = %7 pv%vv = % (60)

with A=2024+v—1, B=2v+1), 2=a'f and § = a?*~1,
Both parameters, a and 3, can be calibrated from vertical and horizontal

Waveﬂ alone, using , see Fig. |§|

1"This can be done in triaxial apparatus using bender elements installed on the end-
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e

(@) (b)

Xo Xo

Vsvh Vp Vshh

v

Figure 9: Set-up of bender elements for the determination of XAy parame-
ters: a) waves with vertical propagation b) waves with horizontal propagation

Four independent wave velocities, vpyy, Uppn, Vshn and Vgyn = Ughe, Can
be measured and can be solved for two pure anisotropic parameters

o = Vsnn = 21n (v /Vgon) (61)
In (U%hh/vl%'m;)

2
UsSuh

and two elastic parameters, £ = E, and v = vy,

2 4U§hh U%hh Uj%hh
EU:pvva 1+ 3 + 5 3 ,I/h:1—|—2(2 — 3 ) (62)
UPhh Ushh — VUPhn Ushh — VUPhn

Determination of all five parameters for the stiffness requires addi-
tionally a wave velocity in an inclined direction n, say for n-m = 1/4/2 ,.

9 Tests of xA

Recently, Masin and Rott have reviewed numerous experiments on sed-
imentary clays. They concluded that, using the nomenclature of , most
clays need v > 1/2, which can be covered by xAs or xAs but not by xA;.
It is claimed that the average value should be v =~ 4/5. This obser-
vation was based on tests which could be blurred by the cA. However, for
practical purposes, such results are sufficient because XA has been shown
to be dominant over oA in highly overconsolidated clays as well as in

plates and laterally by cutting the membrane. Similar tests in-situ can use cross-hole or
down-hole measurements but they can be blurred by the cA due to the Ky-stress state.
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kaolin [9]. Unfortunately, only a few tests from [19] were carried out un-
der hydrostatic stress. In consequence, not much usable data can be found.
However, some results from London Clay and Gault Clay referred to in [30]
confirmed the discrepancies from v = 1/2 and speak for xA, rather than for
xA;. The exponent v = 1/2 was estimated for Bangkok Clay under isotropic
stress |26]. Measured values of 7 are presented for different as in Fig.

10—

> 0.5—* ————————

@®LC VHS
() mGC AKSH1
. €BC %KS2
)

A 1.2 1.4 16 18 o

Figure 10:  Parameters v and « for London Clay (LC) |30], Gault Clay
(GC) [30], Bangkok Clay (BC), |26] Hostun Sand (HS) [27] and Kenya Sand
(KS1, KS2) [§]

Some dynamic test data for Kenya Sand [8] and Hostun Sand [27] at dif-
ferent isotropic stress levels, p, revealed an influence of p on the parameter f3.
This strange effect can be attributed to errors in measurements or to partial
destruction of XA by isotropic loading. Tests with temporary overloading
(up to a high p and back) could help to confirm such a degradation. The
dynamic tests prove v > 1/2 for sands.

Parameter § and the ratio 3/~ are plotted as functions of « in Figs.
and respectively.  The ratio /v = 2 was assumed in XA, because of
the mathematical convenience. Due to the scatter of experimental data, one
can neither confirm nor reject this assumption.

10 Graphic representation of anisotropy

For constitutive rate-type models in the form of an isotropic function o (a?, €),
the well known concept [11] of response envelopes can be used for the graphic
representation of stiffness. The 2D plots of response envelopes to strain
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6.0

% @LC VHS
i mGC AKS1|
40+ €BC %KS2-

2 I 2

1.1 1.2 14 16 18 o

Figure 11: Parameter 3 does not correlate with o.

sl X /@LC VHS |
' * mGC AKS1|
€BC %KS2
* |
20— §'v ————— [
= o 7
e
-2.0 [V
A

R S bt

1.1 1.2 14 16 18 o

Figure 12: Ratio /v does not correlate with .
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disturbances require that the initial stress, o, and all strain rates, &, are
co-axisymmetric, i.e. axisymmetric with respect to the same symmetry axis.

In the case of xA, the sedimentation dyad, M = mm, appears as an
additional argument in o (a°, €, M). This dyad needs not be co-axisymmetric
with ¢® and €. In such case, the usual 2D response envelopes cannot be
plotted, if xA spoils the co-axisymmetry of o and &.

For a general graphic representation of stiffness with any xA, the original
concept |11] can be extended. In this extension, the stress incrementﬁ, Ao,
need not be co-axisymmetric with o°.

10.1 2D response envelopes

A response envelope is a polar representation of a tangential stiffness at
a given stress o¥. Starting from a diagonal and axisymmetric initial stress,
o = diag(o?, 0, 09) with 0 = o}, different axisymmetric strain increments

of constant length,

V2 V2

with r = const = 0.0001 and 0 < ¢ < 27,

1 1
Ae = r diag (sin ¢, —= COS ¢, —= COS <;5> (63)

are applied, Fig. [[3h. The envelope of the corresponding stress increments,
Ao = Ao(¢), is termed the response envelope. Linear elasticity maps a
circle in the strain space to an ellipse in the stress space, Fig. .
Increments Ao are co-axisymmetric with o, if o is co-axisymmetric with
Ae and XA is absent or its m is parallel to the symmetry axis. In such cases,
the end-stresses, o° + Ao, can be plotted. These plots are quite common in
the geotechnical literature. Usually, they are shown on the Renduli¢ plane,
V20, — 0,, or on the plane of isometric Roscoe invariants, P — Q.
Generally, o° + Ao cannot be plotted because the xA may spoil the
co-axisymmetry between Ao and o'. However, all Ao are coplanar, if all
Ae are and because the constitutive relation, o (g% &, M) = E(a®, M): €, is
incrementally linear. Let the following orthogonal strain increments:
e isotropic Aep = r diag(1,1,1)//3

e deviatoric axisymmetric Aegg = r diag(2, —1,—1)/v/6

Bobtained from strain increments Ae of equal length and co-axisymmetric with the
initial stress o°
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(d)

>
V20, G3

Figure 13: Isotropic elastic relation o (o, €):

a) axisymmetric o and co-axisymmetric strain increments Ae
b) diagonal 6° and coaxial Ae

c) stress response Ao for (a)

d) stress response Ao for (b)

along ¢ = ¢p = arcsin (1/\/5) and ¢ = ¢g = arccos (1/\/3) produce stress
increments, Ao p and Ao, respectively. These two increments span a plane
in 6D stress space. All other stress responses lie in this plane due to the
linearity of E. In other words, any response is a linear combination of Ao p
and Aog. After orthonormalization of Ao p and Ao, they constitute the
orthogonal basis {e%, 622} on the response plane and we may introduce the
coordinates, AP* and AQ*, on this plane. Any stress response can be rep-
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resented as
Ao (¢) = AP* ep + AQ* ez,, (64)

for example Ao (¢p) = AP* €.

10.2 An example of 2D response

Experiments on kaolin [9] show that the effects from xA dominate over the
ones from oA, Fig. [3l It turns out that, for kaolin, the xA; with a single
anisotropy parameter « simulates the experiments sufficiently well and § is
not necessary. In sedimentary clays, however, xA; can be inaccurate, see
Section [9] As an example, 2D response envelopes from the superposition of

oA from and XA, are plotted in the AP* — AQ* plane in Fig. .

(a) Agq
1.10-4

-
[N

=R

0.108 0.217 -0.369

* -0.737 0.016 0.024
eQ = | 0.016 0.508 -0.204
0.024 -0.204 0.338

(b)
0658 0072 0.108
(kPa)G e, = |:0_072 -0.550 0.217:|

-1.10-4

-1.104

« -0.459 0072 0.109
€5 = | 0072 -0.656 0.251
0109 0251 -0.447

" -0.871 0.038 0.056
e. = (0038 0365 -0.120
0.056 -0.120 0.265

0.102

0.161

-0.182
-0.027
-0.288
0.419

Figure 14:  Cross-anisotropic elastic relation & (o, &, M) with oA from
and with xAy: 2D isometric stress plots (b,c,d) were calculated at different
diagonal initial stresses a® and for the same sedimentation m = {1,2,3}".
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10.3 3D response envelopes

To plot 3D response envelopes, solely the coaxiality of a” and € in o(g?, €) is
required. If the xA is present, all arguments in (o, €, M) must be coaxial.

Starting from a given initial stress, o® = diag(o?, 03, 03), diagonal, ax-
isymmetric strain increments of constant length,
Ae(¢, 1) = r diag (sin ¢, cos ¢ cos 1, cos ¢ sin 1)) (65)

with r = const ~ 0.0001 and 0 < ¢,9 < 2,

are applied, Fig. [[3pb. They can be encompassed by a sphere in the 3D
space of principal strains. In the case of a linear elastic constitutive relation,
o(0% €) = E(aY): ¢, the end-stresses, o’ + Ao, form an ellipsoidal response
envelope in the 3D space of principal stresses, Fig. [13d. The respective
stress increments, Ao = Ao (¢,v), are coaxial with o, if ¢ and Ae are.
Generally, the coaxiality of o and Ao may be violated by the presence of
the xA, when M is not coaxial with o.

Similarly as in the 2D case, we define three orthogonal strain increments:
e isotropic Aep = r diag(1,1,1)/V/3
e deviatoric axisymmetric Aegg = r diag(2, —1,—1)/v/6
e deviatoric anti-planar Aeg = r diag(0,1, —1)/v/2.
They correspond to the following angles:
® ¢ = ¢p = arcsin (1/\/5) W =yp=m/4
® ) = g = arccos (1/\/5) =g =m7/4
o 9=¢r=0,1=1p="Tr/4
The respective stress increments, Ao p, Aoy and Ao g, are not necessarily
orthogonal but they span a 3D subspace of the 6D stress space. Analogously
as in the 2D case, these stress increments can be orthonormalized to define
the basis {e}, ef), e} } and the coordinate system AP* — AQ* — AR* of this

subspace. Due to the incremental linearity, all stress increments can be
expressed as linear combinations of the basis tensors,

Ac(1),6) = AP* &) + AQ" el + AR” e, (66)
for example Aa (¢p,1Pp) = AP* 5 with ¢p = arcsin(1/v/3) and ¢p = 7/4.
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10.4 An example of 3D response

The 3D stress response envelopes were obtained with the identical constitu-
tive model and the same material constants as for the 2D ones from Fig.
The 3D strain increments Ae were applied to plot Ao in AP*— AQ* — AR*
system, Fig. [15]

0.015 -0.060 0.116
= | -0.060 0.600 0.093
0.116  0.093 -0.767

AP* (kPa)
AQ”" (kPa)

o°= diag(100,100,100) kPa

(d) AR* (kPa)

5.5 0.008 -0.059 0.117 3.5
= |-0059 0606 0.085
0.117 0.085 -0.764

- -0.026 -0.053 0.127
€ = |-0053 0585 0.112
0.127 0.112 -0.771

AP* (kPa) AP* (kPa)
“ . AQ" (kPa)
4

o°= diag(40,80,80) kPa o°= diag(60,30,25) kPa

Figure 15: Cross-anisotropic elastic relation & (o, €, M) with oA from (14)
and XAy: 3D isometric stress plots (b,c,d) were calculated at different diag-
onal initial stresses o® and for the same sedimentation m = {1,2,3} .

10.5 Polar diagrams of wave velocity

Using the acoustic tensor I' from , the velocities v of different waves can
be plotted as functions of the direction of propagation n. The directional
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dependence of wave velocities can be then visualized in the form of polar
diagrams for each wave type.
An example of polar diagrams obtained with the superposition of xA,

and oA from is shown in Fig. .

Figure 16: Polar diagrams of three wave velocities for an abstract material
with XA2

11 Scaling of yield functions

The anisotropy tensor Q from xA; and xA; may have a variety of appli-
cations beyond elasticity. A yield stress criterion describes the boundary of
all accessible stress states, F(g) < 0, where F(o) is an isotropic function of
stress. For example, Matsuoka and Nakai [18] proposed the following yield
function

F(o)=trotr (67') — 8tan” ¢ — 9, (67)

wherein ¢ is the friction angle.

The XA can be imposed to stress using the anisotropy tensor from ([32))
and substituted into F(o), i.e. F**?(04) = F(Queateq). As an example,
F (o) from (67) with the x A, was plotted in the deviatoric plane, Fig. The
transformed yield function F**?(o) requires calibration of the corresponding
friction angle (*A2,

In the literature, one may find some attempts to make a yield surface
F(o) cross-anisotropic, e.g. . In comparison, scaling with the anisotropy
tensor, Q, is an elegant and easy method.
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100

(kPa)

-100 0 100 (kPa)

Figure 17:  Anisotropic (dashed) yield function obtained from isotropic
(solid) one using X Aq

12 Summary

Inherent cross-anisotropy and stress-induced anisotropy, can be easily su-
perposed within the elastic range, in particular dealing with geotechnical
(barotropic) elastic potentials. The pure anisotropy tensor, Q, depends on
the sedimentation direction, m, and some material constants. The simplified
versions, xA; and XAs, of cross-anisotropy could be used to build such Q but
not the general form, xAz. The proposed pure anisotropy does not violate
the Second Law, if superposed with hyperelasticity. The pure anisotropy can
be applied also to any isotropic potential function, for example to a yield
surface.

The proposed calibration procedure for Q can be based on static, cyclic
or dynamic tests. The popular concept of response envelopes [11] has been
extended to provide the graphic representation of polar stiffness at presence
of xA. For this purpose, a new isometric representation system has been
proposed. The concept of pure anisotropy has been compared to some recent
approaches from the literature. Visualization of the superposed xA, and
oA conducted with the algebra program MATHEMATICA has been given in
examples. All notebooks and packages involved in this paper are available
from the authors.
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13 Appendices

A Static calibration for xA;

The parameters of xA; have been found from (52||53)) for undrained triaxial
tests in the static calibration

a4+ Va2 +12rb 2a

o= and v, = 68
b " Onu(r—4) + Va2 + 12rb— 12 (68)
with abbreviations a = 3n,(r —4)+4(r —1) and b = 2(3n, —2)(r —4). Given
a and vy, from , one may use to obtain

dtOt 2<Vh + 1)(1 — 21/h)
E, = * ith s = : 69
Ean oWHRLS 2+ a? — dav, — 2, (69)

These parameters can also be found from the system for static,

drained triaxial tests and it follows that
1 1 Oav

0425(—1+01/02) and Vh:Z(_l_’_’rv‘f‘ClCQ) and E, = -
ga'U

with abbreviations ¢; = /1 —r,, ¢c2 =+1/9—8rp, — 71y, 7Ty = Eyolv/Eaw and

Th = Evolh/Eah-

(70)

B Acoustic tensor for xA,

In the general case of n = {ny, ny, n3} with EXA? after and m = {0,0, 1},
the acoustic tensor has the following form

Q2 [om%A—i—n%A—i—an%(u—l)B] Q2n1n2(A—vB) Qninz(QA—aB)
aAB AB aAB
r=E Qn1n5(A—vB) Q2 [an?A+niAt+and(v—1)B] Qnans(QA—aB) (71)
AB aAB aAB ’
Qning(QA—aB) Qnaong(QA—aB) n3(v-1) Q2 (n%—&-n%)
aAB aAB A aB

wherein £ = E,, v =1, A=202+v—1, B=2(r+1) and Q = o!/?. For
horizontal and vertical waves, one obtains two special cases,

02 (v—1) 02
nlm A 02 0 n||m ab 02 0
r™2 gl 0 2 0| adT "™ E|0 2 o |,(72)
0o 0 2 0 0 =5
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and set of equations can be determined from the eigenvalues of T'.

Let us define three of polarization cosines II; = n - Kl In the case of
isotropic elasticity, IT = {1,0,0} means one P- and two S-waves. At presence
of xA,, one can speak of only one S—Wavelr_g]. Its polarization is perpendicular
to both n and m. Two other waves lie in the plane spanned by n and m.
All three wave velocities are different. For example, « = 1.8 and g = 1.2
in xAy with n = {1,2,3}7 yield IT = {0.94,0,0.33}, wherein the second
polarization corresponds to the S-wave. The other two polarizations depend
on «, # and on the angle between n and m.
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