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Abstract

The pure cross-anisotropy is understood as a special scaling of strain (or
stress). The scaled tensor is used as an argument in the elastic stiffness (or
compliance). Such anisotropy can be overlaid on the top of any elastic stiff-
ness, in particular on one obtained from an elastic potential with its own
stress-induced anisotropy. This superposition does not violate the Second
Law. The method can be also applied to other functions like plastic poten-
tials or yield surfaces, wherever some cross-anisotropy is desired. The pure
cross-anisotropy is described by the sedimentation vector and at most two
constants. Scaling with more than two purely anisotropic constants is shown
impossible.

The formulation was compared with experiments and alternative ap-
proaches. Static and dynamic calibration of the pure anisotropy is also
discussed. Graphic representation of stiffness with the popular response en-
velopes requires some enhancement for anisotropy. Several examples are pre-
sented. All derivations and examples were accomplished using the algebra
program Mathematica.
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1 Introduction

Elastic response is an essential part of most constitutive models for soils.
It is particularly important for soil dynamics, for stability analysis [2] and
for material response in the range of small-strains. This range corresponds
roughly to strain amplitudes of 10−5 for sand and 10−4 for clays. Under such
loading soil can be much stiffer than at amplitudes of say 10−3. This paper
deals with small-strain elastic (incrementally linear) stiffness only. For larger
amplitudes, hysteretic [23] or cumulative models [24] are necessary. Stiffness
may be a function E(σ) of stress (or strain) but it interrelates rates (or tiny
increments) of stress and strain rather than stress and strain themselves.

In the elastic regime, stress should be a continuous 1-1 function σ(ε)
of strain. Otherwise, some stress could be accumulated within a closed
strain-loop, see Section 2. A thermodynamically sound elastic material model
should not allow for the accumulation of stress or energy upon any closed
strain loop. The energetic requirement is not trivial for soils with a barotropic
(pressure-dependent) stiffness. It is well known that the barotropic elastic
modulus, E ∼ p or E ∼ √p, with a constant Poisson number ν violates the
Second Law [13,31]. In order to avoid this problem, several elastic potentials
have been proposed in the literature, see Section 2.1. A tangential stiffness
obtained from such potential is a function of stress (not only of stress invari-
ants) and one may speak of the stress-induced anisotropy1 (σA). It should
be distinguished from the inherent cross-anisotropy2 (×A), which is caused
by sedimentation process and/or geological petrification (cementation) of the
geostatic K0-state. The ×A is independent of the current stress or strain.

Any constant cross-anisotropic stiffness E×Aijkl can be described by five
material constants, usually denoted as Ev, Eh, νh, νvh and Gv, see Section 4.
The main objective of this paper is to represent this stiffness in the form3

E×A = QT : Eiso : Q, (1)

wherein the elastic properties4 are given in the isotropic stiffness Eiso and
all pure anisotropic properties are moved to the anisotropy tensor Q. The
advantage of such separated description follows from the fact that the same Q
can be applied to any hyperelastic (and barotropic) stiffness without violating

1orthotropy with respect to directions of principal stresses
2also called transverse isotropy, polar anisotropy
3see Section 1.1 for notation
4here, Young modulus, E, and the Poisson number, ν
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the Second Law. This is proven in Section 3. In other words, any basic
tangential stiffness (or compliance), possibly with its own induced anisotropy,
can be superposed by the pure inherent anisotropy. Here, this pure cross-
anisotropy is denoted as×AM , whereinM is the number of constants required
for the anisotropy tensor5 Q. Two anisotropy tensors Q, for ×A1 and ×A2,
are analytically derived in Sections 5 and 6. Unfortunately, the derivation of
Q for the general case ×A3 is not feasible as demonstrated in Section 7.

Calibration of the parameters of Q from static (cyclic) triaxial tests on
samples cut in different directions or from wave velocities in different di-
rections [8, 27] is commented in Section 8. A few remarks on experimental
data for ×A are given in Section 9 and the advantage of ×A2 over ×A1 is
demonstrated.

The graphic representation of stiffness in the form of polar response en-
velopes [11] is well known in the geotechnical literature. In the case of ×A,
some complications may arise from the fact that the stress rate, σ̇(σ0, ε̇,M),
may not be axisymmetric for the axisymmetric initial stress, σ0, and co-
axisymmetric6 strain rate, ε̇. The problem is caused by the dependence on
the direction of sedimentation, m, appearing here in the form of the sedimen-
tation dyad, M = m m. This may also cause a loss of coaxiality. Therefore,
an enhanced graphic representation is proposed in Section 10. Some exam-
ples of extended response envelopes with ×A2 and polar diagrams of wave
velocities are shown.

Finally, ×A2 is applied to stress and substituted to the Matsuoka-Nakai
yield surface. The modified surface is shown graphically in Section 11. All
relevant packages and notebooks for the algebra program Mathematica are
available from the authors.

1.1 Notation

Bold-face letters like σ are vectors or second rank tensors. Sans serif letters,
e.g. E, are the fourth order tensors. Gibbs notation like σ̇ = E : ε̇ or
index notation σ̇ij = Eijklε̇kl in the Cartesian coordinate system with usual
summation over repeated (dummy) indices is used. The geotechnical sign
convention is applied to σ and ε with compression positive. A fourth order
tensor E can appear in a form of a 9 × 9 matrix (no Voigt 6 × 6 notation)
denoted as [E]. The 9×9 form facilitates some transformations in the algebra
program Mathematica. Similarly, [σ] is the 3 × 3 matrix obtained from
the tensor σ. The essential variables are:

5also called anisotropy operator in the literature [25]
6=axisymmetric with respect to the same symmetry axis3
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1, I identity operators
α direction cosines
α, β, γ constants for ×A
C elastic compliance
δ Kronecker symbol
{e?P , e?Q, e?R} basis for a stress space
E, ν,G,K isotropic el. constants
E elastic stiffness
ε strain tensor
ε̄ modified strain tensor
εa, εr axial and radial strain

components
εvol, εq Roscoe strains
εP , εQ isometric strains
Γ acoustic tensor
m sedimentation vector
M = m m sedimentation dyad
n direction of wave

propagation
p, q > 0 Roscoe stress invariants
P,Q isometric stresses
P ?, Q?, R? isometric coordinates

for stress increments

Q anisotropy tensor
R = ‖σ‖ stress norm
σ stress tensor
σ̄ modified stress
σa, σr axial and radial stress

components
v wave velocity
W (ε) elastic energy
W̄ (σ) complementary energy
ṫ material rate of t
‖ t ‖ Frobenius norm of t
~t = t

‖t‖ normalized t

×A pure inherent
cross-anisotropy

σA stress-induced
anisotropy

×AM cross-anisotropy with
M constants

2 Elastic potential

Let us consider an incrementally linear relation

σ̇ij = Eijklε̇kl (2)

between the stress rate σ̇ij and the strain rate ε̇kl. The tangential stiffness
Eijkl needs not be constant. It may be a function of stress or strain but it
cannot be a function of their rates. Such incrementally linear model is called
hypoelastic.

Let the strain evolve along the path7 εij(τ), Fig. 1a. After a 180◦ re-
versal, identical negative strain increments can be applied in the opposite
sequence and the strain evolves back along exactly the same path. The re-
lation σ̇ij(−ε̇kl) = −σ̇ij(ε̇kl) holds due to the incremental linearity. Hence,
the same stress path is followed and, eventually, the original state σij(t0) is
reached. The energy density, dW = σij ε̇ijdt, is also recovered. However, if
one departs from εij(t0) upon one path and returns to εij(t0) upon another

7parametrized by a time-like variable τ ∈ {t0, t1}
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path, Fig. 1b, then neither the initial stress nor the energy is in general re-
covered. At least, one cannot conclude such recovery from the incremental
linearity (2) alone.

ε ε(τ)

εε

ε(t  )0
(t  )0

(t  )1 (t  )1ε(τ)

(a) (b) ΔW

ΔW

Figure 1: Strain paths tested with incrementally linear elasticity

In hyperelastic models, apart from the linear relation (2), some additional
conditions must be imposed on Eijkl. In isothermal elastic materials, strain
is the only independent state variable, i.e. εij alone dictates the internal
elastic energy W . This dependence must be a function W (ε), i.e. the elastic
energy cannot depend on the strain path εij(τ). The change in W upon the
path from ε0

ij = εij(t0) to ε1
ij = εij(t1) is

∆W =

∫
σijdεij =

∫ t1

t0

σij(τ)ε̇ij(τ)dτ (3)

and this ∆W is identical upon any strain path εij(τ). If the choice of a path
εij(τ) between ε0

ij and ε1
ij could influence the integral ∆W , then one could

input less energy upon one path, 0 → 1, than could be recovered on the
way back, 1 → 0. Such gain of energy without any change of state (strain
returns to ε0

ij) violates the Second Law. Even if this gain occurred at the cost
of thermal energy, it would be a violence of the Second Law (a perpetuum
mobile of the second kind). Hence, the integral in (3) should indeed be
path-independent, which implies the existence of a function W (ε). Being a
function, W (ε) has the total differential

dW = (∂W/∂εij)dεij. (4)

From the comparison of (4) with (3) for any dεij, it follows that

σij = ∂W/∂εij. (5)

5
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As a derivative of a function of strain, stress also must be a function σ(ε).
Stress rate can be calculated using the chain rule, σ̇ij = (∂σij/∂εkl)ε̇kl. From
the comparison with (2)

σ̇ij =
[
∂2W/(∂εij∂εkl)

]
ε̇kl, follows Eijkl = ∂2W/(∂εij∂εkl). (6)

It is evident from (6)2 that Eijkl must be symmetric. Note, however, that
the symmetry, Eklij = Eijkl, is only a necessary (but not sufficient) condition
for the existence of an elastic potential. Let a symmetric stiffness Eklij(ε) be
a primary function. For the existence of W (ε), also a function σij(ε) must
exist. For the integrability∫

Eijkldεkl −→ σij(εkl), (7)

all mixed second derivatives of σij(εkl) must be identical

∂2σij/(∂εkl∂εrs) = ∂Eijkl/∂εrs = ∂Eijrs/∂εkl = ∂2σij/(∂εrs∂εkl), (8)

which is not guaranteed by the symmetry Eklij = Eijkl. For example,
Eijkl(ε) = εnn [3Kνδijδkl/(1 + ν) + 2GIijkl] is symmetric but it is not hy-
perelastic because it does not satisfy the condition (8).

Functions W (ε) cannot be directly measured. They are usually formu-
lated by trial and error. An educated guess can be based on the measure-
ments of the second derivatives Eijkl (6)2 at different strains. Alternatively,
the complementary energy W̄ (σ) may be used,

W̄ = σijεij −W with εij = ∂W̄/∂σij and E−1
ijkl = ∂2W̄/(∂σij∂σkl). (9)

In granular materials, the main difficulty in the formulation of W (ε) or W̄ (σ)
arises from the pressure dependence (the so-called barotropy) of the stiffness.

2.1 Geotechnical hyperelastic models

Several hyperelastic models have been proposed in the literature. A critical
review can be found in [20] and more recently in [9]. It is helpful to assume
the hyperelastic stiffness as a homogeneous function of stress, i.e. ∀λ > 0 :
E(λσ) = λmE(σ). The order m of homogeneity is usually m ≈ 0.6 for sand
and m ≈ 1 for clays. The compliance, C = E−1, is homogeneous of order −m,

6
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of course. It can be proven8 that the corresponding elastic potentials, W̄ (σ)
and W (ε), are homogeneous functions of order 2−m and (2−m)/(1−m),
respectively.

A simple hyperelasticity was proposed by Vermeer [28]. The hyperelastic
potential is given explicitly,

W̄ (σ) = c1R
1−m/2 (10)

with a material constant c1. The order of homogeneity of E(σ) must be
m 6= 1.

Borja et. al [4] proposed a hyperelastic model based on elastic potential
formulated in terms of the strain invariants,

W (ε) = c3 exp (εvol/c2) + [c4 + c5 exp (εvol/c2)] ‖ε∗‖2 with εvol = εii, (11)

wherein ε∗ is the deviatoric part of ε. In this case, the stiffness appears to
be inhomogeneous in stress.

Niemunis and Cudny [20] introduced a potential for clays,

W̄ (σ) = c6R
2/P + c7R + c8I

1/3 + c9P + c10 ln (P )

with P = σii/
√

3 and I = σijσjkσki, (12)

that yields stiffness E(σ) with a homogeneity of order m = 1.
The following expression for the complementary energy was proposed for

sand by Niemunis et al. [21]

W̄ (σ) = c11P
c12R2−m−c12 , (13)

wherein m 6= 1 is the order of homogeneity of E(σ).
Response envelopes [11] are polar representations of stiffness at different

stresses, see Section 10. They can be measured (here for medium dense
sand [14,15]) and calculated analytically, e.g. using (13). A comparison like
in Fig. 2 may be used for the calibration.

8For this purpose, one may use (2−m)(1−m)W̄ (σ) = σ : ∂2W̄
∂σ∂σ : σ = σ : C : σ, which is

analogous to the well known Euler formula for homogeneous functions, here applied twice
to W̄ (σ). The homogeneity of W̄ (σ) of order 2 −m is sufficient (but not necessary) for
the homogeneity of order m in E(σ). After adding a constant to W̄ (σ), the homogeneity
of W̄ (σ) is lost but homogeneity of E(σ) is preserved.

7
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Figure 2: Comparison between response envelopes of the experiments for
medium dense sand [15] and theoretical response envelopes from (13): The
presence of σA is evident and no ×A is needed.

Selected terms from (12) and (13) have been recently combined for kaolin
by Gehring [9] into

W̄ (σ) = c11P
c12R2−m−c12 + c13P ln(P ). (14)

This potential is suitable for cohesive materials because the second summand
removes the singularity of C at m = 1. Experimental (for kaolin [9]) response
envelopes are compared with the theoretical ones obtained with (14), Fig. 3.
A strong inherent anisotropy was caused by K0-consolidation of kaolin. The
required anisotropy tensor Q given in (27) is described in Section 5.

The proposed superposition of σA and ×A is a convenient alternative to
a direct postulation of W (σ,M) with the sedimentation dyad M = m m as
an additional argument. For example such function

W̄ (σ,M) = R̄1−m/2 with R̄ = c14R + c15Mabσbcσca (15)

was proposed by Cudny and Staszewska [7] for m 6= 1. Similar approach
related to the microscopic description has been recently proposed by Amorosi,
Houlsby and Rollo [1, 12].

8
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Figure 3: Comparison between response envelopes of the experiments on
kaolin [9] and theoretical response envelopes from (14): The effect of ×A1

from Section 5 is essential.

Instead of using an explicit potential W̄ (σ), Boyce [5] postulated a 1-1
homogeneous function ε(σ) of order 1 − m. In this case, existence of the
complementary elastic potential W̄ (σ) should be proven. For such formu-
lation, the superposition described in the next sections can also be applied
using identical tensor Q.

3 Anisotropy tensor Q

Stiffness Eijmn and a family of transformations E ′ijmn = αikαjlαmrαnsEklrs
with directional cosines αij build a symmetry group, if the components of

9
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stiffness are preserved, that is, if E ′ijmn = Eijmn. For an isotropic stiffness

Eiso
ijmn, it is true for any αij. For an inherent cross-anisotropic stiffness E×Aijmn

with sedimentation direction m = {0, 0, 1}, αij corresponds to an arbitrary
rotation9 around m by angle ψ,

[α] =

[
cosψ sinψ 0
− sinψ cosψ 0

0 0 1

]
. (16)

In this paper, the pure inherent cross-anisotropy ×A in a form of tensor
Q is proposed. It is a function of m and some constants. This ×A can be
”added” to any stiffness, e.g. to one obtained from a potential W (ε) or W̄ (σ)
with its own σA, see Section 2.1. The constants in Q can be determined from
the transformation

E×Aijkl = QabijE
iso
abcdQcdkl (17)

of the isotropic stiffness Eiso
abcd to the desired E×Aijkl. Tensor Q should scale any

stiffness in a similar manner. All components of Q are independent of εij, E
and ν, and hence, Q stores the pure anisotropy.

Let us apply Q to the strain, ε̄ij = Qijklεkl, and then substitute ε̄ij into
an elastic potential W (ε̄). Differentiating W (ε̄) with respect to εij and using
the chain rule, one obtains the stiffness with the combined effect of σA and
×A,

E×A+σA
ijkl =

∂2W (ε̄)

∂εij∂εkl
=
∂2W (ε̄)

∂ε̄abε̄cd

∂ε̄ab
∂εij

∂ε̄cd
∂εkl

= EσA
abcdQabijQcdkl, (18)

wherein EσA
abcd is the stiffness with σA only. Note that deviations from isotropy

are superposed and hence, the symmetry group is restricted rather than
extended. Tensors Q have relatively simple forms for ×A1 and ×A2 with the
major symmetry, Qijab = Qabij, see Sections 5 and 6.

Inverting both sides of (17), one may use Q−1
ijkl for the compliance10,

C×Aijkl = Q−1
abijC

iso
abcdQ

−1
cdkl. (19)

The same Q−1
ijkl can be applied to stress, σ̄ij = Q−1

ijklσkl, and the modified

stress σ̄ij can be substituted into the given complementary potential W̄ (σ̄).

9This family of αij can be completed by rotations or reflection that reverse the sense
of x3 axis.

10The tensors Q proposed for ×A1 and ×A2 can be analytically inverted, see Section 6.
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Differentiating with the chain rule, one obtains the compliance with super-
posed effects of σA and ×A,

C×A+σA
ijkl =

∂2W̄ (σ̄)

∂σij∂σkl
=
∂2W (σ̄)

∂σ̄abσ̄cd

∂σ̄ab
∂σij

∂σ̄cd
∂σkl

= CσA
abcdQ

−1
abijQ

−1
cdkl, (20)

wherein CσA
abcd is the compliance with σA only.

Summing up, the most important advantage of the pure anisotropy is
the fact that it can be ”added” a posteriori to any hyperelastic stiffness
EσA or compliance11 CσA without violating the Second Law. Moreover, a
fairly easy implementation of Q to existing constitutive models can be ex-
pected. Tensor Q can be interpreted as a modifier of the strain tensor12

εij = −1
2

(∂ui/∂xj + ∂uj/∂xi). In the case of ×A1, a special form of Q de-
rived in Section 5 allows to interpret this strain transformation as scaling of
the displacements ui and the coordinates xi. This has already been observed
by Lodge [17] and used for scaling of boundary value problems. Contrarily
to the current approach, Lodge started by scaling of displacements u and
coordinates x, which imposes an unnecessary constraint on the scaling of
strains ε. For example, the anisotropy ×A2 cannot be squeezed into the
class of anisotropic elastic solids discussed in [17], see Section 6.

A different cross-anisotropic scaling was proposed by Osinov and Wu [25].
They applied a diagonal fourth rank tensor P to the resulting hypoplastic
stress rate σ̇ as follows

σ̇ = P : (E : ε̇+ N‖ε̇‖) . (21)

Our tensor Q could be applied to σ, i.e. to the argument in E(σ) in (21).
The thermodynamic aspects of P : E were ignored in [25].

4 Cross-anisotropic constant stiffness

It is well known that a constant (stress-independent) cross-anisotropic elastic
stiffness (22) requires five material constants, Ev, Eh, νh, νvh and Gv. The
vertical coordinate is xv (=direction of sedimentation) and the horizontal
coordinate is xh, Fig. 4. These material constants will be separated into two

11or a priori to the strain or stress tensor
12before it is substituted into a strain potential of interest
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x
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2

Figure 4: Axes for cross-anisotropy and the definition of the indexed Poisson
number νij

elastic parameters and three purely anisotropic ones. This pure anisotropy
is denoted as ×A3. For x3 = xv, i.e. for the sedimentation direction m =
{0, 0, 1}, equation σ̇ij = E×A3

ijkl ε̇kl has the matrix form



σ̇11
σ̇22
σ̇33
σ̇12
σ̇21
σ̇13
σ̇31
σ̇23
σ̇32


=



Ehκhh Ehκhv Ehκvh
Ehκhv Ehκhh Ehκvh
Ehκvh Ehκvh κEv(1− ν2h)

Gh Gh
Gh Gh

Gv Gv
Gv Gv

Gv Gv
Gv Gv


·



ε̇11
ε̇22
ε̇33
ε̇12
ε̇21
ε̇13
ε̇31
ε̇23
ε̇32


(22)

wherein
κhh = (1− νhvνvh)κ,
κhv = (νh + νhvνvh)κ,
κvh = (νvh + νhνvh)κ and
κ = 1/ (1− ν2

h − 2νhvνvh − 2νhνhvνvh) with νh = νhh.
The elastic Young moduli along xh and xv are Eh and Ev, respectively. Shear
modulus in horizontal plane is Gh = Eh/(2(1 + νh)) and from symmetry
follows

νvh/Ev = νhv/Eh. (23)

Stability of the material behaviour requires elastic stiffness matrix to
be positive-definite. This implies the following conditions on the material
constants

Ei, Gi, κ > 0 and (νij)
2 < Ei/Ej with i, j = v, h. (24)

The pure anisotropy tensor Q corresponding to ×A3 is discussed in Section
7 after the presentation of ×A1 and ×A2 in Sections 5 and 6.

12
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5 Anisotropy tensor for ×A1

A three-constant elastic cross-anisotropic stiffness has been proposed by Gra-
ham and Houlsby [10] using the anisotropy parameter α in the following
relations

α =
Gh

Gv

=

√
Eh
Ev

=
νh
νvh

by (23)
=

νhv
νh
. (25)

The single parameter α relates the material constants in the horizontal, th,
and in the vertical (parallel to sedimentation), tv, direction. The represen-
tation of stiffness for m = {0, 0, 1} with x3 = xv is analogous to (22). In this
×A1 case, constant elastic stiffness matrix, E×A1

ijkl = QabijE
iso
abcdQcdkl, has the

form

[
E×A1

]
= E



α2(ν−1)
A

−α2ν
A

−αν
A

−α2ν
A

α2(ν−1)
A

−αν
A

−αν
A

−αν
A

ν−1
A

α2

B
α2

B
α2

B
α2

B α
B

α
Bα

B
α
B α

B
α
Bα

B
α
B


, (26)

wherein A = 2ν2 +ν−1 and B = 2(ν+1). The total number of independent
material constants is reduced from five to three: E = Ev, ν = νh and α. Two
constants describe the isotropic elasticity and just one pertains to the pure
anisotropy, and hence the notation ×A1.

Separation of the material constants is essential. Conversion of the isotropic
stiffness Eiso into ×A1 has been only mentioned in [10] without giving an ex-
plicit form. Anisotropy tensor Q has been recently derived in [21], viz.

E×A1 = Q : Eiso : Q with Qijkl = µikµjl and µij =
√
αδij + (1−

√
α)mimj.(27)

Tensor Q for ×A1 depends on m and α only. In the special case of α = 1, the
anisotropy tensor is reduced to identity tensor δikδjl. Due to the symmetry
µij = µji, the major symmetry

Qijkl = µikµjl = µkiµlj = Qklij or QT = Q (28)

13
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holds. Note that µij transforms εkl into ε̄ij analogously as the directional
cosines αij do, i.e. ε̄ij = µikµilεkl, see Section 3. Hence, µij could be used to
scale the displacements ui or the coordinate axes xi.

The stability conditions (24) can be simplified for (25) as

α,E > 0 and − 1 < ν < 0.5. (29)

Even the simplest version ×A1 is reported to work well for geomaterials
[9, 10, 19].

6 Anisotropy tensor for ×A2

It is argued [8,19] that ×A1 is overly restrictive. Therefore, an ×A2 with two
anisotropy constants, α and β, is proposed. These constants provide more
flexibility for modelling of pure anisotropy. For β = 1, the ×A1 is recovered
and for α = β = 1, the tensor Qijkl is reduced to the identity. The new
parameter β is added to (25) as an exponent,

α =
Gh

Gv

=

(
Eh
Ev

)β/2
=

(
νh
νvh

)β
by (23)

=

(
νhv
νh

)β
. (30)

Two isotropic elastic parameters, E = Ev and ν = νh, are supplemented
by two anisotropy constants, α and β. For such ×A2, an anisotropy tensor
Qijkl must be found. If applied to constant isotropic elasticity, the resulting
stiffness E×A2

ijkl = QabijE
iso
abcdQcdkl should be

[
E×A2

]
= E



Ω2(ν−1)
A

−Ω2ν
A

−Ων
A

−Ω2ν
A

Ω2(ν−1)
A

−Ων
A

−Ων
A

−Ων
A

ν−1
A

Ω2

B
Ω2

B
Ω2

B
Ω2

B
θ
B

θ
B

θ
B

θ
B

θ
B

θ
B

θ
B

θ
B


(31)

with the same A,B as defined in (26) and Ω = α1/β, θ = α2β−1.
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By trial and error, the following anisotropy tensor has been found

Qijkl = µikµjl + cIijkl with µik = aδik + bmimk (32)

and a, b, c are functions of the constants α and β, namely corrected 2.01.2022

a = −
√
α

2
β

((√
α− 1

)2
+ 2α

1
β
− 1

2 + (α− 3)α
1
β

)
/d,

b = −α−
1
β a
(
α +
√
α− α

1
β

+ 1
2 + α

1
β

+1 − 2α
1
β

)
/(α− 1),

c = α
1
β
− 1

2

(
α− α

1
β

)(√
α + α

1
β

+ 1
2 + 2α

1
β

)
/d with (33)

d = α + (α− 4)α
2
β + 2α

1
β

+1 . (34)

The major symmetry Qijkl = Qklij is preserved due to symmetry µik = µki
given in (32). For m = {0, 0, 1}, tensor Qijkl can be represented as a diagonal
matrix and easily13 inverted to Q−1

ijkl. Otherwise, the analytical inversion
requires diagonalization14. The new exponent β does not affect the stability
condition (29). Assuming β = 1 in (30), the ×A1 given in (25) is recovered.

The improved flexibility of ×A2 goes at the expense of more complex
calibration. One possibility is to assume the value of β from the literature,
see Section 9.

The class of anisotropic elastic solids proposed by Lodge [17] was based
on individual scaling of displacements and coordinates. This led to ε̄ij =
airbjsεrs. Our relation ε̄ij = Qijrsεrs with Qijrs from (32) cannot be brought
to the same form. This fact can be demonstrated using the transposition
Uikjl = Qijkl. There are two non-zero eigenvalues of U, which precludes U
from being a dyad.

7 No pure anisotropy tensor for ×A3

Boehler and Sawczuk [3] formulated the following general representation of
isotropic tensorial function of two arguments

F(ε,M) = f01 + f1M + f2ε+ f3(ε ·M + M · ε) + f4ε
2 + f5(ε2 ·M + M · ε2)(35)

13by replacing α with 1/α
14The diagonalization can be performed using the Hausholder reflection matrix, Hij =

δij − 2hihj with h = (e3 −m)→. In the diagonal form, the anisotropy tensor, Qdiag
abcd =

QijklHaiHbjHckHdl, can be easily inverted and then reflected back to the initial coordinate
system.
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for M = m m being the dyad of sedimentation. In such case, M = M ·M
and tr M = 1 is the only non-zero eigenvalue. The scalars fi in (35) are
functions of the following invariants

tr (ε), tr (ε2), tr (ε3), tr (M · ε), tr (M · ε2). (36)

We need ε̄ = F(ε,M) to be linear with respect to ε because Q = ∂ε̄/∂ε
should be independent of ε. Hence, (35) can be reduced to the following
bilinear function

F(ε,M) = f01 + f1M + f2ε+ f3(ε ·M + M · ε), (37)

wherein only f0 and f1 may depend on invariants tr ε and tr (M · ε), i.e.

F(ε,M) = C1tr (ε)1 + C2tr (M · ε)1 + C3tr (ε)M + C4tr (M · ε)M
+2C5ε+ 2C6(ε ·M + M · ε) (38)

with six material constants Ci. The derivative of the stress rate function σ̇ =
F(ε̇,M) in the representation (38) leads to the linear stiffness E = ∂σ̇/∂ε̇,
namely

Eijkl = C1δijδkl + C2δijMkl + C3Mijδkl + C4MijMkl + C5(δikδjl + δilδjk) +

C6(Mikδjl +Milδjk + δikMjl + δilMjk), (39)

wherein C2 = C3 follows from the symmetry Eijkl = Eklij.
In our case, function ε̄ = F(ε,M) in the representation (38) is differ-

entiated to Q = ∂ε̄/∂ε keeping C2 6= C3, i.e. the tensor Q has the matrix
form

[Q] =



C1 + 2C5 C1 C1 + C2
C1 C1 + 2C5 C1 + C2

C1 + C3 C1 + C3 C7
C5 C5
C5 C5

C8 C8
C8 C8

C8 C8
C8 C8


, (40)

wherein C7 = C1 +C2 +C3 +C4 + 2C5 + 4C6 and C8 = C5 +C6. Of course,
(40) holds for m = {0, 0, 1} only. With (40) in hand, one may attempt to
find the constants Ci, for which the postulated separation

E×A3 = QT : Eiso : Q (41)
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of elasticity and pure anisotropy is valid. Although the matrices E×A3 and
Eiso are congruent, it can be shown that the separation of elastic constants,
E = Ev, ν = νh, and purely anisotropic constants, α, β, γ, from

α =
Gh

Gv

=

(
Eh
Ev

)γ
=

(
νh
νvh

)β
by (23)

=

(
νhv
νh

) γβ
β−γ

with γ 6= β/2 (42)

is not possible using Q given in (40). In order to demonstrate this fact, it
is convenient to investigate the compliances, Ciso and C×A3, rather than the
stiffnesses, Eiso and E×A3. For the special case of E = 1, the constant isotropic
compliance matrix is

[Ciso] =



1 −ν −ν
−ν 1 −ν
−ν −ν 1

1+ν
2

1+ν
2

1+ν
2

1+ν
2

1+ν
2

1+ν
2

1+ν
2

1+ν
2

1+ν
2

1+ν
2

1+ν
2

1+ν
2


(43)

and the cross-anisotropic elastic compliance for m = {0, 0, 1} is [C×A3] =

α
−1
γ



1 −ν −νω
−ν 1 −νω
−νω −νω α

1
γ

ν+1
2

ν+1
2

ν+1
2

ν+1
2

1
2α(ν + 1) 1

2α(ν + 1)
1
2α(ν + 1) 1

2α(ν + 1)
1
2α(ν + 1) 1

2α(ν + 1)
1
2α(ν + 1) 1

2α(ν + 1)


, (44)

wherein ω = α−1/β+1/γ. The matrices, (43) and (44), should be coupled
analogously to (41). Such coupling is possible, if a set of components of the
inverse anisotropy matrix [Q−1] can be found that satisfies

[C×A3] = [Q−1]T · [Ciso] · [Q−1]. (45)

The inverse matrix [Q−1] has identical formal representation (40) as [Q]. The
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uniqueness of the solution is not necessary. The following guess

[Q−1] = α
−1
2γ



1
1

ω
1
2

1
2

1
2

1
2 √

α
2

√
α

2√
α

2

√
α

2 √
α

2

√
α

2√
α

2

√
α

2


(46)

nearly satisfies (45). Using [Q−1] given in (46), the product [Q−1]T ·[Ciso]·[Q−1]
(45) is almost identical as [C×A3] given in (44). Only one component of
[Q−1]T · [Ciso] · [Q−1] differs from the respective component of [C×A3]. These
components may be set equal, ω2 = α1/γ, which leads to γ = β/2 but this
corresponds to the constraint imposed on the cross-anisotropy by ×A2, as
described in Section 6.

The formal structure of [Q−1] given in (40) with only a few independent Ci
poses a strong limitation on the congruence relation. The congruence requires
[Q−1] to be a nonsingular matrix only. However, identical zero blocks in [Q−1]
from (40) and in [Ciso] provide a major advantage for the determination of
Ci, namely, the search for the 9 × 9 coupling matrix [Q−1] can be split into
two independent and smaller tasks:

1) coupling of the upper left 3× 3 blocks

2) coupling of the lower right 6× 6 blocks.

The solution of the second task can be taken as the lower right 6 × 6 block
of [Q−1] from (46). Unfortunately, the first task is less trivial. The upper
left 3 × 3 block of [Ciso] from (43) should be coupled with the upper left
3× 3 block of [C×A3] from (44) using just the upper left 3× 3 block of [Q−1]
independently of the remaining components. Obeying the structure of [Q−1]
from (40), the first task takes the form[

1 −ν −νω
−ν 1 −νω
−νω −νω α

1
γ

]
=

[
a c d
c a d
e e b

]
·
[

1 −ν −ν
−ν 1 −ν
−ν −ν 1

]
·
[ a c e
c a e
d d b

]
, (47)

from which five independent unknown components, a, b, c, d and e, should
be found. It is a system of nonlinear equations. After removing duplicates,
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only four equations remain. For the true separation of elasticity and pure
anisotropy, the unknowns a, b, c, d and e cannot depend on ν. Hence, one
may compare independently free coefficients and coefficients at ν in each of
four equations. This generates the following system of 8 equations with 5
independent unknowns

1 +0ν
0 −1ν
0 −ων
α

1
γ +0ν

 =


a2 + c2 + d2 −2 [ac+ ad+ cd] ν
d2 + 2ac − [a2 + 2ad+ c2 + 2cd] ν

bd+ ae+ ce − [ab+ bc+ ae+ ce+ 2de] ν
b2 + 2e2 − [4be+ 2e2] ν

 . (48)

Using the powerful command Reduce[] from Mathematica, one can alge-
braically reduce the system. This reduction leads to the constraint, ω2 =
α1/γ, imposed on α, β and γ, identical as in ×A2 described in Section 6.
Hence, the construction of the inverse anisotropy tensor Q−1 for ×A3 with-
out constraints, i.e. preserving all pure anisotropy parameters, α, β and γ, is
not possible.

If the elastic constant ν was allowed15 to enter Q, then E×A3 given in (22)
could be decomposed√

E×A3/Ev : (EvI) :
√
E×A3/Ev = E×A3 (49)

and Q =
√

E×A3/Ev could be interpreted16. Tensor EvI describes the isotropic
elastic stiffness for the special case with ν = 0 and E = Ev.

8 Calibration of pure cross-anisotropy

Two methods of calibration of the ×A constants will be presented: static
triaxial tests with small stress cycles applied in different directions and dy-
namic tests with different wave types propagated in different directions. In
both cases, the average stress should be isotropic. Otherwise, the ×A must
be calibrated jointly with the σA, which is much more difficult.

A combined partly dynamic and partly static, cyclic calibration should
be avoided because the anisotropy of the small-strain stiffness may change
with the size of the amplitude. Strain amplitudes due to wave propagation
are usually much smaller than the ones from static cycles.

15no true separation of elasticity and pure anisotropy anymore
16The root of a symmetric matrix A can be found from spectral decomposition,

√
A =

GT ·
√
D · G, where D is the diagonal matrix with eigenvalues of A and G contains the

corresponding orthonormalized eigenvectors in rows.
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8.1 Static calibration of ×A1

In this section, two methods to determine α,Ev and νh for the ×A1 are
presented. The first one is based on two saturated, undrained triaxial
tests and the second one needs two drained triaxial tests with measurement
of the volume change. In isotropic elasticity, the volumetric and deviatoric
behaviour can be described separately. Isochoric (at constant volume ≈
undrained [22]) stress paths are perpendicular to the hydrostatic axis. In
anisotropic elasticity, the inclination

η = ṗ/q̇ = pampl/qampl 6= 0 (50)

may be measured, see Fig. 5. The inclination η is different for the v-sample

p
q x

x
x1

2

3

m
mη=p/q

h-sample v-sample

1

Figure 5: Samples cut parallel (v-sample) and perpendicular (h-sample) to
the direction of sedimentation m: Inclination of the stress path η in triaxial
undrained loading is shown.

cut parallel and for the h-sample cut perpendicular to the direction of sedi-
mentation from the same material. This can be illustrated with the results
from cyclic stress tests on kaolin [29], see Fig. 6. The inclinations are inter-
related by

ηv/ηh = −2 (51)

and (51) holds for any ×A. Hence ηv and ηh provide equivalent information
for the calibration of α and ν, for which two conditions are required. In the
coordinate system from Fig. 5 the first condition can be formulated for the
v-sample

• ηv =
σ̇av + 2σ̇rv

3(σ̇av − σ̇rv)
with σ̇v = Ev : ε̇v and ε̇v = diag(−1

2
,−1

2
, 1) .(52)

Assuming Ev = 1, the right-hand side of (52)2 is a function of α and νh
only and ηv is known. The second condition is based on the observation
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 p [kPa]  p [kPa]

v-sample h-sample

0

50

-50

10050 200150

 q [kPa] q [kPa]

ηh

ηv

1

1

Figure 6: Undrained triaxial tests on kaolin samples cut parallel (v-sample)
and perpendicular (h-sample) to the direction of sedimentation after [29]

that identical stress amplitudes qampl cause different strain amplitudes in the
v- and h-sample. The ratio r = εampl

av /εampl
ah 6= 1 can be measured in the

undrained test. Again, in the coordinate system from Fig. 5, the second
condition can be expressed by three equations

• tr ε̇v = 0 tr ε̇h = 0 ε̇av/ε̇ah = r, (53)

wherein ε̇v and ε̇h are strain rates in v-sample and h-sample caused by the
same stress rate q̇v = q̇h = σ̇tot

a − σ̇tot
r = 1. In the conventional undrained

triaxial tests with σ̇tot
r = 0, one may express these strain rates as

ε̇v = Cv : σ̇v and ε̇h = Ch : σ̇h, (54)

wherein the effective stress rates

σ̇v = diag(−u̇v,−u̇v, 1− u̇v) and σ̇h = diag(−u̇h,−u̇h, 1− u̇h) (55)

and the rates of pore pressures u̇v 6= u̇h may be different in v- and h-samples
(in spite of the same q̇). Using the • conditions, one may express α and νh
by analytical formulas, see Appendix A.

With α and νh in hand, one may determine the module Ev = s σ̇tot
av /ε̇av.

The rates σ̇tot
av and ε̇av should be measured from the undrained v-sample. The

scaling factor s(νh, α) can be determined substituting into σ̇v = Ev : ε̇v the
following relations

ε̇v = ε̇av diag(−1
2
,−1

2
, 1) and σ̇v = diag(−u̇v,−u̇v, σ̇avtot − u̇v) . (56)

The system σ̇v = Ev : ε̇v can be solved for Ev after elimination of u̇v. The
complete solution is given in Appendix A.
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Alternatively, the ×A1 parameter along with the elastic constants can be
determined from the conventional drained triaxial tests (at σ̇r = 0). From
a compresssion of a v-sample and a h-sample, one obtains Ev = σ̇av/ε̇av
and Eh = σ̇ah/ε̇ah, respectively. The measurement of volumetric and axial
deformations leads to the following system

ε̇volh = ε̇ah(1− νh − νhv)
ε̇vol v = ε̇av(1− 2νvh)

νh = νvhα = νhv/α

(57)

which can be solved for α, νvh, νhv, νhh, see Appendix A.

8.2 Dynamic calibration of ×A2

In this section only the dynamic calibration of ×A2 is discussed. A static
calibration of β via Gv is possible but it needs a hollow-cylinder torsion test
on a v-sample.

Anisotropic elastic parameters can be determined from the measurements
of wave velocities (dynamic tests) in different direction of propagation n.
Using this direction, the acoustic tensor can be built

Γjk = niEijklnl, (58)

wherein E is the stiffness and n is unit vector. The eigenvalues of Γik are
related to the velocities of different waves propagating along n. A (phase) ve-
locity v can be determined from the following eigenvalue problem (Christoffel
equation for plane waves) [6](

Γjk − ρv2δjk
)
Ak = 0i, (59)

wherein ρ is the mass density. Three eigenvalues ρv2 may be obtained from
det (Γjk − ρv2δjk) = 0. They may correspond, in general, to three different
waves with different velocities, all propagating along n. The corresponding
eigenvectors A describe the polarizations of displacement amplitudes. In the
case of isotropic elasticity, it is one P-wave with A‖n and two S-waves with
A ⊥ n, Fig. 7. The velocities vS and vP are independent of n.

In a cross-anisotropic medium with E×A2, the velocities of propagation
and the polarization directions depend on the anisotropy parameters, α and
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n A
A S2

S2

P

Pvv
A S1

S1v

Figure 7: Direction of propagation n with two shear waves, vS1 and vS2,
and one pressure wave, vP , for isotropic elasticity

β, and on the angle between n and m. The explicit expressions for Γik in the
case of any n and m = {0, 0, 1} are given in Appendix B. We examine two
directions of propagation, n‖m (index v) and n ⊥ m (index h) with m =
{0, 0, 1}, Fig. 8. For such n, the polarization A can be either perpendicular

x

x

x

1

2

3

vSvh
vShv vShh

vSvh

n

n

m

Figure 8: Anisotropy due to sedimentation along the x3 axis: Polarization
of different S-waves is shown.

or parallel to n. The respective eigenvalues are denoted as ρv2
Sij and ρv2

Pij,
wherein i is the direction of propagation and j is the direction of polarization,
both taking the values h or v. The velocities for ×A2 can be easily found as
the eigenvalues of tensors given in (72) in Appendix B

ρv2
Shh =

EΩ2

B
, ρv2

Shv = ρv2
Svh =

Eθ

B
,

ρv2
Phh =

EΩ2(ν − 1)

A
, ρv2

Pvv =
E(ν − 1)

A
(60)

with A = 2ν2 + ν − 1, B = 2(ν + 1), Ω = α1/β and θ = α2β−1.
Both parameters, α and β, can be calibrated from vertical and horizontal

waves17 alone, using (60), see Fig. 9.

17This can be done in triaxial apparatus using bender elements installed on the end-
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(b)(a)

x

m m
x

x
1

3

2

vSvh vPvv

vShv

vShh

x

x

x
1

3

2

vPhh

Figure 9: Set-up of bender elements for the determination of ×A2 parame-
ters: a) waves with vertical propagation b) waves with horizontal propagation

Four independent wave velocities, vPvv, vPhh, vShh and vSvh = vShv, can
be measured and (60) can be solved for two pure anisotropic parameters

α =
v2
Shh

v2
Svh

, β =
2 ln (v2

Shh/v
2
Svh)

ln (v2
Phh/v

2
Pvv)

(61)

and two elastic parameters, E = Ev and ν = νh,

Ev = ρv2
Pvv

(
1 +

4v2
Shh

v2
Phh

+
v2
Phh

v2
Shh − v2

Phh

)
, νh = 1 +

v2
Phh

2(v2
Shh − v2

Phh)
. (62)

Determination of all five parameters for the stiffness (22) requires addi-
tionally a wave velocity in an inclined direction n, say for n·m = 1/

√
2 [8,27].

9 Tests of ×A
Recently, Maš́ın and Rott [19] have reviewed numerous experiments on sed-
imentary clays. They concluded that, using the nomenclature of (42), most
clays need γ > 1/2, which can be covered by ×A2 or ×A3 but not by ×A1.

It is claimed [19] that the average value should be γ ≈ 4/5. This obser-
vation was based on tests which could be blurred by the σA. However, for
practical purposes, such results are sufficient because ×A has been shown
to be dominant over σA in highly overconsolidated clays [19] as well as in

plates and laterally by cutting the membrane. Similar tests in-situ can use cross-hole or
down-hole measurements but they can be blurred by the σA due to the K0-stress state.
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kaolin [9]. Unfortunately, only a few tests from [19] were carried out un-
der hydrostatic stress. In consequence, not much usable data can be found.
However, some results from London Clay and Gault Clay referred to in [30]
confirmed the discrepancies from γ = 1/2 and speak for ×A2 rather than for
×A1. The exponent γ = 1/2 was estimated for Bangkok Clay under isotropic
stress [26]. Measured values of γ are presented for different αs in Fig. 10.

α    1.4 1.6 1.81.21.1
0

1.0

0.5γ

xA2

LC
GC
BC

HS
KS1
KS2

Figure 10: Parameters γ and α for London Clay (LC) [30], Gault Clay
(GC) [30], Bangkok Clay (BC), [26] Hostun Sand (HS) [27] and Kenya Sand
(KS1, KS2) [8]

Some dynamic test data for Kenya Sand [8] and Hostun Sand [27] at dif-
ferent isotropic stress levels, p, revealed an influence of p on the parameter β.
This strange effect can be attributed to errors in measurements or to partial
destruction of ×A by isotropic loading. Tests with temporary overloading
(up to a high p and back) could help to confirm such a degradation. The
dynamic tests prove γ ≥ 1/2 for sands.

Parameter β and the ratio β/γ are plotted as functions of α in Figs. 11
and 12, respectively. The ratio β/γ = 2 was assumed in ×A2 because of
the mathematical convenience. Due to the scatter of experimental data, one
can neither confirm nor reject this assumption.

10 Graphic representation of anisotropy

For constitutive rate-type models in the form of an isotropic function σ̇(σ0, ε̇),
the well known concept [11] of response envelopes can be used for the graphic
representation of stiffness. The 2D plots of response envelopes to strain
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xA1

α    1.4 1.6 1.81.21.1

0
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Figure 11: Parameter β does not correlate with α.

α    1.4 1.6 1.81.21.1

0

-2.0

-4.0

2.0

4.0

β/
γ

xA2

LC
GC
BC

HS
KS1
KS2

Figure 12: Ratio β/γ does not correlate with α.
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disturbances require that the initial stress, σ0, and all strain rates, ε̇, are
co-axisymmetric, i.e. axisymmetric with respect to the same symmetry axis.

In the case of ×A, the sedimentation dyad, M = m m, appears as an
additional argument in σ̇(σ0, ε̇,M). This dyad needs not be co-axisymmetric
with σ0 and ε̇. In such case, the usual 2D response envelopes cannot be
plotted, if ×A spoils the co-axisymmetry of σ0 and σ̇.

For a general graphic representation of stiffness with any ×A, the original
concept [11] can be extended. In this extension, the stress increments18, ∆σ,
need not be co-axisymmetric with σ0.

10.1 2D response envelopes

A response envelope is a polar representation of a tangential stiffness at
a given stress σ0. Starting from a diagonal and axisymmetric initial stress,
σ0 = diag(σ0

1, σ
0
2, σ

0
3) with σ0

2 = σ0
3, different axisymmetric strain increments

of constant length,

∆ε = r diag

(
sinφ,

1√
2

cosφ,
1√
2

cosφ

)
(63)

with r = const ≈ 0.0001 and 0 ≤ φ < 2π,

are applied, Fig. 13a. The envelope of the corresponding stress increments,
∆σ = ∆σ(φ), is termed the response envelope. Linear elasticity maps a
circle (63) in the strain space to an ellipse in the stress space, Fig. 13c.
Increments ∆σ are co-axisymmetric with σ0, if σ0 is co-axisymmetric with
∆ε and ×A is absent or its m is parallel to the symmetry axis. In such cases,
the end-stresses, σ0 + ∆σ, can be plotted. These plots are quite common in
the geotechnical literature. Usually, they are shown on the Rendulić plane,√

2σr − σa, or on the plane of isometric Roscoe invariants, P −Q.
Generally, σ0 + ∆σ cannot be plotted because the ×A may spoil the

co-axisymmetry between ∆σ and σ0. However, all ∆σ are coplanar, if all
∆ε are and because the constitutive relation, σ̇(σ0, ε̇,M) = E(σ0,M) : ε̇, is
incrementally linear. Let the following orthogonal strain increments:

• isotropic ∆εP = r diag(1, 1, 1)/
√

3

• deviatoric axisymmetric ∆εQ = r diag(2,−1,−1)/
√

6

18obtained from strain increments ∆ε of equal length and co-axisymmetric with the
initial stress σ0
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aε

r √2ε 

Δεε(r,φ)
PΔεε 

QΔεε 

(a) (b)

(c) (d)

aσ

r √2σ 

Δσσ(r,φ)

PΔσσ 

0σ

QΔσσ  

aε

rε
rεψ

PΔεεQ
Δεε

RΔεε

φ
φ

QΔσσ

1σ

2σ

3σ

Δσσ(φ,ψ)

PΔσσ

0σ

RΔσσ

Δεε(φ,ψ)

E E

Figure 13: Isotropic elastic relation σ̇(σ0, ε̇):
a) axisymmetric σ0 and co-axisymmetric strain increments ∆ε
b) diagonal σ0 and coaxial ∆ε
c) stress response ∆σ for (a)
d) stress response ∆σ for (b)

along φ = φP = arcsin
(
1/
√

3
)

and φ = φQ = arccos
(
1/
√

3
)

produce stress
increments, ∆σP and ∆σQ, respectively. These two increments span a plane
in 6D stress space. All other stress responses lie in this plane due to the
linearity of E. In other words, any response is a linear combination of ∆σP
and ∆σQ. After orthonormalization of ∆σP and ∆σQ, they constitute the
orthogonal basis {e?P , e?Q} on the response plane and we may introduce the
coordinates, ∆P ? and ∆Q?, on this plane. Any stress response can be rep-
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resented as

∆σ(φ) = ∆P ? e?P + ∆Q? e?Q, (64)

for example ∆σ(φP ) = ∆P ? e?P .

10.2 An example of 2D response

Experiments on kaolin [9] show that the effects from ×A dominate over the
ones from σA, Fig. 3. It turns out that, for kaolin, the ×A1 with a single
anisotropy parameter α simulates the experiments sufficiently well and β is
not necessary. In sedimentary clays, however, ×A1 can be inaccurate, see
Section 9. As an example, 2D response envelopes from the superposition of
σA from (14) and ×A2 are plotted in the ∆P ? −∆Q? plane in Fig. 14.

σσ  = diag(100,100,100) kPa0

σ  = diag(60,30,25) kPa00σ  = diag(40,80,80) kPa

α = 1.7
β = 1.2 6

4

2

4

-2

-4

-4

-2

-6

-6 -4 -2

-2 -1 2

3

-1

-3

-2

1

2

4-2-43 4-3

4 6

ΔεQ

ΔεP

1·10 -4

-1·10-4

-1·10-4

-1·10-4

ΔP (kPa)

ΔP (kPa)ΔP (kPa)

ΔQ (kPa)

ΔQ (kPa)

ΔQ (kPa)

(a) (b)

(c) (d)

-0.658 0.072 0.108
0.072 -0.550 0.217
0.108 0.217 -0.369

Pe   =

-0.737 0.016 0.024
0.016 0.508 -0.204
0.024 -0.204 0.338Qe   =

-0.864 0.070 0.102
0.070 -0.371 0.161
0.102 0.161 -0.182

-0.484 -0.018 -0.027
-0.018 0.650 -0.288
-0.027 -0.288 0.419

Pe   =

Qe   =

-0.459 0.072 0.109
0.072 -0.656 0.251
0.109 0.251 -0.447

-0.871 0.038 0.056
0.038 0.365 -0.120
0.056 -0.120 0.265

Pe   =

Qe   =

Pe

Pe

Pe

  
QeQe

Qe

  

Figure 14: Cross-anisotropic elastic relation σ̇(σ0, ε̇,M) with σA from (14)
and with ×A2: 2D isometric stress plots (b,c,d) were calculated at different
diagonal initial stresses σ0 and for the same sedimentation m = {1, 2, 3}→.
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10.3 3D response envelopes

To plot 3D response envelopes, solely the coaxiality of σ0 and ε̇ in σ̇(σ0, ε̇) is
required. If the ×A is present, all arguments in σ̇(σ0, ε̇,M) must be coaxial.

Starting from a given initial stress, σ0 = diag(σ0
1, σ

0
2, σ

0
3), diagonal, ax-

isymmetric strain increments of constant length,

∆ε(φ, ψ) = r diag (sinφ, cosφ cosψ, cosφ sinψ) (65)

with r = const ≈ 0.0001 and 0 ≤ φ, ψ < 2π,

are applied, Fig. 13b. They can be encompassed by a sphere in the 3D
space of principal strains. In the case of a linear elastic constitutive relation,
σ̇(σ0, ε̇) = E(σ0) : ε̇, the end-stresses, σ0 + ∆σ, form an ellipsoidal response
envelope in the 3D space of principal stresses, Fig. 13d. The respective
stress increments, ∆σ = ∆σ(φ, ψ), are coaxial with σ0, if σ0 and ∆ε are.
Generally, the coaxiality of σ0 and ∆σ may be violated by the presence of
the ×A, when M is not coaxial with σ0.

Similarly as in the 2D case, we define three orthogonal strain increments:

• isotropic ∆εP = r diag(1, 1, 1)/
√

3

• deviatoric axisymmetric ∆εQ = r diag(2,−1,−1)/
√

6

• deviatoric anti-planar ∆εR = r diag(0, 1,−1)/
√

2.

They correspond to the following angles:

• φ = φP = arcsin
(
1/
√

3
)
, ψ = ψP = π/4

• φ = φQ = arccos
(
1/
√

3
)
, ψ = ψQ = π/4

• φ = φR = 0, ψ = ψR = 7π/4.

The respective stress increments, ∆σP ,∆σQ and ∆σR, are not necessarily
orthogonal but they span a 3D subspace of the 6D stress space. Analogously
as in the 2D case, these stress increments can be orthonormalized to define
the basis {e?P , e?Q, e?R} and the coordinate system ∆P ? −∆Q? −∆R? of this
subspace. Due to the incremental linearity, all stress increments can be
expressed as linear combinations of the basis tensors,

∆σ(ψ, φ) = ∆P ? e?P + ∆Q? e?Q + ∆R? e?R, (66)

for example ∆σ(φP , ψP ) = ∆P ? e?P with φP = arcsin(1/
√

3) and ψP = π/4.
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10.4 An example of 3D response

The 3D stress response envelopes were obtained with the identical constitu-
tive model and the same material constants as for the 2D ones from Fig. 14.
The 3D strain increments ∆ε were applied to plot ∆σ in ∆P ?−∆Q?−∆R?

system, Fig. 15.

Figure 15: Cross-anisotropic elastic relation σ̇(σ0, ε̇,M) with σA from (14)
and ×A2: 3D isometric stress plots (b,c,d) were calculated at different diag-
onal initial stresses σ0 and for the same sedimentation m = {1, 2, 3}→.

10.5 Polar diagrams of wave velocity

Using the acoustic tensor Γ from (58), the velocities v of different waves can
be plotted as functions of the direction of propagation n. The directional
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dependence of wave velocities can be then visualized in the form of polar
diagrams for each wave type.

An example of polar diagrams obtained with the superposition of ×A2

and σA from (13) is shown in Fig. 16.

Figure 16: Polar diagrams of three wave velocities for an abstract material
with ×A2

11 Scaling of yield functions

The anisotropy tensor Q from ×A1 and ×A2 may have a variety of appli-
cations beyond elasticity. A yield stress criterion describes the boundary of
all accessible stress states, F (σ) ≤ 0, where F (σ) is an isotropic function of
stress. For example, Matsuoka and Nakai [18] proposed the following yield
function

F (σ) ≡ trσtr
(
σ−1

)
− 8 tan2 ϕ− 9, (67)

wherein ϕ is the friction angle.

The ×A can be imposed to stress using the anisotropy tensor from (32)
and substituted into F (σ), i.e. F×A2(σab) = F (Qabcdσcd). As an example,
F (σ) from (67) with the×A2 was plotted in the deviatoric plane, Fig. 17. The
transformed yield function F×A2(σ) requires calibration of the corresponding
friction angle ϕ×A2.

In the literature, one may find some attempts to make a yield surface
F (σ) cross-anisotropic, e.g. [16]. In comparison, scaling with the anisotropy
tensor, Q, is an elegant and easy method.
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σ 1

σ 2 σ 3

mm = {1,0,0}
α = 1.2

(kPa)

(k
P

a)

β = 0.5

xA2f     = 27.75°
f = 30°

0

0

100

100-100
-100

xA2

Figure 17: Anisotropic (dashed) yield function obtained from isotropic
(solid) one using ×A2

12 Summary

Inherent cross-anisotropy and stress-induced anisotropy, can be easily su-
perposed within the elastic range, in particular dealing with geotechnical
(barotropic) elastic potentials. The pure anisotropy tensor, Q, depends on
the sedimentation direction, m, and some material constants. The simplified
versions, ×A1 and ×A2, of cross-anisotropy could be used to build such Q but
not the general form, ×A3. The proposed pure anisotropy does not violate
the Second Law, if superposed with hyperelasticity. The pure anisotropy can
be applied also to any isotropic potential function, for example to a yield
surface.

The proposed calibration procedure for Q can be based on static, cyclic
or dynamic tests. The popular concept of response envelopes [11] has been
extended to provide the graphic representation of polar stiffness at presence
of ×A. For this purpose, a new isometric representation system has been
proposed. The concept of pure anisotropy has been compared to some recent
approaches from the literature. Visualization of the superposed ×A2 and
σA conducted with the algebra program Mathematica has been given in
examples. All notebooks and packages involved in this paper are available
from the authors.
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13 Appendices

A Static calibration for ×A1

The parameters of ×A1 have been found from (52,53) for undrained triaxial
tests in the static calibration

α =
a+
√
a2 + 12r b

b
and νh =

2a

9ηv(r − 4) +
√
a2 + 12r b− 12

(68)

with abbreviations a = 3ηv(r−4)+4(r−1) and b = 2(3ηv−2)(r−4). Given
α and νh from (68), one may use (56) to obtain

Ev =
σ̇tot
av

ε̇av
s with s =

2(νh + 1)(1− 2νh)

2 + α2 − 4ανh − 2νh
. (69)

These parameters can also be found from the system (57) for static,
drained triaxial tests and it follows that

α =
1

2
(−1 + c1/c2) and νh =

1

4
(−1 + rv + c1c2) and Ev =

σ̇av
ε̇av

(70)

with abbreviations c1 =
√

1− rv, c2 =
√

9− 8rh − rv, rv = ε̇vol v/ε̇av and
rh = ε̇volh/ε̇ah.

B Acoustic tensor for ×A2

In the general case of n = {n1, n2, n3} with E×A2 after (31) and m = {0, 0, 1},
the acoustic tensor has the following form

Γ = E


Ω2[αn2

2A+n2
3A+αn2

1(ν−1)B]
αAB

Ω2n1n2(A−νB)
AB

Ωn1n3(ΩA−αB)
αAB

Ω2n1n2(A−νB)
AB

Ω2[αn2
1A+n2

3A+αn2
2(ν−1)B]

αAB
Ωn2n3(ΩA−αB)

αAB
Ωn1n3(ΩA−αB)

αAB
Ωn2n3(ΩA−αB)

αAB

n2
3(ν−1)

A
+

Ω2(n2
1+n2

2)
αB

 ,(71)

wherein E = Ev, ν = νh, A = 2ν2 + ν − 1, B = 2(ν + 1) and Ω = α1/β. For
horizontal and vertical waves, one obtains two special cases,

Γ
n⊥m
= E

 Ω2(ν−1)
A

0 0

0 Ω2

B
0

0 0 Ω2

αB

 and Γ
n‖m
= E

 Ω2

αB
0 0

0 Ω2

αB
0

0 0 ν−1
A

 , (72)
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and set of equations (60) can be determined from the eigenvalues of Γ.

Let us define three of polarization cosines Πi = n · ~Ai. In the case of
isotropic elasticity, Π = {1, 0, 0} means one P- and two S-waves. At presence
of ×A2, one can speak of only one S-wave19. Its polarization is perpendicular
to both n and m. Two other waves lie in the plane spanned by n and m.
All three wave velocities are different. For example, α = 1.8 and β = 1.2
in ×A2 with n = {1, 2, 3}→ yield Π = {0.94, 0, 0.33}, wherein the second
polarization corresponds to the S-wave. The other two polarizations depend
on α, β and on the angle between n and m.
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