Strahlungslose Übertragung von Elektronenanregungsenergie bei zweidimensionalen lumineszierenden Systemen*

C. Bojarski und J. Kuśba

Physikalisches Institut der Technischen Hochschule, Gdańsk, Polen

(Z. Naturforsch. 30 a, 594-600 [1975]; eingegangen am 30. Dezember 1974)

Non-radiative Electronic Excitation Energy Transfer in Two-dimensional Luminescent Systems

An expression for the photoluminescence (PhL) quantum yield of donors in two-dimensional systems as depending on the concentration ratio n_D'/n_A' of donors and acceptors has been obtained. In the particular case $n_D' \ll n_A'$ the expression reduces to the form given by other authors. The obtained formula can also be applied to the description of the concentrational quenching of PhL when dimers act as acceptors. The theory has been compared with the experimental results on fluorescence quenching of chlorophyll a by Cu-pheophytin a in monolayers of oleyl alcohol.

1. Einleitung

Der Einfluß der Konzentration auf die Eigenschaften der Photolumineszenz (PhL) in zweidimensionalen Systemen war Gegenstand einer Reihe von experimentellen und theoretischen Untersuchungen¹⁻⁸. Das Problem steht in engem Zusammenhang u.a. mit der Frage der Wanderung der Elektronenanregungsenergie in photosynthetisierenden Systemen^{3, 9, 10}. Wichtige Angaben über die Energiewanderung in solchen Systemen erhält man u. a., wenn man die Konzentrationslöschung der Photolumineszenz untersucht. Tweet, Bellamy und Gaines¹ haben für die PhL-Ouantenausbeute des Donors in Abhängigkeit von der Konzentration des Akzeptors durch Angleichen der dreidimensionalen Försterschen Theorie¹¹ an den zweidimensionalen Fall folgende Gleichung erhalten:

$$\frac{\eta}{\eta_0} = \int_0^\infty \exp\left[-(x+p\,x^{1/s})\right] dx\,, \qquad (1)$$

mit

$$p = \Gamma(\frac{2}{3}) Q_{\rm A}^2 = \Gamma(\frac{2}{3}) (R_{0\rm A}/R_{\rm A})^2; \qquad (2)$$

 R_{0A} ist der kritische Abstand für die strahlungslose Energieübertragung vom angeregten Molekül des Donors zum unangeregten Molekül des Akzeptors (D* \rightarrow A), $\Gamma(\$)$ ist eine Gamma-Funktion und η_0 die PhL-Ausbeute des Donors für $n_A' \rightarrow 0$, \overline{R}_A ist der Radius in der Beziehung $n_A' \pi \overline{R}_A^2 = 1$, worin n_A' die Zahl der Akzeptormoleküle pro Flächeneinheit ist. Die Gl. (1) gilt nur, wenn

$$n_{\rm D}' \ll n_{\rm A}' \,. \tag{3}$$

Dabei ist n_D' die Zahl der Donormoleküle pro Flächeneinheit. Jedoch ist es für manche lumineszierende biologische Systeme wichtig, den Fall^{1, 12, 13}

$$n_{\rm D}' \ge n_{\rm A}' \tag{4}$$

zu betrachten und auch die Assoziation aktiver Moleküle ^{1, 10, 14} zu berücksichtigen. In der Arbeit ¹⁵ ist die Theorie der PhL-Konzentrationslöschung in dreidimensionalen Lösungen entwickelt worden. Diese Theorie berücksichtigt die Assoziation und ist für Fälle von Bedeutung, in denen die Konzentration des Donors die Konzentration des Akzeptors übersteigt [vgl. Gleichung (4)].

Im folgenden soll die Frage der PhL-Löschung des Donors durch den Akzeptor in zweidimensionalen Systemen betrachtet werden, wobei ähnliche Voraussetzungen angenommen und analoge Verfahren angewendet werden wie in ¹⁵.

2. Theoretische Überlegungen

Das Fluoreszenzsystem enthalte zwei Arten von Molekülen D und A (Donor und Akzeptor der Anregungsenergie), die statistisch in einem zweidimensionalen unaktiven Medium mit endlicher Fläche S mit den Konzentrationen N_D , N_A verteilt sind. Das Absorptionsspektrum des Akzeptors und das Fluoreszenzspektrum des Donors sollen einander teilweise überdecken. Außerdem finde eine teilweise

Sonderdruckanforderungen an Dr. C. Bojarski, Institute of Physics, Gdańsk Technical University, Gdańsk/Polen.

^{*} Diese Arbeit wurde von der Polnischen Akademie der Wissenschaften unterstützt im Rahmen des Projektes 3.2.07.

Überdeckung der Absorptions- und Emissionsspektren des Donors statt. Diese Spektrenüberdeckung bedingt die unmittelbare Energieübertragung vom angeregten Molekül D* zum unangeregten Molekül D oder A. Der Desaktivierungsprozeß ist von der Verteilungskonfiguration der Moleküle D und A in der Umgebung von D* abhängig. Diese Konfiguration wird durch die Abstände aller Moleküle D und A vom gewählten Molekül D* bestimmt, das heißt durch Angaben der Abstände r_j und r_l .

$$x_j < r_j \leq x_j + dx_j, \quad j = 1, 2, \dots, N_D - 1,$$

 $y_l < r_l \leq y_l + dy_l, \quad l = 1, 2, \dots, N_A.$

Die durch $\{x_j \ dx_j\}$ sowie $\{y_l, dy_l\}$ charakterisierte Konfiguration wird mit den Indizes (r) und (s)gekennzeichnet. Sämtliche Lumineszenzzentren sind gemäß der Verteilungskonfiguration der Moleküle D und A in der Umgebung von D* in Gruppen [mit den Indizes (r) und (s)] zu unterteilen. Die Wahrscheinlichkeit dafür, daß das beliebig gewählte Molekül D zur Zentrengruppe (r)(s) gehört, beträgt:

$$P(D \in \{D_{(r)(s)}\}) \equiv P_{(r)(s)} = \prod_{j=1}^{N_{\rm D}-1} \frac{2\pi x_j \, \mathrm{d} x_j}{S} \prod_{l=1}^{N_{\rm A}} \frac{2\pi y_l \, \mathrm{d} y_l}{S}.$$
 (5)

. _

Außerdem sind alle angeregten Moleküle D* auf folgende Weise nach Anregungsordnungen einzuteilen: das Molekül D^(m) wird zu Molekülen der m-ten Ordnung gezählt, falls es die Anregungsenergie nach "m" strahlungslosen Übertragungen erhalten hat; D⁽⁰⁾ ist ein durch Lichtabsorption direkt angeregtes Molekül. Mit dem Formelzeichen D^(m)_{(r)(s)} sind angeregte Moleküle der m-ten Ordnung bezeichnet, für die sich das j-te Molekül vom Typ D im Abstand r_i und das l-te Molekül vom Typ A im Abstand r_i befinden. Die Moleküle D^(m)_{(r)(s)} können die Anregungsenergie durch PhL-Emission (mit der Häufigkeit $k_{\rm F}$), innere Auslöschung ($k_{\rm q}$) oder strahlungslose Energieübertragung zu einem Molekül vom Typ D $k_{\rm DD(r)(s)}$ oder vom Typ A ($k_{\rm DA(r)(s)}$) verlieren. Die Häufigkeiten $k_{DD(r)(s)}$ und $k_{DA(r)(s)}$ sind von der Verteilungskonfiguration der Moleküle D und A abhängig und können folgendermaßen dargestellt werden:

$$k_{\mathrm{DD}(r)(s)} = \sum_{j=1}^{N_{\mathrm{D}}-1} k_{\mathrm{DD}}(x_j), \quad k_{\mathrm{DA}(r)(s)} = \sum_{l=1}^{N_{\mathrm{A}}} k_{\mathrm{DA}}(y_l). \quad (6)$$

Darin gilt bei Dipol-Dipol-Wechselwirkung nach Förster¹⁶:

$$k_{\rm DD}(x_j) = (k_{\rm F} + k_{\rm q}) (R_{\rm 0D}/x_j)^6$$
 (7)

 R_{0D} ist der kritische Abstand für die strahlungslose Energieübertragung von D* nach D. Die Mittelwerte für die Wahrscheinlichkeiten der PhL-Emission durch $D_{(r)(s)}^{(m)}$ Moleküle bzw. der strahlungslosen Übertragung der Anregungsenergie zu den Molekülen D betragen entsprechend:

$$P_{\rm F} = \sum_{(r)(s)} \frac{k_{\rm F} P_{(r)(s)}}{k_{(r)(s)}}$$
(8)

und

$$P_{\rm DD} = \sum_{(r)(s)} \frac{k_{\rm DD(r)(s)}}{k_{(r)(s)}} P_{(r)(s)}$$
(9)

$$k_{(r)(s)} = k_{\rm F} + k_{\rm q} + k_{{\rm DD}(r)(s)} + k_{{\rm DA}(r)(s)}$$
. (10)

Die PhL-Quantenausbeute der Lösung kann als Summe der Ausbeuten $\eta^{(m)}$ der von Molekülen sämtlicher Ordnungen ausgestrahlten Photolumineszenz errechnet werden, das heißt

$$\eta = \sum_{m=0}^{\infty} \eta^{(m)} \,. \tag{11}$$

Wie schon früher bewiesen ¹⁵, ergibt sich:

$$\eta^{(m)} = P_{\rm F} P_{\rm DD}^m$$
, $m = 0, 1, 2, \dots$ (12)

Die Größen $P_{\rm F}$ und $P_{\rm DD}$ sind als Grenzwerte von $P_{\rm F}(S)$ und $P_{\rm DD}(S)$ für $S \rightarrow \infty$ und konstante Flächendichte $N_{\rm D}/S$ bzw. $N_{\rm A}/S$ zu finden. Somit erhält man für den Mittelwert der Wahrscheinlichkeit $P_{\rm F}$ unter Berücksichtigung von (5) bis (8) und (10):

$$_{F} = \lim_{S \to \infty} P_{F}(S) = \lim_{S \to \infty} \sum_{(r)(s)} \frac{k_{F}}{k_{(r)(s)}} P_{(r)(s)} = \lim_{S \to \infty} \int_{0}^{S} \dots \int_{0}^{S} \frac{k_{F}}{0} \frac{k_{F}}{1} \frac{dX_{1}}{S} \dots \frac{dX_{ND-1}}{S} \frac{dY_{1}}{S} \dots \frac{dY_{ND}}{S} \frac{dY_{ND}}{$$

$$X_{j} = \pi x_{j}^{2} \quad \text{für} \quad j = 1, 2 \dots N_{\rm D} - 1; \qquad Y_{l} = \pi y_{l}^{2} \quad \text{für} \quad l = 1, 2, \dots, N_{\rm A}$$
(14)

$$S = \pi R^2, \quad S_{0D} = \pi R_{0D}^2, \quad S_{0A} = \pi R_{0A}^2.$$
 (15)

iit

Die Auswertung von (13) (vgl. Anhang 1) ergibt

$$P_{\rm F} = \eta_0 \left[1 - F(g) \right] \tag{16}$$

mit

$$\eta_0 = k_{\rm F} / (k_{\rm F} + k_q) ,$$
 (17)

$$F(g) = g \int_{0}^{\infty} \exp\left[-(z^{3} + g z)\right] dz, \qquad (18)$$

$$=\Gamma\left(\frac{2}{3}\right)\left(n_{\rm D}'S_{0{\rm D}}+n_{\rm A}'S_{0{\rm A}}\right) =\Gamma\left(\frac{2}{3}\right)\left(Q_{\rm D}^2 + Q_{\rm A}^2\right) =\Gamma\left(\frac{2}{3}\right)\left[\left(\frac{R_{0{\rm D}}}{R_{\rm D}}\right)^2 + \left(\frac{R_{0{\rm A}}}{R_{\rm A}}\right)^2\right];\tag{19}$$

 $Q_{\rm D}$, $Q_{\rm A}$, $\overline{R}_{\rm D}$ und $\overline{R}_{\rm A}$ haben die gleiche Bedeutung wie im Ausdruck (2). Unter Berücksichtigung der Beziehungen (5), (6), (7), (9) und (10) erhält man

$$P_{\rm DD} = \lim_{S \to \infty} P_{\rm DD}(S) = \lim_{S \to \infty} \sum_{(r)(s)} \frac{k_{\rm DD}(r)(s)}{k_{(r)(s)}} P_{(r)(s)}$$
$$= \lim_{S \to \infty} \int_{0}^{S} \dots \int_{0}^{S} \frac{k_{\rm F} S_{0D}^3 \sum_{j=1}^{N_{\rm D}-1} X_j^{-3}}{k_{\rm F} + k_{\rm q} + (k_{\rm F} + k_{\rm q})} \frac{dX_1}{S} \dots \frac{dX_{N_{\rm D}-1}}{S} \frac{dY_1}{S} \dots \frac{dY_{N_{\rm A}}}{S}}{k_{\rm F} + k_{\rm q} + (k_{\rm F} + k_{\rm q})} (S_{0D}^3 \sum_{j=1}^{N_{\rm D}-1} X_j^{-3} + S_{0A}^3 \sum_{l=1}^{N_{\rm A}} Y_l^{-3})$$
(20)

Die Integration (vgl. Anhang 2) ergibt

g

$$P_{\rm DD} = \frac{g_{\rm D}}{g} F(g) \tag{21}$$

mit

0

$$g_{\rm D} = \Gamma(\frac{2}{3}) n_{\rm D}' S_{0\rm D} = \Gamma(\frac{2}{3}) Q_{\rm D}^2.$$
 (22)

g und F(g) sind durch Gl. (19) und (18) dargestellt. Berücksichtigt man die Konzentrationsabhängigkeiten der Größen $P_{\rm F}$ und $P_{\rm DD}$ in (16) und (21) sowie die Beziehungen (11) und (12), so gilt für die PhL-Quantenausbeute der Lösung:

$$\frac{\eta}{\eta_0} = \frac{1 - F(g)}{1 - \beta F(g)} \tag{23}$$

mit

Für

$$\beta = Q_{\rm D}^2 / (Q_{\rm D}^2 + Q_{\rm A}^2) \ . \tag{24}$$

$$Y = \frac{Q_{\rm D}^2}{Q_{\rm A}^2} = \frac{n_{\rm D}' R_{\rm 0D}^2}{n_{\rm A}' R_{\rm 0A}^2} \ll 1$$
(25)

die Ungleichheit (3) ist dann erfüllt], erfolgt $\rightarrow p$, [vgl. Ausdruck (19) und (2)], $\beta \rightarrow 0$, und ler Ausdruck (23) geht über in

$$\eta/\eta_0 = 1 - F(p)$$
, (26)

ler identisch ist mit dem Ausdruck (1).

3. Diskussion und Schlußbetrachtungen

Der Ausdruck (23) wurde unter Berücksichtigung ler mehrstufigen strahlungslosen Energieübertra-;ung von einem angeregten Molekül des Donors D* zu einem Molekül des Akzeptors A abgeleitet. Dieser Übergang vollzieht sich nach dem Schema:

$$D^* + D + \ldots + D + A \xrightarrow{k_{DD}} D + D^* + \ldots + D + A \ldots$$

$$\rightarrow D + D + \ldots + D^* + A \xrightarrow{k_{DA}} D + D + \ldots + D + A^*,$$
(27)

wo k_{DD} und k_{DA} durch Formel (6) dargestellte Häufigkeiten für den Übergang der Anregungsenergie sind.

Der Ausdruck (1) dagegen entspricht dem strahlungslosen Übergang der Anregungsenergie von D* nach A in einem Schritt.

Abbildung 1 zeigt die nach (23) berechnete relative PhL-Quantenausbeute des Donors als Funktion des Arguments $Q_A = R_{0A}/\overline{R}_A$ für mehrere verschiedene Werte des Parameters Y. Die Berechnungen wurden mittels einer Rechenmaschine "Odra 1204" durchgeführt.

Für die Funktion F(g) wurden folgende Näherungen eingeführt:

a)
$$g \leq 10^{-5}$$
:
 $F(g) \cong g \int_{0}^{\infty} \exp\{-z^{3}\} dz = \Gamma(\frac{4}{3}) g$.
b) $g \geq 20$:
 $F(g) \cong 1 - \int_{0}^{\infty} \exp\{-g z^{1/2}\} dz = 1 - 6/g^{3}$.

Aus Abb. 1 ist ersichtlich, daß die Quantenausbeute des Donors bei festgelegtem Wert der Akzeptorkon-

596

zentration n_A' (bei festgelegtem Wert Q_A) stark vom Wert des Parameters Y abhängig ist. Für hohe Werte von Y $(n_D' \ge n_A')$ sind die nach der neuen Theorie errechneten Werte η/η_0 bedeutend niedriger als nach (1).

Abb. 1. Relative Quantenausbeute der Photolumineszenz in Abhängigkeit von $Q_A = R_{0A}/\overline{R_A}$. Die ausgezogenen dicken Kurven (Gl. (23)) gelten für die Photolumineszenzlöschung in zweidimensionalen Systemen. Dabei ist $\overline{R_A}$ durch die Formel $n'_A \, \pi \, \overline{R_A}^2 = 1$ definiert, wo n'_A die Molekülzahl des Akzeptors pro Flächeneinheit ist. Die gestrichelten Kurven (Gl. (28)) sind dreidimensionale Analoga der ausgezogenen Kurven, wo R_A durch $n_A (4/3) \pi \, \overline{R_A}^3 = 1$ definiert ist und n_A die Zahl der Akzeptormoleküle pro Volumeneinheit bedeutet. Die ausgezogenen dünnen Kurven (Ausdruck (36)) gelten ebenfalls für die Photolumineszenzlöschung in zweidimensionalen Systemen.

In Abb. 1 ist auch der nach ^{15, 17} bestimmte analoge Verlauf der Quantenausbeute für einen dreidimensionalen Fall (gestrichelte Kurven) dargestellt:

$$\frac{\eta}{\eta_0} = \frac{1 - f(\gamma)}{1 - \alpha f(\gamma)} \tag{28}$$

mit

$$f(\gamma) = \sqrt{\pi} \gamma \exp(\gamma^2) \quad [1 - \operatorname{erf}(\gamma)], \ \alpha = \gamma_D / \gamma,$$
(29), (30)

$$= \frac{\sqrt{\pi}}{2} \left(\frac{n_{\rm D}}{n_{0\rm D}} + \frac{n_{\rm A}}{n_{0\rm A}} \right)$$

$$= \frac{\sqrt{\pi}}{2} \left(Q_{\rm D}^3 + Q_{\rm A}^3 \right) = \frac{\sqrt{\pi}}{2} \left[\left(\frac{R_{0\rm D}}{\overline{R}_{\rm D}} \right)^3 + \left(\frac{R_{0\rm A}}{\overline{R}_{\rm A}} \right)^3 \right].$$
(31)

vabei ist $erf(\gamma)$ das Fehlerintegral, n_{0D} und n_{0A} die ritische Konzentration¹⁸ für die strahlungslose bertragung der Anregungsenergie von D* nach D zw. von D* nach A. Der Ausdruck (28) ergibt sich . a. bei der Annahme, daß die strahlungslose Energieübertragung in vielen Schritten nach Schema (27) abläuft. Die gestrichelten Kurven in Abb. 1 entsprechen verschiedenen Donor/Akzeptor-Konzentrationen

$$y = \gamma_{\rm D} / \gamma_{\rm A} = Q_{\rm D}^3 / Q_{\rm A}^3$$
. (32)

Die gestrichelte Kurve 4 (für $y \rightarrow 0$) entspricht dem Verlauf nach Förster¹¹ (gültig für $Q_D^3 \ll Q_A^3$) und stellt ein dreidimensionales Analogon der ausgezogenen Kurve 1 dar.

Mit dem Ausdruck (23) kann auch die PhL-Konzentrationslöschung beschrieben werden, wenn für die Erscheinung nichtlumineszierende Dimere verantwortlich sind. Konzentrationsänderungen der "richtigen" Quantenausbeute, das heißt der hinsichtlich der unaktiven Absorption korrigierten Ausbeute, lassen sich nach Formel (23) beschreiben, wenn die Dimeren als Akzeptoren zu betrachten sind. Um das zu erreichen, sind die im Ausdruck (18) gegebenen Größen n_A' , S_{0A} , R_{0A} und Q_A entsprechend durch $n'_{D''}$, $S_{0D''}$, $R_{0D''}$ und $Q_{D''}$ zu ersetzen. Ferner ist anzunehmen, daß ein Teil der Vorgänge bei der strahlungslosen Übertragung der Anregungsenergie zur Zerstreuung der übertragenen Energie führen kann. Für die PhL-Ausbeute im zweidimensionalen System ergibt sich dann:

$$\frac{\eta}{\eta_0} = \frac{1 - F(g)}{1 - \alpha_0 \beta F(g)} \tag{33}$$

mit

$$g = \Gamma(\frac{2}{3}) (n_{\rm D}' S_{0{\rm D}} + n'_{{\rm D}''} S_{0{\rm D}''}) = \Gamma(\frac{2}{3}) (Q_{\rm D}^2 + Q_{\rm D''}^2).$$
(34)

Abb. 2. Relative Quantenausbeute der Photolumineszenz als Funktion des Arguments $g=\Gamma(\frac{2}{5})(Q_{D}^{5}+Q_{D''}^{5})$ für ein zweidimensionales System. Die ausgezogenen und gestrichelten Kurven sind nach (29) für $a_{0}=1$ bzw. $d_{0}=0.95$ berechnet worden.

Dem Parameter a_0 kann die Bedeutung der Wahrscheinlichkeit dafür zugeschrieben werden, daß keine Zerstreuung der Anregungsenergie bei ihrer Übertragung zwischen den Monomeren vorliegt.

In Abb. 2 ist die Abhängigkeit (33) für einige Werte der Dimerisationskonstante¹⁹ \mathcal{K}_g sowie des Parameters a_0 dargestellt. Man sieht, daß der Ein- \mathcal{S} fluß des Parameters a_0 auf den Kurvenverlauf $\eta/\eta_0 \widetilde{\mathcal{S}}$ bei hohem Wert der Konstanten \mathcal{K}_g nur gering ist im Vergleich zu niedrigen Werten von \mathcal{K}_g . Das bedeutet, daß die Monomerenlöschung im Fall hoher Werte der Konstanten \mathcal{K}_g (und auch hoher Konzentrationen) eine geringere Rolle spielt.

Die Autoren der Arbeit¹ haben auch den Fall (4) betrachtet. Sie geben für die Quantenausbeute den Ausdruck

$$\frac{\eta}{\eta_0} = \int_0^\infty \exp\left\{-\left(x + p' \, x^{1/s}\right)\right\} \, \mathrm{d}x \qquad (36)$$

an mit

$$p' = \Gamma\left(\frac{2}{3}\right) Q_{\rm A}^2 \left(\frac{n_{\rm D}' d_0}{n_{\rm A}' a_0}\right)^{1/2}.$$
 (37)

Dabei sind d_0 und a_0 die Flächen pro Molekül für den Donor bzw. Akzeptor.

Der Ausdruck (36) unterscheidet sich von (1) nur durch den in Gl. (37) auftretenden Faktor $(n_{\rm D}' d_0/n_{\rm A}' a_0)^{2/3}$. In Abb. 1 sind mit ausgezogenen dünnen Linien die Abhängigkeiten nach (36) für die gleichen ²⁰ Werte von Y wie in (23) dargestellt. Es ist ersichtlich, daß der Einfluß des Faktors $(n_{\rm D}' d_0/n_{\rm A}' a_0)^{2/3}$ auf den Kurvenverlauf verhältnismäßig klein ist (vgl. Kurven 2 und 2' sowie 3 und 3' für die gleichen Werte von Y). Bemerkenswert ist, daß der Ausdruck (36) im Unterschied zu (23) für $n_{\rm D}' \ll n_{\rm A}'$ nicht in (1) übergeht. Um die erhaltenen theoretischen Ergebnisse mit dem Experiment zu vergleichen, müssen Parameter wie die kritischen Abstände R_{0D} , R_{0A} bekannt sein. In Abb. 3 sind die experimentellen Ergebnisse aus der Arbeit¹ über ie PhL-Löschung von Chlorophyll a durch Cuheophytin a in Monoschichten von Oleylalkohol uit (23) verglichen worden.

Den relativen Oberflächenkonzentrationen ²¹ K_D nd K_A wurden die absoluten molaren Konzentraonen C_D und C_A nach den Formeln $C_D = K_D/N d_0$ nd $C_A = K_A/N a_0$, wo N = Avogadrosche Zahl, zurunde gelegt. Nach Daten aus Tafel 1 in ² wurde $_0 = a_0 = 105 \text{ A}^2$ gesetzt.

Hieraus ergibt sich

$$C_a = 1,58 \cdot 10^{-6} K_a [M/m^2], a = D, A.$$
 (38)

Abb. 3²². Relative Photolumineszenzquantenausbeute für Chloroplyll *a* in Monoschichten von Oleylalkohol in Abhängigkeit von der Konzentration des Cu-Pheophytins *a*. Ausgezogene Linien nach (23) berechnet. ○, △ experimentelle Punkte aus ¹.

Die entsprechenden kritischen Konzentrationen C_{0D} und C_{0A} sind nach den Formeln

$$C_{0a} = 1/\pi R_{0a}^2 N[M/m^2], \ a = D, A$$

berechnet worden. Für $R_{0D} = 52$ Å und $R_{0A} = 38$ Å (aus Tab. 1 in¹) erhielt man $C_{0D}^{I} = 1,965 \cdot 10^{-8}$ M/m² und $C_{0A}^{I} = 3,66 \cdot 10^{-8}$ M/m²; für die Werte $R_{0D} = 48$ Å sowie $R_{0A} = 35$ Å entsprechend $C_{0D}^{II} = 2,3 \cdot 10^{-8}$ M/m² und $C_{0A}^{II} = 4,31 \cdot 10^{-8}$ M/m².

Die Kurven 1 und 2 wurden nach (23) für die aus Spektrenuntersuchungen erhaltenen Werte R_{0D} und R_{0A} (Kurve 1) sowie für etwas niedriger angenommene Werte R_{0D} und R_{0A} (Kurve 2) gezeichnet. Beide Kurven stimmen näherungsweise mit dem Experiment überein. Nur im Bereich der niedrigsten Konzentrationen liegen stärkere Abweichungen vor. Jedoch kann in diesem Konzentrationsbereich die PhL-Löschung des Donors durch die strahlungslose Energieübertragung zum Akzeptor nur ungenau ermittelt werden, weil hier die Konzentrationen fast um zwei Größenordnungen niedriger sind als die kritischen Konzentrationen C_{0A} . Berücksichtigt man die Ungenauigkeiten in der Bestimmung der absoluten Ausbeute η_0 , des Brechungsindexes sowie der Überdeckungsintegrale, die zur Bestimmung von R_{0D} und R_{0A} mit einer Genauigkeit von 12% (nach Autoren der Arbeit¹) führen, so ist die Übereinstimmung der Formel (23) mit dem Experiment als zufriedenstellend zu betrachten. Formel (23) beschreibt die Konzentrationsänderungen η/η_0 bei beliebigen Konzentrationen n_D' und n_A' im Unterschied zu den Formeln (1) und (36), die nicht für den Fall $n_{\rm D}' \approx n_{\rm A}'$ gelten.

Die erhaltenen theoretischen Ergebnisse [Ausdruck (33)] könnte man zur Beschreibung der durch nicht lumineszierende Dimere bedingten PhL-Konzentrationslöschung anwenden. Für diesen Zweck wäre es notwendig, auf Grund des Experiments nicht nur die kritischen Abstände R_{0D} und $R_{0D''}$, sondern auch die Dimerisationskonstante \mathcal{K}_{g} zu erkennen. Bisher aber fehlen die experimentellen Ergebnisse, die die obigen Parameter für zweidimensionale Systeme liefern könnten.

Für die Hilfe bei der deutschen Textgestaltung möchten wir Herrn Prof. A. Schmillen unseren verbindlichsten Dank aussprechen.

Anhang 1

Der Ausdruck (13) läßt sich auf ähnliche Weise berechnen wie in Arbeit¹⁵. Mit der Formel

$$a/b = a \int_{0}^{\infty} \exp\left(-b t\right) dt \tag{A1}$$

kann der Ausdruck (13) folgendermaßen dargestellt werden:

$$P_{\rm F} = \lim_{S \to \infty} \int_{0}^{S} \dots \int_{0}^{S} \frac{k_{\rm F}}{k_{\rm F} + k_{\rm q}} \int_{0}^{S} \exp\left[-\left(1 + S_{0\rm D}^{3} \sum_{j=1}^{N_{\rm p}-1} X_{j}^{-3} + S_{0\rm A}^{3} \sum_{l=1}^{N_{\rm A}} Y_{l}^{-3}\right) t\right] dt \frac{dX_{\rm 1}}{S} \dots \frac{dX_{N_{\rm D}-1}}{S} \frac{dY_{\rm 1}}{S} \dots \frac{dY_{N_{\rm A}}}{S}$$

$$= \lim_{S \to \infty} \frac{k_{\rm F}}{k_{\rm F} + k_{\rm q}} \int_{0}^{\infty} \exp\left(-t\right) \prod_{j=1}^{N_{\rm D}-1} \left[\frac{1}{S} \int_{0}^{S} \exp\left(-S_{\rm 0D}^{\rm g} X_{j}^{-3} t\right) \, \mathrm{d}X_{j} \right] \prod_{l=1}^{N_{\rm A}} \left[\frac{1}{S} \int_{0}^{S} \exp\left(-S_{\rm 0A}^{\rm g} Y_{l}^{-3} t\right) \, \mathrm{d}Y_{l} \right] \mathrm{d}t \,. \, (A\,2)$$

Da alle Integrale nach X_i wie auch sämtliche Integrale nach Y_i identisch sind, erhält man:

$$P_{\rm F} = \frac{k_{\rm F}}{k_{\rm F} + k_{\rm q}} \int_{0}^{S} \exp\left(-t\right) \cdot \lim_{S \to \infty} \left[\frac{1}{S} \int_{0}^{S} \exp\left(-\frac{\sigma_{\rm D}}{u^3}\right) \mathrm{d}u\right]^{N_{\rm D}-1} \cdot \lim_{S \to \infty} \left[\frac{1}{S} \int_{0}^{S} \exp\left(-\frac{\sigma_{\rm A}}{w^3}\right) \mathrm{d}w\right]^{N_{\rm A}} \mathrm{d}t \quad (A 3)$$

mit

$$X_j = u$$
, $Y_l = w$, $S_{0D}^3 t = \sigma_D$, $S_{0A}^3 t = \sigma_A$. (A4)

Da

$$\lim_{S \to \infty} \left[\frac{1}{S} \int_{0}^{S} \exp\left(-\frac{\sigma_{\mathrm{D}}}{u^{3}}\right) \mathrm{d}u \right]^{N_{\mathrm{D}}-1} = \lim_{S \to \infty} \left[1 - \frac{\Gamma\left(\frac{2}{3}\right) \sigma_{\mathrm{D}}^{1/a}}{S} \right]^{N_{\mathrm{D}}-1} = \exp\left[-\Gamma\left(\frac{2}{3}\right) \sigma_{\mathrm{D}}^{1/a} n_{\mathrm{D}}'\right] \quad (A5)$$

und da die analoge Formel auch für die zweite Grenze in (A3) gilt, ergibt sich:

$$P_{\rm F} = \frac{k_{\rm F}}{k_{\rm F} + k_{\rm q}} \int_{0}^{\infty} \exp\left(-t\right) \exp\left[-\Gamma\left(\frac{2}{3}\right) t^{1/2} \left(S_{\rm 0D} \, n_{\rm D}' + S_{\rm 0A} \, n_{\rm A}'\right)\right] {\rm d}t, \qquad (A \, 6)$$

wo n_D' und n_A' die Konzentrationen der Moleküle D und A pro Flächeneinheit darstellen. (A 5) enthält iolgende Grenzübergänge

$$\lim_{S\to\infty}(N_{\rm D}/S)=n_{\rm D}',\ \lim_{S\to\infty}(N_{\rm A}/S)=n_{\rm A}'.$$

Die Berechnung der Integrale (A6) führt zu (16).

ø

Anhang 2

Mit der Formel

$$\frac{a}{1+a+b} = -\int_{0}^{\infty} \left[\frac{\mathrm{d}}{\mathrm{d}t} \exp\left(-a\,t\right) \right] \cdot \exp\left(-b\,t\right) \mathrm{d}t \tag{A7}$$

läßt sich der Ausdruck (20) schreiben in der Form:

$$P_{\rm DD} = -\lim_{S \to \infty} \int_{0}^{\infty} \left[\frac{\mathrm{d}}{\mathrm{d}t} \prod_{j=1}^{N_{\rm D}-1} \left(\frac{1}{S} \int_{0}^{S} \exp\left(-S_{\rm 0D}^{3} X_{j}^{-3} t \right) \mathrm{d}X_{j} \right) \right] \cdot \exp\left(-t \right) \prod_{l=1}^{N_{\rm A}} \left(\frac{1}{S} \int_{0}^{S} \exp\left(-S_{\rm 0A}^{3} Y_{l}^{-3} t \right) \mathrm{d}Y_{l} \right) \mathrm{d}t \,.$$
(A 8)

Durch Einsetzen von (A 4) und den Grenzübergang wie in Anhang 1 [vgl. Ausdruck (A 5)] erhält man:

$$P_{\rm DD} = -\int_{0}^{\infty} \left\{ \frac{\mathrm{d}}{\mathrm{d}t} \exp\left[-\sigma_{\rm D}^{1/s} \Gamma\left(\frac{s}{s}\right) n_{\rm D}'\right] \exp\left(-t\right) \cdot \exp\left[-\sigma_{\rm A}^{1/s} \Gamma\left(\frac{s}{s}\right) n_{\rm A}'\right] \mathrm{d}t \\ = -\int_{0}^{\infty} \left\{ \frac{\mathrm{d}}{\mathrm{d}t} \exp\left[-t^{1/s} S_{0\rm D} \Gamma\left(\frac{s}{s}\right) n_{\rm D}'\right] \right\} \cdot \exp\left(-t\right) \cdot \exp\left[-t^{1/s} S_{0\rm A} \Gamma\left(\frac{s}{s}\right) n_{\rm A}'\right] \mathrm{d}t.$$
 (A9)

Nach Integrierung von (A9) ergibt sich (21).

- ¹ A. G. Tweet, W. D. Bellamy, and C. L. Gaines, J. Chem. Phys. 41, 2068 [1964].
- ² A. G. Tweet, C. L. Gaines, and W. D. Bellamy, J. Chem. Phys. 40, 2596 [1964].
- ³ C. W. Robinson, Brookhaven Natl. Lab. Symp. 19, 16 [1967].
- ⁴ R. S. Knox, J. Theor. Biol. 21, 244 [1968].
- ⁵ R. M. Pearlstein, Photochem. Photobiol. 8, 341 [1968].
- ⁶ E. W. Montroll, J. Math. Phys. 10, 753 [1969].
- ⁷ H. Kuhn, Pure and Applied Chem. 27, 421 [1971].
- ⁸ F. W. Craver, Molec. Phys. 22, 403 [1971].
- ⁹ R. M. Pearlstein, Brookhaven Natl. Symp. 19, 8 [1967].
- ¹⁰ K. Colbow, Biochim. Biophys. Acta 314, 320 [1973].
- ¹¹ Th. Förster, Z. Naturforsch. 4a, 321 [1949].
- ¹² Th. Förster, Radiation Research Supplement 2, 326 [1960].
- ¹³ L. N. M. Duysens, Progr. Biophys. Mol. Biol. 14, 1 [1964].
- ¹⁴ J. J. Katz, Adv. Food. Res. Suppl. 3, 103 [1972].
- ¹⁵ C. Bojarski and J. Domsta, Acta Phys. Hung. **30**, 145 [1971].

- ¹⁶ Th. Förster, Ann. Phys. 2, 55 [1948].
- ¹⁷ C. Bojarski and J. Domsta, Z. Naturforsch. 25 a, 1760 [1970].
- ¹⁸ Für γ in Gl. (31) nach ^{15, 17} wurde statt des Faktors $\sqrt{\pi}$ der Faktor $\sqrt{\pi \eta_0}$ gesetzt. Der Faktor $\sqrt{\eta_0}$ ist jetzt in n_{0D} und n_{0A} enthalten.
- ¹⁹ Die dimensionslose Konstante $\mathcal{K}_g = g''/g'^2$ ist mit der Gleichgewichtskonstanten $\mathcal{K} = C''/C'^2$ verknüpft durch die Beziehung:

 $\mathbf{K}_{\mathbf{g}} = (\mathcal{K}S_{0D}'') / (\Gamma(\boldsymbol{g})S_{0D}^{\mathbf{a}}) = (\mathbf{K}C_{0D}^{\mathbf{a}}) / (\Gamma(\boldsymbol{g})C_{0D}'').$ (35)

- ²⁰ Um (36) für bestimmte Werte von Y nach der Formel $Y = Q^2 D/Q^2 A = (R_0 D/R_0 A)^2 (n'D/n'A)$ auszuwerten, wurde und $R_0 A$ -Werte wurden experimentell ermittelt und in Tafel I der Arbeit¹ zusammengestellt.
- ²¹ Die Größen $K_D = n'_D d_0$ und $K_A = n'_A a_0$ entsprechen den Beziehungen K_{chl} und K_Q in ¹.
- ²² Irrtümlicherweise wurde in Abb. 3 $C_{\rm D}=1,06\cdot10^8\,{\rm M/m^2}$ angegeben; der richtige Wert beträgt $1,06\cdot10^{-8}\,{\rm M/m^2}$.