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Abstract: We describe the magnetic properties of thin iron films deposited on the nanoporous titanium
oxide templates and analyze their dependance on nanopore radius. We then compare the results
to a continuous iron film of the same thickness. Additionally, we investigate the evolution of the
magnetic properties of these films after annealing. We demonstrate that the M(H) loops consist of two
magnetic phases originating from the iron layer and iron oxides formed at the titanium oxide/iron
interface. We perform deconvolution of hysteresis loops to extract information for each magnetic
phase. Finally, we investigate the magnetic interactions between the phases and verify the presence
of exchange coupling between them. We observe the altering of the magnetic properties by the
nanopores as a magnetic hardening of the magnetic material. The ZFC-FC (Zero-field cooled/field
cooled) measurements indicate the presence of a disordered glass state below 50 K, which can be
explained by the formation of iron oxide at the titanium oxide-iron interface with a short-range
magnetic order.

Keywords: iron thin films; interphase magnetic exchange interaction; interface oxidation; nanoporous
titanium oxide

1. Introduction

Nanoscale interface engineering of magnetic metals and transition metal oxide layers
is of great interest due to their high spin polarization [1], voltage-controlled magnetiza-
tion [2], magnetoelectric coupling [3], microwave absorption [4], and magnetoresistance [5],
accompanied by a high Curie temperature of the material. Such a wide range of interest-
ing physical properties makes these ferromagnetic heterostructures promising candidates
for non-volatile memory applications, domain wall logic, and sensors [6]. However, the
magnetic properties of the systems are significantly affected by the presence of different
defects, such as grain boundaries, impurities, vacancies, non-magnetic inclusions, corru-
gations, or surface defects [7,8]. Typically, such defects are randomly created during thin
film preparation, and therefore, they can alter the properties of the heterostructures in an
uncontrolled manner. On the other hand, defects can also be introduced on purpose by ion
irradiation [9,10], patterning, or template-assisted deposition [11,12] to enable the tuning
of selected parameters in a controlled way and the creation of various magnetic nanostruc-
tures, such as nanotubes, nanowires, or antidots [13–15]. The defect interface engineering
enabled by patterning makes it possible to obtain materials with novel properties which
are not observed in epitaxial or highly crystallized thin films.

An efficient and straightforward way of introducing a network of artificial defects is
anodization, which can provide an ordered array of nanopores or nanotubes with well-
controlled size, distribution, and configuration. Magnetic films deposited on such arrays
exhibit distinct properties from their flat counterparts [16–18]. Therefore, the introduction
of the nanopores is an efficient method for the modification of ferromagnetic films and for
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the improvement of their magnetoresistance properties, magnetization reversal parameters,
permeability, effective anisotropy [19–22], and coercivity due to the formation of pinning
sites altering the domain wall movement [23–25].

One of the most common approaches to investigate the influence of artificial defects
on magnetic properties of thin films is their deposition on anodized aluminum oxide
(AAO) [26,27]. AAO is used in nanoscale interface engineering due to its ability to provide
a large area matrix with a large range of accessible pore sizes [28]. High quality ordered
arrays of nanostructures can also be fabricated on various transition metals, such as the
versatile titanium. The anodized titanium oxide (ATiO) can grow in a form of nanotubes or
nanopores, depending on the anodization parameters. The diameter of these nanostruc-
tures can be tuned in a range of 10 to 200 nm, while their length can vary from dozens of
nanometers up to 10 µm [29]. Additionally, unlike AAO, ATiO is an n-type semiconductor
with an energy gap of about 3 eV for rutile, which, in combination with a ferromagnetic
layer, enables the creation of a magnetically controlled junction with spin-dependent trans-
port properties [30]. The presence of spin-dependent characteristics in this type of system
was shown by Sarkar et al. [31], while the possibility of a high polarization ratio of the
injected current was demonstrated in patterned ferromagnetic/semiconductor layers by
Roundy et al. [32]. The magnetic characteristics of such systems are significantly affected
by the morphology of the magnetic layer interface. In particular, the magnetic proper-
ties, performance, and spin-polarization ratios of such systems are strongly influenced
by surface imperfections and the intermixing of atoms since they induce changes in the
distribution of local electric field and the demagnetization factor [32]. Understanding and
investigating the impact of defects and interfaces on the magnetic properties of ferromag-
netic/semiconductor layers is key for the future spintronic applications and devices based
on these types of junctions. Such systematic study can be performed by introducing a
well-controlled network of artificial defects into the model ferromagnetic/semiconductor
system, e.g., Fe/ATiO. However, studies of such systems are rare and do not take into
account the influence of thermal treatment, which is a common stage in the production of
semiconducting junctions [33,34].

In this paper, we study the magnetic properties of iron thin films deposited on an-
odized titanium oxide with various characteristics of surface morphology and fabrication
conditions. The ability to control the surface morphology of the titanium oxide by choice
of anodization parameters allowed us to adjust the defect density, size, and roughness
of the iron thin film layer deposited on the ATiO matrix. This gave us an opportunity to
determine the correlation between the structure parameters and magnetic characteristics,
and to identify what kind of alterations in magnetic properties originate from the interface.
In particular, we explored the modifications of magnetic ordering and magnetic reversal
caused by artificial defects and thermal treatment. Additionally, the inclusion of mesoscopic
defects inducing intermixing of atoms at the ATiO/Fe interface led to the observation of
distinct magnetic phases tuned by the size of nanopores in ATiO. We then used the mod-
ified Takács model [35] to extract information concerning saturation magnetization and
coercivity for each magnetic phase, while the intrinsic magnetic properties of films were
determined by zero-field cooled (ZFC) and field-cooled (FC) magnetization curves.

2. Materials and Methods

Multilayers were deposited on single crystal Si (100) substrates with sizes of 17 mm ×
17 mm. Prior to the deposition process, the substrates were ultrasonically cleaned in
acetone, isopropanol, and distilled water for 10 min for each step. Afterward, Ti (50 nm)/Au
(100 nm)/Ti (300 nm) layers were deposited by e-beam evaporation in a vacuum chamber
under the pressure of 10−5 mbar (Univex 300, Leybold, Koln, Germany). The bottom
titanium layer served as an adhesive layer, the 100 nm of gold was the electric contact,
and the top titanium layer was intended for nanopatterning and was deposited through a
round mask with a diameter of 10 mm positioned at the center of the substrate.
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The TiOx nanostructures were fabricated by anodization using the two-electrode
set-up, where deposited samples and platinum foil served as the working and counter
electrodes, respectively. Both electrodes were connected to a direct current (DC) power
supply (Delta Elektronika SM 300-10D, Delta Elektronika, Zierikzee, The Netherlands)
and the working distance between them was 3 cm. The anodization chamber was filled
with an electrolyte composed of glycerin (Glycerin anhydrous 99.5%, Chempur, Piekary
Śląskie, Poland) and 0.5 wt% NH4F (Ammonium Fluoride 98%, Merck KGaA, Darmstadt,
Germany). The anodization time was 45 min and the applied potentials were 5 V, 15 V, and
60 V. After anodization, the samples were rinsed with isopropanol and distilled water, and
dried in a stream of hot air.

After the anodization, 50 nm of iron was deposited on the samples and further covered
by 50 nm of a gold protective layer. The deposition was performed through a round
mask with a diameter of 8 mm positioned at the center of anodized titanium oxide, while
the remaining conditions were the same as previously described. Sample preparation
procedure was completed by annealing at 450 ◦C for 15 min in a vacuum with a pressure of
10−5 mbar.

The surface morphology of the layers was studied by scanning electron microscopy
(SEM, Tescan Vega 3, Tescan, Brno, Czech Republic) in secondary electron detection mode
with the energy of the primary beam equal to 5 keV. The crystal structure was studied by
X-ray diffraction (XRD, PANalytical X’Pert Pro, Malvern Panalytical, Malvern, UK) with
Cu Kα radiation (λ = 1.5418 Å) and carried out in θ–2θ geometry. The measurements were
conducted in the 2θ range from 20 to 90 degrees. Material composition was studied by the
depth profiling carried out by secondary neutral mass spectroscopy measurement (SNMS,
INA-X, SPECS, Berlin, Germany). The sputtered area was confined to a circle of 1 mm in
diameter by a tantalum mask, and the sputtering was performed with an argon plasma
after applying a negative voltage of 350 V. X-ray photoemission spectroscopy (XPS) was
performed using an aluminum Kα source (10 kV accelerating voltage and 10 mA emission
current) and a hemispherical energy analyzer (type Phoibos 100, SPECS, Berlin, Germany).
The base vacuum in the instrument was 10−10 mbar. The magnetic measurements were
conducted using a Magnetic Property Measurement System (MPMS XL SQUID, Quantum
Design, San Diego, CA, USA) at room temperature and 10 K with the external magnetic
field, up to 50 kOe, applied parallel (in-plane geometry, IP) or perpendicular (out-of-
plane geometry, OOP) to the sample surface. Zero-field cooled/field cooled (ZFC-FC)
measurements were performed in a field of 100 Oe in the temperature range from 5 K to
300 K. In the ZFC-FC measurement, the samples were first cooled from 300 K to 5 K without
a magnetic field, and then a small magnetic field of 100 Oe was applied. After that, the ZFC
magnetization (MZFC) was recorded during heating from 5 K to 300 K. Subsequently, the
sample was cooled to 5 K with the unchanged magnetic field, and the FC magnetization
(MFC) was measured while cooling the system from 300 K to 5 K.

3. Results and Discussion
3.1. Structural Characterization

SEM images of titanium oxide surfaces obtained after anodization at different poten-
tials are shown in Figure 1. The smallest anodization voltage of 5 V (Figure 1A) resulted
in the fabrication of the titanium oxide in the form of granules, with an average size of
approximately 100 nm. These granules are randomly distributed over the surface of the
whole sample and create a mesoporous titanium oxide layer. Higher anodization volt-
ages of 15 V and 60 V are required to create the matrix of nanoporous oxide, as shown
in Figure 1B,C, respectively. The pores have either circular or elliptical shapes and are
uniformly distributed on the surface. The analysis of inner pore sizes and surface porosity
was performed with the ImageJ software (version 1.53f51) (see Figure 1D). The inner pore
diameter Dp was calculated as a Feret diameter, while the porosity was determined as a
ratio of the surface of the pores divided by the surface of the whole image.
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and 60 V, respectively. For the sample anodized at 5 V, the pores were too small to be 
observed, giving approximately zero porosity. The anodized samples were used as a 
substrate for the deposition of the 50 nm of iron subsequently covered with gold. The total 
thickness of the Fe and Au layers was high enough to fully cover and close the nanopores. 

Figure 1. The morphology of anodized titanium oxide obtained at (A) 5 V, (B) 15 V, and (C) 60 V. The
voltage impact on the inner pore diameter and the porosity is shown in (D).

Applying higher voltage results in the increase of the size of pores and porosity, which
is a standard effect also observed in other anodization experiments [36]. Anodization at the
chosen parameters resulted in the formation of nanoporous titanium oxide with mean pore
diameters of 20 nm and 50 nm for the applied potentials of 15 V and 60 V, respectively. For
the sample anodized at 5 V, the pores were too small to be observed, giving approximately
zero porosity. The anodized samples were used as a substrate for the deposition of the
50 nm of iron subsequently covered with gold. The total thickness of the Fe and Au layers
was high enough to fully cover and close the nanopores. For clarity of reading, the samples
are named Sx, where x is a value of the inner pore diameter.

To obtain structural information, the XRD measurements were carried out on both
as-prepared and annealed samples. The diffraction measurements were performed with
an offset equal to −5◦ to avoid the appearance of diffraction maxima from silicon single
crystal substrate. Figure 2A presents representative diffraction patterns for the S20 sample.
Other samples (S0 and S50) gave similar results. The bottom part of the graph shows the
reference positions of gold and iron peaks based on ICDD datasheets no. 03-065-8601 and
no. 01-085-1410.
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to gold atoms (144.2 pm), causing the decrease of the lattice plane distance of Au (111) 
[42]. While the as-prepared sample displays a sharp step between gold and iron layers, in 
the annealed sample, the iron atoms are mixed evenly within the gold layer. There is no 
evident acute step on the depth profile, but rather a smooth passage between Au and Fe 
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Figure 2. XRD patterns (A) and SNMS depth profiles (B) for as-prepared and annealed S20 samples.

The as-prepared sample S20 gave peaks corresponding to the fcc crystal structure of
Au, with the most prominent peak at 38.4◦, related to the (111) crystal plane. The reflections
from iron (bcc) were also present, but they partially overlap with the gold peaks. The
calculated lattice parameter for Au is a = 4.07 (2) Å and Fe is a = 2.86 (1) Å, which is in
agreement with the bulk material values [37]. We also calculated the grain size of the iron.
To calculate crystallite sizes d, the Scherrer equation, d = 0.9λ/βcosθ, was used, where λ is a
wavelength, β is the line broadening at half the maximum intensity, and θ is the Bragg angle.
The calculated grain size of the sample S20 was 27.6 (3.5) nm for the annealed sample and
was almost two times larger than the deposition when grain size was 13.4 (2.8) nm. Grain
sizes in other samples were similar to the S20 sample and also doubled after annealing.

The presence of titanium oxide in as-deposited samples was confirmed by two weak
peaks from the rutile at 36.6◦ and 69.1◦. The intensity of these peaks is low due to the weak
crystallization of titanium oxide during the anodization process, which most often results
in amorphous TiO2 [36].

The diffractogram of the annealed sample shows the change in the crystal structure of
the oxide, confirmed by the appearance of diffraction peaks from various titanium oxides.
The most intense diffraction maxima at 37.4◦ and 41.6◦ come from TiO and rutile [38],
respectively. Both of them are related to the (111) crystallographic plane. The scarce
amount of oxygen during the preparation process is responsible for the appearance of
non-stoichiometric titanium oxide exhibiting diffraction peaks at 20.9◦, 28.7◦, 39.9◦, and
55◦ [39,40]. The presence of titanium oxides with a low Ti oxidation state is a consequence
of the lack of oxygen during annealing and the usage of electrolytes without water. Ad-
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ditionally, the oxygen atoms can diffuse through the ATiO/Fe interface and form iron
oxides, the presence of which is suggested by the diffraction maximum found near 55◦.
However, the presence of iron oxide cannot be clearly identified since the diffraction peaks
overlap with peaks coming from titanium oxide. Another effect caused by annealing is
a shift of XRD peaks from gold to higher angles, caused by the shortening of the lattice
parameter a from 4.07 (2) Å to 4.01 (2) Å. The compression is a consequence of the gold
layer intermixing with iron atoms [41], noticeable on SNMS depth profiles (Figure 2B). The
decrease of lattice parameters of gold results from the placing of the Fe atoms in the Au
lattice. The iron atoms have a smaller atomic radius (124.1 pm) compared to gold atoms
(144.2 pm), causing the decrease of the lattice plane distance of Au (111) [42]. While the
as-prepared sample displays a sharp step between gold and iron layers, in the annealed
sample, the iron atoms are mixed evenly within the gold layer. There is no evident acute
step on the depth profile, but rather a smooth passage between Au and Fe layers with gold
concentration decreasing inside the iron layer. On the other hand, the lack of a sharp step
between Fe and ATiO in both the as-prepared and annealed samples is due to the porous
structure of titanium oxide. The deposited iron partially penetrates the pores and shows a
smooth transition in SNMS analysis for both Fe and Ti atoms.

3.2. Magnetic Properties

The magnetic hysteresis loops of the as-prepared and annealed S0 samples are pre-
sented in Figure 3A,B, respectively. Upper parts of the graphs show the first derivative of
dM(H)/dH. In the case of the as-prepared sample, a single narrow peak with a maximum
at 110 Oe is noticeable, while after annealing, an asymmetric peak is present, indicating a
more complicated magnetic system. To deconvolute the magnetic signal, we adopted the
modified Takács model T(x) [35,43]. The T(x) expression for the symmetric hysteresis loops
with n ferromagnetic components is presented below:

T(x) = M(H) = ∑n
i=1 2Mi

a/π
[

atan
(

H ± Hi
c/ai

) ]
± bi + Mi

b

[
coth

(
H
ci

)
− ci

H

]
(1)

where bi = Mi
a

π

[(
Hi

m−Hi
c

ai

)
−
(

Hi
m+Hi

c
ai

)]
.
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In this case, the saturation magnetization of the i-th component Ms
i is the sum of

ferromagnetic Ma
i and paramagnetic Mb

i, which is part of magnetization. Both terms have
different slopes with coefficients a and c, respectively. The horizontal shift of magnetization
Mai is related to the coercive field Hc

i, and the vertical shift b is determined for the condition
that the two branches of the loop coincide at the point corresponding to the field Hm for
which they are saturated: M↑(Hm) = M↓(Hm) [44].
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The as-prepared sample S0 shows typical behavior for the iron film with in-plane
magnetic anisotropy, that can be modelled with n = 1, due to the presence of a single
dM/dH peak with the narrow switching field distribution originating from the iron layer
(see Figure 3A). After annealing, the dM/dH shows the presence of an additional magnetic
component with the switching field at 250 Oe. The second magnetic phase (p2) appears
due to oxidation of the iron at the ATiO/Fe interface (Figure 3B).

The introduction of nanopores results in the appearance of a second magnetic phase
even before the thermal treatment (Figure 4). In this case, a phase with a higher Ms (p1)
arises from the iron layer deposited on top of ATiO, while the second phase (with lower sat-
uration magnetization (p2)) originates from the iron deposited inside the pores. Iron inside
nanopores is partially oxidized because of the contact with titanium oxide and has limited
space for growth, resulting in characteristics similar to those of the confined nanoparti-
cles [45]. In the case of sample S20, the iron which gets inside the pores creates small and
isolated magnetic grains, which result in the separated maxima on the dM/dH curve.
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The increased pore size in sample S50 leads to a greater accumulation of the iron
inside pores, seen as an increase in the contribution of a softer phase and an overlapping of
maxima at the dM/dH curve (Figure S1 in Supplementary Materials). Annealing results
in significant changes in the M(H) curves, such as a twofold increase of the coercivity in
comparison with the as-prepared samples. The calculated amplification factor of coercivity
caused by patterning and annealing is shown in Figure S2 in Supplementary Materials. The
enhancement of Hc is accompanied by an increase in the contribution of the softer phase in
a total magnetic signal, from 14% to 21% and from 39% to 55% for sample S20 and sample
S50, respectively.

Figure 5 shows saturation magnetization Ms at 10 K for all samples, calculated as a
percentage of saturation magnetization of bulk iron. The as-prepared sample S0 exhibits
the largest saturation magnetization; however, the value is only 3/4 of the iron bulk
magnetization. This difference may result from the microstructure of the thin film deposited
on the porous substrate. As explained by Kim and Oliveria [46], the deposited Fe films
are less dense than the bulk due to the mesoporous character of the layer, leading to the
reduction of Ms by undesired air oxidation. Here, the samples were covered with 50 nm of
a protective gold layer; therefore, oxidation through the upper interface of the iron layer
should be excluded. However, the diffusion of oxygen atoms through anodized titanium
oxide is still possible and leads to the formation of FeO at the ATiO/Fe interface, which
was confirmed by XPS analysis (see Figure S3 in Supplementary Materials). The increase of
working surface by patterning facilitates further oxidation of iron at the ATiO/Fe interface,
resulting in the decrease of saturation magnetization for samples with wider nanopores.
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Figure 5. The saturation magnetization dependence on pore size for as-prepared and annealed
samples. Bars show the comparison of the saturation magnetization of Fe/ATiO system to the
saturation magnetization of bulk Fe.

After annealing, the saturation magnetization shows an almost linear decrease with
increasing inner pore diameters. We can assume that the passivation of the iron layer leads
to a similar thickness of iron oxide in each sample; however, the volume of FeO is larger
for wider pores due to the larger contact area between ATiO and Fe. As a result, the wider
the pores, the smaller the resulting saturation magnetization. We found similar linear
behavior for the effective anisotropy constant, where a decrease of Keff was present with an
increasing size of the pores reflecting the influence of the non-planar morphology of the
substrate (see Figure S4 in Supplementary Materials). The annealed nanoporous samples
exhibit a rise of Ms when compared to the as-prepared systems, which is caused by the
increase of crystallinity degree and the size of iron crystallites (in agreement with [47]) two
times larger after heat treatment.

The behavior of saturation magnetization of sample S0 after annealing is different than
for nanopatterned samples. As shown in Figure 5, Ms is larger for the as-deposited sample
S0 and drops down after thermal treatment. The results indicate a lower degree of oxidation
in the sample S0 compared to the nanoporous sample. The formation of iron oxide results
from the diffusion of oxygen atoms at the ATiO/Fe interface; therefore, the amount of iron
oxide depends on the contact area between the layers and is the lowest for the as-deposited
S0 sample. During annealing, the diffusion leads to partial oxidation of iron at the ATiO
surface, with the resultant thickness of iron oxide limited by the passivation thickness.
Therefore, annealing results in an increased amount of iron oxide that is dependent on the
size of the nanopores.

The evolution of coercive fields determined from the T(x) model, with respect to the
inner pore diameter, is shown in Figure 6. The as-prepared sample S0 exhibits a value of
Hc equal to 106(10) Oe, comparable to the Hc values for polycrystalline iron films with
a similar thickness (about 50 nm) [48,49]. Annealing of the sample doubles the value
of total coercivity and causes the appearance of the second magnetic phase. Structural
defects, such as grain boundaries, together with surface roughness and misalignment of the
magnetization axis between grains, have the largest impact on coercivity in polycrystalline
films [50,51]. Heat treatment induces recrystallization, leading to the improvement of
crystal structure and the decay of structural defects, hence, the coercivity should be smaller.
However, the formation of iron oxide at the interface between ATiO and Fe leads to the
appearance of a second, softer magnetic phase and an increase in coercivity. The rise of
the coercive field is a result of inter-granular exchange hardening between hard and soft
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magnetic phases, as observed in the literature [52,53]. The heat treatment of the sample
leads to the increase of iron oxide and, consequently, to an increase of contact area between
the oxide and iron layer. This means more active sites for the intergranular exchange
harden due to the increase of pinning sites and the roughness of the interface. In the case of
patterned samples, the magnetic two-phase composition exists even before heat treatment.
The values of the coercive field for S20 and S50 samples are higher than for the mesoporous
specimen. This effect results from the pinning of magnetic domain walls at pores acting as
artificial defects [54].
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An exception is a soft phase of the as-prepared sample S20, where Hc is the lowest in
the whole series. This is likely a consequence of the small amount of iron assembled inside
the pores forming isolated, weakly ferromagnetic nanocrystallites of partially oxidized
iron. Annealing of nanoporous samples fully oxidizes iron accumulated inside pores and,
again, due to the inter-granular exchange hardening reversal of magnetization, is more
energetically demanding, which leads to increased coercivity.

We performed recoil curve measurements to test the hypothesis about the specific
behavior of the S20 sample and about its exchange interactions between different magnetic
phases. Figure 7 shows the in-plane hysteresis curves measured for sample S20 at 10 K
directly after deposition and after annealing. A comparison of the curves measured for both
IP and OOP geometries is included in Supplementary Materials as Figure S5, and shows that
the easy axis of magnetization lies in the film plane. Similar behavior was found for samples
S0 and S50. The in-plane anisotropy for the polycrystalline thin iron film is a typical property
and has been observed for Fe films with similar thickness deposited on various substrates
like glass, silicon, or Kapton [55,56]. Hysteresis loops for as-prepared and annealed samples
display steps around H = 15 Oe and H = 200 Oe, respectively (see Figure 7). This indicates
the existence of a soft magnetic phase that could be coupled to the harder magnetic phase
by a weak exchange interaction [57,58]. To confirm the presence of the magnetic exchange
coupling between soft and hard phases, we measured minor hysteresis curves, or recoil
curves, during the reversal process shown in the insets of Figure 7. For a chosen reversal
field HR, the magnetic field is reduced to 0 and increased again to the higher HR value when
the process is repeated. In the case of a strongly coupled system, the recoil curves remain
closed since all magnetic moments show collective behavior, demonstrated, for example, in
FeCo/FePt bilayer systems [59] or in PrFeB permanent magnets [60]. Open recoil curves
are related to uncoupled soft and hard magnetic phases where the openness—the difference
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between the upper and lower branch of recoil curves at their widest point—depends on
the strength of the magnetic interaction between soft and hard phases. Openness decreases
with the increase of the strength of magnetic exchange interactions [58,61]. In the case
of the as-prepared sample S20, a narrow openness of recoil curve for reversal field HR of
350 Oe is found, indicating the existence of interphase magnetic exchange coupling [57].
The annealing causes the increase of the openness of recoil curves due to the increase in
the soft phase contribution to a magnetic signal. This corresponds to the increased amount
of material responsible for the soft phase, similar to the effect observed in iron-based
nanocomposites [62].
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To investigate the essential magnetic properties of nanoporous samples, we carried out
the temperature dependent zero-field cooled and field cooled magnetization measurements.
The ZFC and FC magnetization curves for sample S20 are shown in Figure 8. The ZFC-FC
curves for the as-prepared sample demonstrate the dependence of ferromagnet below
the Curie temperature of unsaturated magnetic moments. On the contrary, the curves
for the annealed sample present well-defined maxima near 50 K, labelled as freezing
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temperature Tf on both MZFC and MFC curves. The presence of the maxima is related to
the appearance of iron oxides at the ATiO/Fe interface and the collective freezing of their
magnetic moments [63], while at high temperatures, a ferromagnetic signal from the Fe
layer dominates.
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The presence of a low-temperature maximum Tf and a decrease of MFC, when low-
ering temperature below Tf, suggests a presence of magnetic glass state, i.e., spin-glass
or super spin-glass [64]. The possibility of the magnetic glass state can originate from the
nanocrystallites of iron oxide formed inside nanopores. As we showed for recoil curve
measurements of the sample S20, two weakly-coupled magnetic phases were observed.
This means that part of iron oxide nanocrystallites can remain magnetically uncoupled and
act as nanoparticles in the blocked state [65]. If, on the other hand, superparamagnetism is
present in the system, it would lead to the increase of magnetization MFC with a decreased
temperature. The low-temperature behavior of the MFC resembles the spin-glass-like state,
which may arise from the iron oxide layer or disordered spins located at the grain boundary
of ferromagnetic components [66–68].

4. Conclusions

We investigated the magnetic properties of iron thin films deposited on nanoporous
titanium oxide as a function of inner pore diameter. The studies were performed directly
after deposition and after thermal treatment. For annealed samples, the saturation magneti-
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zation and effective anisotropy constant were inversely proportional to the diameters of the
pores, showing strong influence of the ATiO morphology. The magnetic hysteresis curves
show the presence of two magnetic phases originating from the iron layer and the iron
oxides formed at the ATiO/Fe interface. Based on the example of the as-deposited sample
S20 and the magnetic recoil curves investigation, a weak exchange coupling interaction
between iron and iron oxides was found and persisted even after annealing. The magnetic
parameters of both phases were determined using the modified Takács model. The coercive
field presented a significant enhancement up to four times, induced by nanoporous mor-
phology and annealing of the samples. The evidence of the existence of a low-temperature
glass-like magnetic state with a freezing temperature Tf ≈ 50 K was shown; it originates
from the chemical disorder and distribution of oxidized iron nanocrystallite sizes formed
at the ATiO/Fe interface.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16010289/s1, Figure S1: Derivative of the upper branch of
hysteresis (top graphs) and modeled magnetization curves (bottom graphs) for as-prepared (A) and
annealed (B) thin iron film deposited on ATiO with 50 nm pores. Calculated magnetic phases are
shown with dashed lines; Figure S2: Enhancement of coercive field for nanopatterned samples; Figure
S3: XPS measurement made at Fe/ATiO interface for as-prepared mesoporous sample; Figure S4:
Effective anisotropy constant as a function of inner pore diameter for as-prepared and annealed
Fe/ATiO samples; Figure S5: Magnetization curves for as-prepared (A) and annealed (B) thin iron
film deposited on mesoporous ATiO at in-plane and out-of-plane geometry.
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