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Abstract

The numerical simulations show the potential of a lattice discrete approach to model
fracture during brittle materials in different two-dimensional quasi-static processes of
loading behaviour. The 2D calculations were carried out for brittle specimens subject
to uniaxial compression, uniaxial extension and shear. The effect of the specimen size
on the global stress-strain diagram during uniaxial tension was also investigated. The
advantages and disadvantages of the model were outlined.
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1. Introduction

Cracks are a fundamental phenomenon in brittle materials (Bazant 2003). The
fracture process is a major case of damage in brittle materials under mechan-
ical loading caused by a significant degradation of the material strength. It is
highly complex due to a heterogeneous structure of brittle materials over many
different length scales, e.g. changing in concrete from the few nanometers (hy-
drated cement) to the milimeters (aggregate particles). A realistic description of
the fracture process is of major importance to ensure safety of the structure and
to optimise the behaviour of material.

The phenomenon of the propagation of cracks in brittle materials can be mod-
elled with continuous and discontinuous models. Continuum models describing
the mechanical behaviour of concrete were formulated within non-linear elasti-
city (Liu et al 1977, Palaniswamy, Shah 1974, Kompfner 1983), rate-independent
plasticity (Mróz 1972, Pietruszczak et al 1988, Klisinski, Mróz 1988, Menetrey,
Willam 1995, Bobinski, Tejchman 2005a), damage theory (Dragon, Mróz 1979,
Peerlings et al 1998, di Prisco, Mazars 1996, Bobinski, Tejchman 2005b), endo-
chronic theory (Bazant, Bhat 1976, Bazant, Shieh 1978), coupled damage and
plasticity (Klisinski, Mróz 1988, de Borst et al 1999, Ibrahimbegovic et al 2003),
microplane theory (Bazant, Ozbolt 1990). To model the thickness and spacing of
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cracks properly, continuum models require an extension in the form of a charac-
teristic length. Such an extension can by done with strain gradient (Zbib, Aifantis
1989, Mühlhaus, Aifantis 1991, Peerlings et al 1998, Pamin, de Borst 1998, Chen
et al 2001, Pamin 2004), viscous (Sluys 1992, Sluys, de Borst 1994) and non-local
terms (Bazant 1986, Pijaudier-Cabot, Bazant 1987, Bazant, Jirasek 2002, Bobinski,
Tejchman 2004). Within discontinuous methods, a discrete element method DEM
(Donze at al 1999, D’Addetta et al 2002) and a lattice model (Herrmann et al
1989, Vervuurt et al 1994, van Mier et al 1995, Schlangen, Garboczi 1997, Lilliu,
van Mier 2003, Vidya Sagar 2004) were applied, among others. The lattice models
are the simplest discrete models to simulate fracture in brittle materials consisting
of a main crack with various branches, secondary cracks and microcracks.

The intention of our research is to describe the mechanism of fracture in
quasi-brittle materials using continuum (Bobinski, Tejchman 2004, 2005, 2006)
and discrete models (Kozicki, Tejchman 2003). In the case of discrete models,
a lattice approach was used in the first step. The goal of simulations presented in
this paper was to present the potential of a lattice model to model the fracture
process in brittle materials during different two-dimensional processes of loading
(uniaxial compression and extension, and shear). In contrast to a lattice model
presented by Vervuurt et al (1994), van Mier et al (1995), Schlangen and Garboczi
(1997), and Lilliu and van Mier (2003), a geometric type lattice model was used.
Owing to that, the computational effort was significantly reduced.

2. Lattice Model

In a conventional lattice model used to describe the fracture process in concrete or
reinforced concrete (Vervuurt et al 1994, van Mier et al 1995, Schlangen, Garboczi
1997, Lilliu, van Mier 2003), each quasi-brittle material is discretized as a lattice
composed of Bernoulli beams (Fig. 1) that transfer normal forces, shear forces
and bending moments. Fracture is simulated by performing a linear elastic analysis
under loading and removing a beam element that exceeds tensile strength. Normal
forces, shear forces and moments are calculated using a conventional simple beam
theory. The stiffness matrix is constructed for the entire lattice. The displacement
vector is calculated similarly as in the conventional FEM (by multiplication of
the inverse global stiffness matrix with the load vector). The heterogeneity of the
material is taken into account by assigning different strengths to beams (using
a Gaussian or Weibull distribution) or by assuming random dimensions of beams
and random geometry of the lattice mesh or by mapping of different material
properties to beams corresponding to the cement matrix, aggregate and interface
zones (Fig. 2), respectively in the case of concrete. To obtain aggregate overlay in
the lattice, a Fuller curve is usually chosen for the distribution of grains. The ratio
between the beam height and the beam length determines the Poisson’s ratio. The
beam length in concrete should be less than lb < dmin

a (where dmin
a is the minimum
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aggregate diameter). The model can identify micro-cracking, crack branching,
crack tortuosity and bridging which lead to the fracture process to be followed
until complete failure (Vidya Sagar 2004). It enables also to capture a size effect
during tension (Vidya Sagar 2004). The advantages of this approach are simplicity
and a direct insight in the fracture process on the level of the micro-structure.
A complex crack patterning can be reproduced. Therein a limited number of
parameters is needed. By applying an elastic-purely brittle local fracture law at
the particle level, global softening behaviour is observed. The disadvantages of the
classical lattice model are the following: the results depend on the beam size and
direction of loading, the response of the material is too brittle (due to the assumed
brittleness of single beams), the compressed beam elements overlap each other
and an extreme computational effort on the structure level is needed. The first
disadvantage can be removed by assuming a heterogeneous structure (Schlangen,
Garboczi 1997). In turn, the second drawback can be improved by 3D calculations
and consideration of very small particles (Lilliu, van Mier 2003), and by applying
a non-local approach in calculations of beam deformations (Schlangen, Garboczi
1997).

Fig. 1. Nodal forces and moments in beams (van Mier et al 1995)

Fig. 2. Lattice of beams for concrete consisting of aggregate, cement matrix and bond
(van Mier et al 1995)

In our 2D-lattice model, the quasi-brittle material was discretized in the form
of a triangular grid including beam elements. The distribution of beams was as-
sumed to be completely random analogously to a Voronoi’s scheme. First, a tri-
angular grid was created in the material with the side dimensions equal to g
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(Fig. 3). In each triangle of the grid, additional interior squares were assumed

with an area of s ð s (s < g /. Next, one point was selected at random within these

interior squares. Later, all points inside of squares were connected with neigh-

bouring ones within a distance of rmax to create a non-uniform mesh of beams,

where the maximum beam length was rmax (e.g. rmax D 2g /, the minimum beam

length was rmin (e.g. rmin D 0:1g for s D 0:6g / and the minimum angle between

beams was assumed to be as Þ (e.g. Þ D 20Ž). A uniform triangular mesh could

be obtained only for the parameter s D 0. Using this grid generation method, the

beams could cross each other in two dimensional calculations (similarly as in the

lattice model by Burt and Dougill (1977)) but they did not intersect each other

in three-dimensional analyses. The beams possessed a longitudinal stiffness de-

scribed by the parameter kl (which controls the changes of the beam length) and

a bending stiffness described by the parameter kb (which controls the changes of

the angle between beams).

Fig. 3. Scheme to assume a non-uniform distribution of beams in the lattice (s – size of interior
squares, rmax – maximum beam radius, a – minimum angle between two beams,

g – size of triangular grid)

In contrast to a conventional lattice method (Schlangen, Garboczi 1997), our

model is of a kinematic type, i.e. the calculations of beam displacements were

carried out on the basis of the consideration of successive geometry changes of

beams due to translation, rotation and deformation (normal and bending). Thus,

the global stiffness matrix was not built and the calculation method had an explicit

character. The displacement of the center of each beam was calculated as the

average displacement of two end nodes belonging to the beam from the previous

iteration step:

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


2D Lattice Model for Fracture in Brittle Materials 141

1 EXi D
1 EXA
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2
; (1)

wherein 1 EXA
i and 1 EXB

i – displacement of the end nodes A and B in the beam
i , respectively. The displacement vector of each beam node was calculated by
averaging the displacements of the end of beams belonging to this node caused
by translation, rotation, normal and bending deformations (Fig. 4):
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Fig. 4. General scheme to calculate displacements of beams in the lattice

wherein:

1
!

X j – resultant node displacement,
!

W – node displacement due to the beam translation,
!

R – node displacement due to the beam rotation,

kl – longitudinal stiffness,

kb – bending stiffness,
!

D – node displacement due to a change of the beam length (induced
by the longitudinal stiffness parameter kl/,

!

B – node displacement due to a change of the rotation angle between
beams (induced by the bending stiffness parameter kb/,

i – beam number,
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j – node number and

n – number of beams belonging to the same node.

The node displacements are calculated successively during each calculation step.

Fig. 5. A simplified lattice composed of 4 beams

The calculation method of the resultant node displacement vectors in a com-

plex grid by Eq. 2 is shown below on the example of a simple lattice composed of 4

beams during one prescribed displacement increment (Fig. 5). The co-ordinates of

the nodes 1 � 5 are following: node 1 (0.4, 1.5), node 2 (0.8, 0.6), node 3 (0.0, 0.0),

node 4 (1.6, 0.5) and node 5 (2.0, 0.0). The nodes 3 and 5 are fixed and the node

1 is assumed to displace to the point with the new co-ordinates (0.58, 1.42). The

displacement vectors of the node 2 in beams 1, 2 and 3 are:
!

W2
1 D .0:09; �0:04/,

!

W2
2 D .0; 0/,

!

W2
3 D .0; 0/,

!

R2
1 D .�0:065; �0:012/,

!

R2
2 D .0; 0/,

!

R2
3 D .0; 0/,

!

D2
1 D

.0:035; �0:131/,
!

D2
2 D .0; 0/,

!

D2
3 D .0; 0/,

!

B2
1 D .0:124; 0:044/,

!

B2
2 D .0:44; �0:064/

and
!

B2
3 D .�0:006; 0:041/, respectively (with the rotation angle of the node 2:

1'2
1 D �8:9Ž (beam 1), 1'2

1 D 4:45Ž (beam 2), and 1'2
1 D �2:97Ž (beam 3)). For

the stiffness parameters kb D 0:6 and kl D 1:0, the resultant displacement vector

of the node 2 is equal to (Eq. 2):
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�

D
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(3)

and the new co-ordinates of node 2 are (0.837, 0.558). In turn, the displacement

vectors of node 4 in beams 3 and 4 are:
!

W4
3 D .0; 0/,

!

W4
4 D .0; 0/,

!

R4
3 D .0; 0/,

!

R4
4 D .0; 0/,

!

D4
3 D .0; 0/,

!

D4
4 D .0; 0/,

!

B4
3 D .�0:006; �0:041/ and

!

B4
4 D .0; 0/, re-

spectively (with the rotation angle of node 4: 1'4
3 D �2:97Ž (beam 3) and

1'4
4 D 2:97Ž (beam 4)). The resultant displacement vector of the node 4 is equal

to (Eq. 2):
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.0; 0/ Ð 1:0 C [.�0:006; �0:041/ C .0; 0/] Ð 0:6

.1:0 C 1:0 C 0:6 C 0:6/

�

D .�0:001; �0:007/;

(4)

and the new co-ordinates of node 4 are (1.599, 0.493). Next, the forces are de-
termined with the aid of corresponding normal strains and a modulus of elasti-
city. For the stiffness parameter kb D 0 in Eq. 2, the beams behave as bars. The
beams were removed from the lattice if the local critical tensile strain "min was

exceeded in each beam. In addition, the beams were removed if both the local
critical tensile strain "min or local critical compressive strain "max were exceeded
in each beam. The assumption of a different ratio between the bending stiffness
and longitudinal stiffness p D kb/ll allowed us to simulate the different Poisson’s
ratio ¹. During simulations presented in the paper, the same local critical strains
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were assumed for all beams ("min D 0:02% for tension and "max D 0:2% for com-

pression). The following strain increments were assumed on the basis of initial

calculations: 0.000032% (uniaxial compression) and 0.000004% (uniaxial tension

and shear). Smaller strain increments only insignificantly influenced the results.

All calculations were strain controlled.

The 2D calculations were carried out mainly with a brittle specimen size of 100

ð 100 mm2 (b ð h/ composed of 20,000 beam elements distributed non-uniformly

(Þ D 20Ž; s D 0:6g ; g ³ 1:5 mm, rmax D 2g . The maximum beam length was about

3 mm and the minimum about 0.6 mm. The modulus of elasticity of all beams was

assumed to be E D 20 GPa. The computation time with 20000 beams was about

10 hours using PC 3.6 GHz.

3. Numerical Results

Figure 6 presents the change of the Poisson’s ratio ¹ versus the parameter stiff-

ness ratio p D kb=kl during uniaxial compression with smooth horizontal edges

at the beginning of deformation (the beams were not removed). For the stiffness

parameter p D 0:6, the Poisson’s ratio ¹ D 0:2 was obtained (typical value for con-

crete). If the stiffness parameter p D 0:01, the Poisson’s ratio was 0.4, and if the

parameter p D 0:001, the Poisson’s ratio was 0.5. In turn, if the parameter p > 1,

Poisson’s ratio became negative (with the smallest value ¹ D �1:0 at p D 10000).

The behaviour of beams with smaller values of p D kb=kl corresponded obviously

to that of bars (Kozicki, Tejchman 2003, 2005).

Fig. 6. Influence of the stiffness ratio p D kb=kl between the longitudinal stiffness and bending
stiffness on Poisson’s ratio ¹ during uniaxial compression with smooth edges (using

semi-logarithmic scale)
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The effect of the stiffness parameter p D kb=kl on the evolution of the global
stress-strain curve ¦ � " (vertical normal stress versus the vertical strain) and crack
propagation in a brittle specimen during uniaxial compression with smooth edges
is shown in Figs. 7–10 (¦ D P=b, " D u2=h; P – global vertical force, u2 – vertical
displacement of the top edge). Figs. 7 and 8 present the results for the case if
only the beams subject to tension were removed at "min D 0:02%.

Fig. 7. Effect of the stiffness ratio p D kb=kl between the bending stiffness and longitudinal
stiffness on the stress-strain curve during uniaxial compression with smooth edges (beams were
removed when "min D 0:02%): a) p D 0:6, b) p D 0:3, c) p D 0:06, d) p D 0:025, e) p D 0:01,

f) p D 0:001

Fig. 8. Effect of the stiffness ratio p D kb=kl between the bending stiffness and longitudinal
stiffness on the crack pattern during uniaxial compression with smooth edges (beams were

removed when "min D 0:02%): a) p D 0:3, b) p D 0:01, c) p D 0:001
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The strength and ductility increase with increasing stiffness parameter p. The
material becomes elastic for p ½ 0:6 and brittle for p < 0:025 (" D 0:3%). In the
last case, the vertical strain corresponding to the material strength is about 0.03%.
The cracks are predominantly vertical (parallel to the loading direction) if p ½ 0:3.
In the case of p < 0:1, the predominant cracks are more inclined.

Figs. 9 and 10 present the results of the case, when the beams subject to both
tension and compression were removed at "min D 0:02%, and "max D 0:2%.

Fig. 9. Effect of the stiffness ratio p D kb=kl between the bending stiffness and longitudinal
stiffness on the stress-strain curve during uniaxial compression with smooth edges (beams were

removed when "min D 0:02% and "max D 0:2%): a) p D 0:6, b) p D 0:3, c) p D 0:06, d) p D 0:025,
e) p D 0:01, f) p D 0:001

Fig. 10. Effect of the ratio stiffness p D kb=kl between the bending stiffness and longitudinal
stiffness on the crack pattern during uniaxial compression with smooth edges (beams were

removed when "min D 0:02% and "max D 0:2%): a) p D 0:3, b) p D 0:01, c) p D 0:001
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The results are similar to those in the previous case for p < 0:3. The strength
increases with increasing p. The material is brittle for p � 0:01 and p ½ 0:3. For
p < 0:3 the cracks are inclined. In turn, for p ½0.3, the main crack becomes
horizontal (perpendicular to the loading direction).

The effect of the roughness of both horizontal edges on the fracture pro-
cess during uniaxial compression is shown in Fig. 11 for p D 0:6 and p D 0:01
(with "min D 0:02%). The results with very rough edges (horizontal displacements
along both edges were assumed to be zero) indicate the appearance of diagonal
intersecting cracks and stiff wedges in the material.

Fig. 11. Evolution of fracture process during uniaxial compression with very rough edges (beams
were removed when "min D 0:02%): a) p D 0:6, b) p D 0:01

The results for uniaxial tension with a small notch at mid-height of the left side
and smooth horizontal edges are demonstrated in Figs. 12 and 13 for the case of
"min D 0:02%. The material behaves in the elastic-purely brittle way for all values
of p. The strength increases with increasing p; and the brittleness increases with
decreasing p. The overall vertical strain corresponding to the peak stress values is
about 0.007–0.009% (thus it is smaller than the local "min/. The crack pattern in
practice does not depend on the parameter p. The main crack is always initiated at
the notch and then propagates almost horizontally through the specimen (Fig. 13).

The effect of the grid parameter s (influencing the minimum beam length and
grid non-uniformity) on the stress-strain curve is shown for uniaxial tension in
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Fig. 12. Effect of the ratio stiffness p D kb=kl between the bending stiffness to the longitudinal
stiffness on the stress-strain curve during uniaxial extension (beams were removed when

"min D 0:02%): a) p D 0:3, b) p D 0:025, c) p D 0:001

Fig. 13. Crack pattern during uniaxial extension in the notched specimen (beams were removed
when "min D 0:02%)
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Fig. 14 (smooth edges, Þ D 20Ž, g ³ 1:5 mm, rmax D 2g). The strength and the
overall vertical strain corresponding to the peak value increase with decreasing s:

For s D 0 ð g (uniform distribution of beams), a horizontal crack occurs.

Fig. 14. Effect of the grid parameter s on the stress-strain curve and crack pattern during uniaxial
extension (p D 0:3, Þ D 20Ž, rmax D 2g ): a) s D 0 ð g , b) s D 0:3 ð g , c) s D 0:6 ð g (beams were

removed when "min D 0:02%)

The obtained crack patterns during uniaxial compression and extension ("min D

0:02% and p D 0:6) are qualitatively in agreement with laboratory experiments
with concrete (van Mier et al 1995, Schlangen, Garboczi 1997). However, the
calculated response of the material during extension is far too brittle.

The results of the fracture process for simple shearing are shown in Fig. 15 for
smooth and very rough edges (with "min D 0:02%, p D 0:6). The main cracks are
created in the direction perpendicular to the principal normal stress. The number
and inclination of cracks depend on both the edge roughness and parameter p.
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The inclination of the main interior crack with respect to the bottom increases
with increasing p and wall roughness.

Fig. 15. Effect of the stiffness ratio p D kb=kl between the bending stiffness to the longitudinal
stiffness on the crack pattern during simple shearing (beams were removed when "min D 0:02%):

a) p D 0:6 (smooth edges), b) p D 0:6 (rough edges), c) p D 0:01 (rough edges)

Fig. 16. Crack propagation in a specimen with two notches under shear (beams were removed
when "min D 0:02%): a) p D 0:6, b) p D 0:01

Figure 16 describes the behaviour of the specimen with two notches under
shear (with "min D 0:02%). The lower part of the specimen under both the notches
was fixed. The horizontal displacement was prescribed to the upper part of the
specimen. The main cracks spreading between both notches which occur during
the process of deformation are curvilinear (p D 0:6) or horizontal (p D 0:01). The
results with p D 0:6 match well with laboratory experiments by Nooru-Mohamed
(1992).

The effect of the specimen size during uniaxial tension with one notch at
the right side and smooth edges is demonstrated in Fig. 17 (with "min D 0:02%,
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Fig. 17. Effect of specimen size for p D 0:01 (beams were removed when "min D 0:02%):

a) stress-strain curve for the specimen of 50 ð 50 mm2 (a), 100 ð 100 mm2 (b) and 200 ð 200

mm2 (c), b) crack propagation in large (200 ð 200 mm2/ and small specimen (50 ð 50 mm2/

p D 0:6). The calculations were performed with 3 different specimens: 50 ð 50
mm2, 100 ð 100 mm2 and 200 ð 200 mm2 using 5000, 20000 and 80000 beam
elements, respectively. Similarly as in experiments with concrete specimens (van
Mier and van Vliet 2003), the strength increases with decreasing specimen size.
The vertical strain corresponding to the strength increases also with decreasing
specimen size. The stress fluctuations grow with decreasing specimen size.

4. Conclusions

The lattice model is a simple approach to the fracture behaviour in quasi-brittle
materials, but very useful in studying and understanding the phenomenon of the
crack formation. Owing to this, novel (stronger and better) engineering materials
can be developed. By using an elastic-purely brittle local fracture law at the particle
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level of the material, global softening behaviour is obtained. The lattice simula-
tions yield a significant size effect in nominal strength, i.e. the strength increases
with decreasing specimen size and increasing size of micro-structure (expressed by
the beam length). The heterogeneous 2D-lattice model used in the paper requires
for the brittle material composed of one component only 3–4 material parameters
(p; E; "min; "max/; and 4 grid parameters related to the distribution, quantity and
length of beams .g ; s; Þ and rmax/. The obtained results of crack patterns are qual-
itatively in agreement with experimental ones for concrete. However, the lattice
stress-strain outcomes are too brittle.

The calculations with a lattice model will be continued. First, the simulations
will be carried out with a real brittle material such as concrete assuming different
material parameters for cement matrix, aggregate grains and interfacial zones.
In addition, the beam strains will be non-locally (influenced by the neighbour-
ing beam strains) calculated to increase the material ductility (Kozicki, Tejchman
2006). To prevent the overlapping of compressed beams, special boundary ele-
ments will be introduced. Next, the model will be extended into 3D. The material
parameters (p, E and "min/, will be stochastically distributed using a Gaussian
or Weibull distribution. The calculations will also be performed with reinforced
concrete elements (Schlangen at al 1994). The results will be directly compared
with laboratory tests to identify the stiffness parameters and critical local strains.
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