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Abstract
This article presents a general, nonlinear isogeometric finite element formula-
tion for rotation-free shells with embedded fibers that captures anisotropy in
stretching, shearing, twisting, and bending—both in-plane and out-of-plane.
These capabilities allow for the simulation of large sheets of heterogeneous and
fibrous materials either with or without matrix, such as textiles, composites, and
pantographic structures. The work is a computational extension of our earlier
theoretical work that extends existing Kirchhoff-Love shell theory to incorporate
the in-plane bending resistance of initially straight or curved fibers. The formu-
lation requires only displacement degrees-of-freedom to capture all mentioned
modes of deformation. To this end, isogeometric shape functions are used in
order to satisfy the required C1-continuity for bending across element bound-
aries. The proposed formulation can admit a wide range of material models, such
as surface hyperelasticity that does not require any explicit thickness integration.
To deal with possible material instability due to fiber compression, a stabiliza-
tion scheme is added. Several benchmark examples are used to demonstrate the
robustness and accuracy of the proposed computational formulation.

K E Y W O R D S

fibrous composites, in-plane bending, isogeometric analysis, material instability,
nonlinear Kirchhoff-Love shells, strain gradient theory

1 INTRODUCTION

The computational simulation of fiber reinforced composites has become an essential tool in designing products, for
example in the automotive, aerospace, biomedical, and sports industry. Besides, computational simulations play an impor-
tant role in analyzing the production process of such composite materials itself. For example, for woven and non-crimp
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fabric composites, this process can include the production of textile fabrics, the stacking of fabric layers, the draping and
fixation of the stack to the desired shape in a mould, and the injection of matrix materials into the mould for bonding
fibers in the final product. Likewise, simulations help in designing pantographic structures and reinforcement layouts for
reinforced concrete structures.

In the above mentioned applications, finite shell elements based on the classical Cauchy continuum for the mem-
brane response are predominantly used to model textile fabrics (e.g., see References 1-4). This choice usually provides a
good prediction of the overall behavior of fabrics, especially for fibers strongly bonded to the matrix. However, it fails to
reproduce localized deformations due to the in-plane bending resistance of embedded fibers. The influence of the in-plane
bending stiffness becomes significant when there is a large change in the in-plane curvature. This happens for example
in shear bands occurring when dry fabrics are deformed.5 Numerical simulations using Cauchy-based shell formulations
will fail to converge to a finite width of the shear bands. Essentially, the classical Cauchy continuum, and numerical
methods based on it, are inconsistent with the observed behavior.

The in-plane bending stiffness can affect not only the localized deformation, but also the global deformation. This is
shown in Madeo et al.6 and Barbagallo et al.7 for the bias extension test of so-called unbalanced woven fabrics, where
the in-plane bending stiffness varies between fiber families. As observed in the experiment,6,7 the global deformation is
asymmetric. Numerical simulations with Cauchy-based shell formulations will also fail to produce such shapes.

The inability to properly respond to in-plane bending deformations is due to the underlying fundamental assumption
of the Cauchy continuum that the corresponding bending moment vanishes at a material point. A more general contin-
uum model is thus required and can be provided by Cosserat theories, as in References 8-10, or strain gradient theories, as
in References 11,12. Both have been used to explicitly account for fiber bending: Steigmann13 presents a Cosserat theory
for the bending resistance of fibers embedded in 3D solids, while other theoretical works adopt strain gradient theories
to describe fiber-reinforced solids,14,15 fabric plates,16 and shells.17

In the literature, there exist also computational models for gradient theory. Ferretti et al.18 present a computational for-
mulation for a so-called constrained micromorphic theory including a second-gradient* model, like the one of Germain,12

as a special case. In order to reproduce the bias extension test for unbalanced fabrics, Madeo et al.6 further extend the
constrained micromorphic continuum model and its corresponding numerical formulation such that it can capture the
change in the relative fiber angles, the variation of the bending stiffness between fiber families, and also the relative slip-
ping of the tows. A finite element formulation for the gradient model of Spencer and Soldatos14 is presented by Asmanoglo
and Menzel.19 Here, the C1-continuity requirement for the second-gradient terms is relaxed by additional field variables
coupled to the deformation gradient.

The computational formulations mentioned so far have focused only on plane strain problems. A general
second-gradient shell formulation that explicitly accounts for in-plane fiber bending, as considered here, is still missing.
It is worth noting that there are also discrete formulations capable of capturing in-plane bending, either using interacting
particles,20 or grids of Euler–Bernoulli beams interconnected by pivots at the intersection points,21 or interconnected by
rotational and translational springs.6

An important development of recent years are high order approximation methods that provide a more accurate
and smoother description of computational domains. In particular, the advent of so-called isogeometric analysis (IGA)22

offers significant advantages over the classical finite element method. Its ability to describe a surface with high accuracy
and smoothness facilitates the recent advancement of so-called rotation-free shell formulations. In such formulations,
the unknowns per node contain only three displacement degrees-of-freedom, while rotations are obtained from the
surface displacement. This is feasible when the discretized geometry is smooth and accurate. Therefore, the com-
bination of IGA with rotation-free shells can increase both accuracy and efficiency of computational formulations.
The work of Kiendl et al.23 is the first combining IGA with rotation-free shells. Since then, rotation-free IGA shells
have been steadily advanced, for example to PHT-splines,24 anisotropic materials,25 damage,26 biological materials,27

fracture,28 liquid shells,29 elasto-plasticity,30 phase separation,31 thermo-mechanical coupling,32 multi-patch constraints
(e.g., see the recent review in Paul et al.33), and reduced quadrature.34 Balobanov et al.35 have presented a gen-
eral strain gradient theory and its corresponding isogeometric finite element formulation for Kirchhoff-Love shells.
The formulation requires at least C2-continuity of the geometry, but does not account for in-plane fiber bending
explicitly.

A formulation for rotation-free isogeometric shells that can capture in-plane bending of embedded fibers has only
recently been presented by Schulte et al.36 While the formulation of Schulte et al. is formulated for Kirchhoff-Love
shell elements, its underlying theory is based on the strain-gradient theory of Steigmann17 for shells with embed-
ded rods. In this theory, the strain tensor related to in-plane curvature is of third order, since it expresses
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the relative change in the surface Christoffel symbols. Strickly speaking, the Christoffel symbols are not tensor
components since they do not transform as such. From the material modeling point of view it can thus be incon-
venient to formulate invariants of such a strain tensor and interpret their geometrical meaning. Further, the the-
ory of Steigmann17 and the implementation of Schulte et al.36 are restricted to two fiber families that are initially
straight. Another IGA-based finite element formulation for the gradient model of Spencer and Soldatos14 has been
presented recently by Witt et al.37 However, it is not a shell formulation and it is also restricted to initially straight
fibers.

In Duong et al.,38 we have proposed an advancement that directly extends Kirchhoff-Love shell theory to incor-
porate general in-plane fiber bending. Although this approach follows the straightforward structure of the classical
Kirchhoff-Love shell, the resulting theory has no restriction on the initial state of fibers, the number of fiber fam-
ilies, and also the initial angle between them. Another advantage of the approach is that it directly uses second
order surface tensors to characterize the deformation, including in-plane bending, which facilitates the induction of
invariants.

In this contribution, we present a rotation-free isogeometric finite element formulation based on the theory by Duong
et al.38 The proposed formulation can capture anisotropy in stretching, shearing, twisting, and bending—both in-plane
and out-of-plane. The formulation is fully presented in the curvilinear coordinate system, which avoids the use of local
Cartesian coordinate transformations at the element level. In summary, our contribution contains the following novelties
and merits:

• It is based on a generalized Kirchhoff-Love shell theory that captures in-plane bending.
• It uses second order tensors for in-plane bending, which facilitates inducing invariants.
• It is analogous to classical rotation-free isogeometric finite shell element formulations.
• It admits initially curved fibers, multiple fiber families, and general initial fiber angles.
• It avoids transforming derivatives into Cartesian coordinates at the element level.
• It includes the full linearization and efficient implementation for IGA-based finite elements.

The remaining presentation of the article is structured as follows: Section 2 summarizes the generalized
Kirchhoff-Love shell theory of Duong et al.38 Section 3 presents the linearization of its weak form and the introduction of
the new material tangents associated with in-plane bending. Section 4 discusses the isogeometric finite element discretiza-
tion of the formulation. Two material models for simple fabrics and woven fabrics are given in Section 5. Sections 6 and 7
illustrate the performance of the proposed formulation by numerical examples with homogeneous and inhomogeneous
deformations, respectively. Section 8 concludes the article.

2 SUMMARY OF GENERALIZED KIRCHHOFF-LOVE SHELL THEORY

This section summarizes the kinematics, stresses, moments, weak form, and constitutive equations according to the
generalized thin shell theory of Duong et al.38

2.1 Geometrical description of fiber-embedded surfaces

The mid-surface  of a thin shell at time t is represented in curvilinear coordinates (𝜉1, 𝜉2) ∈  by

x = x(𝜉𝛼, t), with 𝛼 = 1, 2. (1)

At any point x ∈  , a curvilinear basis can be constructed from two (covariant) tangent vectors a𝛼 and a unit normal
vector n to surface  . They are defined by

a𝛼 ∶= 𝜕x
𝜕𝜉𝛼

= x,𝛼, and n ∶= a1 × a2||a1 × a2|| , (2)
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4 DUONG et al.

where the comma denotes the parametric derivative. The dual tangent vectors a𝛼 are related to the covariant tangent
vectors by a𝛼 = a𝛼𝛽 a𝛽 and a𝛼 = a𝛼𝛽 a𝛽 .† Here, a𝛼𝛽 ∶= a𝛼 ⋅ a𝛽 and a𝛼𝛽 ∶= a𝛼 ⋅ a𝛽 denote the surface metrics.

Consider a fiber curve (or a curve of fiber bundles)  embedded in surface  and given by x = xc(s) (see Figure 1). Its
normalized tangent vector at location s can be defined by

𝓵 ∶= 𝜕xc

𝜕s
= 𝓁𝛼 a𝛼 = 𝓁𝛼 a𝛼, (3)

while the so-called in-plane fiber director c, perpendicular to 𝓵, can be defined by

c ∶= n × 𝓵 = c𝛼 a𝛼 = c𝛼 a𝛼. (4)

The out-of-plane curvature of surface  can be described by the symmetric second order tensor

b ∶= b𝛼𝛽 a𝛼 ⊗ a𝛽 , (5)

with the components expressed by

b𝛼𝛽 ∶= −n,𝛼 ⋅ a𝛽 = n ⋅ a𝛼,𝛽 = n ⋅ a𝛼;𝛽 . (6)

Here,

a𝛼,𝛽 ∶= 𝜕a𝛼

𝜕𝜉𝛽
= x,𝛼𝛽 = Γ𝛾

𝛼𝛽
a𝛾 + b𝛼𝛽 n, and a𝛼;𝛽 ∶= (n ⊗ n) a𝛼,𝛽 (7)

are the parametric and covariant derivative of a𝛼 , respectively. In Equation (7.1), Γ𝛾

𝛼𝛽
∶= a𝛼,𝛽 ⋅ a𝛾 denote the surface

Christoffel symbols. They can be expressed as

Γ𝛾

𝛼𝛽
= c𝛾 Γc

𝛼𝛽
+ 𝓁𝛾 Γ𝓁

𝛼𝛽
, (8)

where

Γc
𝛼𝛽

∶= c ⋅ a𝛼,𝛽 = c𝛾 Γ𝛾

𝛼𝛽
,

Γ𝓁
𝛼𝛽

∶= 𝓵 ⋅ a𝛼,𝛽 = 𝓁𝛾 Γ𝛾

𝛼𝛽
. (9)

Furthermore, in order to characterize in-plane curvatures, the so-called in-plane curvature tensor b of fiber  is defined
as the (negative) symmetric part of the projected surface gradient of director c. That is,

F I G U R E 1 A fiber bundle represented by curve  embedded in shell surface  . The red planes illustrate tangent planes38
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DUONG et al. 5

b ∶= −1
2

[
∇sc + (∇sc)T

]
= b𝛼𝛽 a𝛼 ⊗ a𝛽 , (10)

where ∇s• ∶= (•,𝛽 ⋅ a𝛼) a𝛼 ⊗ a𝛽 denotes the projected surface gradient operator.‡ In Equation (10), components b𝛼𝛽 can
be computed from

b𝛼𝛽 = −1
2
(c𝛼;𝛽 + c𝛽;𝛼) = −1

2
(c,𝛼 ⋅ a𝛽 + c,𝛽 ⋅ a𝛼) = −1

2
(c,𝛼 ⋅ a𝛽 + c,𝛽 ⋅ a𝛼), (11)

where c,𝛼 = b𝛼𝛽 c𝛽 n + c𝛽;𝛼 a𝛽 , and

c,𝛼 ∶= (a𝛽 ⊗ a𝛽) c,𝛼 = c𝛽;𝛼 a𝛽 , (12)

is the projection of c,𝛼 onto the tangent plane.

2.2 Shell deformation

The shell deformation is measured with respect to the reference configuration 0 at time t0. Analogous to Section 2.1, we
define geometrical objects on 0, such as the tangent vectors A𝛼 , the normal vector N, the metric A𝛼𝛽 , the out-of-plane
curvature tensor b0 ∶= B𝛼𝛽A𝛼 ⊗ A𝛽 , the fiber direction L = L𝛼A𝛼 = L𝛼A𝛼 , the fiber director c0 = c0

𝛼 A𝛼 , and the in-plane
curvature tensor b0 ∶= B𝛼𝛽 A𝛼 ⊗ A𝛽 . The deformation of the fiber-embedded shell can then be characterized by the
following quantities:

1. The surface deformation gradient tensor,

F ∶= a𝛼 ⊗ A𝛼. (13)

It can be used to construct surface strain measures such as the right Cauchy–Green surface tensor C ∶= FT F =
a𝛼𝛽A𝛼 ⊗ A𝛽 , and the Green-Lagrange surface strain tensor

E ∶= 1
2
(C − I) = 1

2
(a𝛼𝛽 − A𝛼𝛽) A𝛼 ⊗ A𝛽 = E𝛼𝛽 A𝛼 ⊗ A𝛽 . (14)

2. The relative out-of-plane curvature tensor,

K ∶= FT b F − b0 = (b𝛼𝛽 − B𝛼𝛽) A𝛼 ⊗ A𝛽 = K𝛼𝛽 A𝛼 ⊗ A𝛽 . (15)

3. The relative in-plane curvature tensor,

K ∶= FT b F − b0 = (b𝛼𝛽 − B𝛼𝛽) A𝛼 ⊗ A𝛽 = K𝛼𝛽 A𝛼 ⊗ A𝛽 . (16)

Remark 1. Note, that apart from definition (3), the fiber direction vector𝓵 can also be computed from the (given) reference
fiber direction vector L via the mapping

𝜆 𝓵 = F L = L𝛼 a𝛼, (17)

where 𝜆 is the fiber stretch. From this and relation (4), one thus obtains

c𝛽;𝛼 = −𝓁𝛽 (c𝛾 L̂𝛾,𝛼 + 𝓁𝛾 Γc
𝛾𝛼),

c𝛽;𝛼 = −𝓁𝛽 (c𝛾 L̂𝛾,𝛼 + 𝓁𝛾 Γc
𝛾𝛼), (18)

on the basis of the definition
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6 DUONG et al.

L̂𝛼,𝛽 ∶= a𝛼𝛾 L̂𝛾

,𝛽 , with L̂𝛼

,𝛽 ∶= 𝜆−1 L𝛼
,𝛽
. (19)

Remark 2. Inserting (18) into (12) gives

c,𝛼 = −(c𝛾 L̂𝛾,𝛼 + 𝓁𝛾 Γc
𝛾𝛼) 𝓵. (20)

Remark 3. The right Cauchy–Green tensor C and the relative curvature tensors K and K are all symmetric and of second
order. They induce various invariants that can be useful for the constitutive modeling. For example,

Λ ∶= C ∶ L ⊗ L = a𝛼𝛽 L𝛼𝛽 = 𝜆2, with L𝛼𝛽 ∶= L𝛼 L𝛽 ,

Kn ∶= K ∶ L ⊗ L = (b𝛼𝛽 − B𝛼𝛽) L𝛼𝛽 ,

Tg ∶= K ∶ c0 ⊗ L = K ∶ L ⊗ c0 = (b𝛼𝛽 − B𝛼𝛽) L𝛼 c𝛽0 ,

Kg ∶= K ∶ L ⊗ L = (b𝛼𝛽 − B𝛼𝛽) L𝛼𝛽 , (21)

express the square of the fiber stretch, the so-called nominal change in normal curvature, the nominal change in geodesic
torsion, and the nominal change in geodesic curvature of the curve, respectively (see Reference 38). It should be noted that
the measures Kn, Tg, and Kg are not invariants in a strict sense since their sign is not invariant (although their magnitude
still is). Specifically, the sign of Kn and Tg changes when surface director N is flipped, while the sign of Kg depends on the
sign of both N and L due to Equations (4) and (11).

2.3 Stress and moment tensors

Consider cutting the shell  virtually apart at x ∈  by the line (s) characterized by the unit tangent vector 𝝉 ∶= 𝜕x∕𝜕s
and the unit normal 𝝂 ∶= 𝝉 × n = 𝜈𝛼 a𝛼 . The traction and moment vectors§ appearing at the cut are general vectors in R3

that can be expressed as

T = T𝛼 a𝛼 + T3 n,
m̂ = m𝜏 𝝉 + m𝜈 𝝂 + m n, (22)

respectively. The last equation implies that the moment vector m̂ includes a moment m ∶= m𝜏 𝝉 + m𝜈 𝝂 that causes
out-of-plane bending and twisting, and a moment m ∶= m n that causes in-plane bending. The traction and moment
vectors (22) induce corresponding internal stresses and moment tensors of the form

𝝈 = N𝛼𝛽 a𝛼 ⊗ a𝛽 + S𝛼 a𝛼 ⊗ n,
�̂� = m𝛼𝛽a𝛼 ⊗ a𝛽 + m𝛼 a𝛼 ⊗ n. (23)

According to Cauchy’s theorem, these tensors linearly map the cut normal 𝝂 to the traction and moment vectors (22) as

T = 𝝈T 𝝂, and m̂ = �̂�T 𝝂. (24)

Since moment tensor �̂� (23.2) is generally asymmetric, it is more convenient to work with the corresponding stress couple
tensor instead. To this end, Equation (24.2) is rewritten as

m̂ = m + m = n × M + c × M, (25)

where

M = 𝝁T 𝝂, and M = 𝝁
T
𝝂 = −m 𝓵, (26)

denote the so-called stress couple vectors for out-of-plane and in-plane bending, respectively. 𝝁 and 𝝁 are the correspond-
ing stress couple tensors. They can be expressed as

𝝁 = −M𝛼𝛽 a𝛼 ⊗ a𝛽 , and 𝝁 = −M
𝛼𝛽

a𝛼 ⊗ a𝛽 . (27)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


DUONG et al. 7

Note that, in order to relate the components of traction and moment vectors to the components of the internal stress and
stress couple tensors, one can compare (22) and (24). This gives

T𝛼 = 𝜈𝛽 N𝛽𝛼,

T3 = 𝜈𝛼 S𝛼,

m𝜈 = M𝛼𝛽𝜈𝛼 𝜏𝛽 ,

m𝜏 = −M𝛼𝛽 𝜈𝛼 𝜈𝛽 ,

m = M
𝛼𝛽

𝜈𝛼 𝓁𝛽 = m𝛼
𝜈𝛼.

(28)

2.4 Weak form and constitutive equations

Consider the shell subjected to the external body force f = f 𝛼 a𝛼 + p n on  and to the boundary conditions

u = u on 𝜕u , T = T on 𝜕t , m̂ = ̄̂m on 𝜕m . (29)

Here, u is a prescribed displacement, T is a prescribed boundary traction, and ̄̂m is a prescribed bending moment. The
equilibrium of the shell is then governed by the balance of linear and angular momentum. Accordingly, the weak form
follows as

Gin + Gint − Gext = 0 ∀ 𝛿x ∈  , (30)

where  denotes the set of kinematically admissible variations that satisfy boundary condition (29.1), and

Gin = ∫0

𝛿x ⋅ 𝜌0 v̇ dA,

Gint =
1
2 ∫0

𝜏𝛼𝛽 𝛿a𝛼𝛽 dA + ∫0

M𝛼𝛽

0 𝛿b𝛼𝛽 dA +
nf∑

i=1
∫0

M
𝛼𝛽

0i 𝛿b
i
𝛼𝛽 dA,

Gext = ∫
𝛿x ⋅ f da + ∫

𝜕
𝛿x ⋅ T ds + ∫

𝜕
𝛿n ⋅ M ds +

nf∑
i=1

∫
𝜕

𝛿ci ⋅ Mi ds. (31)

Here, nf denotes the number of fiber families and the quantities indexed by i imply that they are defined for fiber family
i. Further, 𝜏𝛼𝛽 , M𝛼𝛽

0 , and M
𝛼𝛽

0i are the components of the nominal effective stress tensor, the nominal stress couple tensor
associated with out-of-plane bending, and the nominal stress couple tensor associated with in-plane bending, respectively.
They are all symmetric and, for hyperelastic materials, can be obtained as the derivative of a stored energy function,

W = W
(

a𝛼𝛽 , b𝛼𝛽 , b
i
𝛼𝛽 ; h𝛼𝛽

i

)
, (32)

with respect to the corresponding work-conjugate kinematic variables defined in Section 2.1. That is, the internal virtual
work in Equation (31.2) can be written as Gint = ∫0

𝛿W dA, since

𝛿W = 1
2
𝜏𝛼𝛽 𝛿a𝛼𝛽 + M𝛼𝛽

0 𝛿b𝛼𝛽 +
nf∑

i=1
M

𝛼𝛽

0i 𝛿b
i
𝛼𝛽 , (33)

where

𝜏𝛼𝛽 = 2 𝜕W
𝜕a𝛼𝛽

, M𝛼𝛽

0 = 𝜕W
𝜕b𝛼𝛽

, M
𝛼𝛽

0i = 𝜕W

𝜕b
i
𝛼𝛽

. (34)

In Equation (32), h𝛼𝛽

i collectively denote the components of any structural tensors characterizing material anisotropy. In
the following, fiber index i is skipped in M

𝛼𝛽

0 , b𝛼𝛽 , L̂𝛽

,𝛼 , vectors c, 𝓵, m, and M (including their components and derivatives)
to simplify the notation where no ambiguities arise.
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8 DUONG et al.

For Gint in Equation (31.2), one requires the variations (see Reference 38)

𝛿a𝛼𝛽 = 𝛿a𝛼 ⋅ a𝛽 + a𝛼 ⋅ 𝛿a𝛽 ,

𝛿b𝛼𝛽 = n ⋅ 𝛿d𝛼𝛽 , with 𝛿d𝛼𝛽 ∶= 𝛿a𝛼,𝛽 − Γ𝛾

𝛼𝛽
𝛿a𝛾 ,

M
𝛼𝛽

0 𝛿b𝛼𝛽 = −M
𝛼𝛽

0 (𝛿a𝛼 ⋅ c,𝛽 + a𝛼 ⋅ 𝛿c,𝛽). (35)

In the last equation, we have used the symmetry of M
𝛼𝛽

0 .¶ The variation 𝛿c,𝛼 follows from Equation (20) as

𝛿c,𝛼 =
[𝛾

𝛼 (n ⊗ n + c ⊗ c − 𝓵 ⊗ 𝓵) − 𝛾
𝛼 𝓵 ⊗ c − 𝛾

𝛼 𝓵 ⊗ n
]
𝛿a𝛾 − 𝓁𝛾 (𝓵 ⊗ c) 𝛿a𝛾,𝛼, (36)

where

𝛾
𝛼 ∶= −𝓁𝛾

(
c𝛽 L̂𝛽

,𝛼 + 𝓁𝛽 Γc
𝛽𝛼

)
𝛾
𝛼 ∶= L̂𝛾

,𝛼 − 𝓁𝛾
(
𝓁𝛽 L̂𝛽

,𝛼 + 𝓁𝛽 Γ𝓁
𝛽𝛼

)
 𝛾

𝛼 ∶= c𝛾 𝓁𝛽 b𝛽𝛼. (37)

Further, for the external virtual work (31.3), one requires the variations (see Reference 38)

𝛿n = − (c𝛼 c ⊗ n + 𝓁𝛼 𝓵 ⊗ n) 𝛿a𝛼,

𝛿c = (c𝛼 n ⊗ n − 𝓁𝛼 𝓵 ⊗ c) 𝛿a𝛼. (38)

With this and Equation (25), the last term in Equation (31.3) can be rewritten into

∫
𝜕

𝛿c ⋅ M ds = ∫
𝜕

𝛿c ⋅ (m × c) ds = −∫
𝜕

𝛿c ⋅ 𝓵 m ds = ∫
𝜕

𝓁𝛼 𝛿a𝛼 ⋅ c m ds, (39)

where m is an external bending moment causing in-plane bending. Inserting (39) into Equation (31.3) gives (see also
References 39,40)

Gext = ∫0

𝛿x ⋅ f0 dA + ∫
𝛿x ⋅ p n da + ∫

𝜕t
𝛿x ⋅ t ds + [𝛿x ⋅ m𝜈 n]

+ ∫
𝜕m𝜏

𝛿n ⋅ m𝜏 𝝂 ds + ∫
𝜕m

𝓁𝛼 𝛿a𝛼 ⋅ c m ds. (40)

Here, we have assumed an external body force of the form f = f0∕J + p n, where f0 denotes a constant body force, and p is
an external pressure acting always normal to shell surface  . Further, t ∶= T − (m𝜈 n)′ is the effective boundary traction,
m𝜏 is external moment causing out-of-plane bending, and m𝜈 is a point load at corners on Neumann boundaries where
𝛿x ≠ 0.

3 LINEARIZATION OF THE WEAK FORM

This section presents the linearization of weak form (30) required for the development of the rotation-free isogeometric
finite element shell formulation in Section 4. The more important internal virtual work is discussed here, while the
external virtual work can be found in Appendix A.1. We focus on quasi-static conditions, that is, the inertial term 𝜌0 v̇
vanishes.

The linearization of Gint in Equation (31) requires the increment of 𝛿W , which follows from Equation (33) as

Δ𝛿W = 𝛿a𝛼𝛽
𝜕2W

𝜕a𝛼𝛽 𝜕a𝛾𝛿

Δa𝛾𝛿 + 𝛿a𝛼𝛽
𝜕2W

𝜕a𝛼𝛽 𝜕b𝛾𝛿

Δb𝛾𝛿 +
𝜕W
𝜕a𝛼𝛽

Δ𝛿a𝛼𝛽

+ 𝛿b𝛼𝛽
𝜕2W

𝜕b𝛼𝛽 𝜕a𝛾𝛿

Δa𝛾𝛿 + 𝛿b𝛼𝛽
𝜕2W

𝜕b𝛼𝛽 𝜕b𝛾𝛿

Δb𝛾𝛿 +
𝜕W
𝜕b𝛼𝛽

Δ𝛿b𝛼𝛽
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+
nf∑

i=1

⎛⎜⎜⎝𝛿a𝛼𝛽
𝜕2W

𝜕a𝛼𝛽 𝜕b
i
𝛾𝛿

Δb
i
𝛾𝛿 + 𝛿b

i
𝛼𝛽

𝜕2W

𝜕b
i
𝛼𝛽 𝜕a𝛾𝛿

Δa𝛾𝛿

⎞⎟⎟⎠ +
nf∑

i,j=1

⎛⎜⎜⎝𝛿b
i
𝛼𝛽

𝜕2W

𝜕b
i
𝛼𝛽 𝜕b

j
𝛾𝛿

Δb
j
𝛾𝛿

⎞⎟⎟⎠
+

nf∑
i=1

⎛⎜⎜⎝𝛿b𝛼𝛽
𝜕2W

𝜕b𝛼𝛽 𝜕b
i
𝛾𝛿

Δb
i
𝛾𝛿 + 𝛿b

i
𝛼𝛽

𝜕2W

𝜕b
i
𝛼𝛽 𝜕b𝛾𝛿

Δb𝛾𝛿 +
𝜕W

𝜕b
i
𝛼𝛽

Δ𝛿b
i
𝛼𝛽

⎞⎟⎟⎠ , (41)

where the term containing indices i and j accounts for an explicit coupling between fiber families. Introducing the material
tangents

c𝛼𝛽𝛾𝛿 ∶= 4 𝜕2W
𝜕a𝛼𝛽 𝜕a𝛾𝛿

= 2 𝜕𝜏𝛼𝛽

𝜕a𝛾𝛿

,

d𝛼𝛽𝛾𝛿 ∶= 2 𝜕2W
𝜕a𝛼𝛽 𝜕b𝛾𝛿

= 𝜕𝜏𝛼𝛽

𝜕b𝛾𝛿
,

e𝛼𝛽𝛾𝛿 ∶= 2 𝜕2W
𝜕b𝛼𝛽 𝜕a𝛾𝛿

= 2 𝜕M𝛼𝛽

0
𝜕a𝛾𝛿

,

f 𝛼𝛽𝛾𝛿 ∶= 𝜕2W
𝜕b𝛼𝛽 𝜕b𝛾𝛿

= 𝜕M𝛼𝛽

0
𝜕b𝛾𝛿

,

d
𝛼𝛽𝛾𝛿

i ∶= 2 𝜕2W

𝜕a𝛼𝛽 𝜕b
i
𝛾𝛿

= 𝜕𝜏𝛼𝛽

𝜕b
i
𝛾𝛿

,

ē𝛼𝛽𝛾𝛿i ∶= 2 𝜕2W

𝜕b
i
𝛼𝛽

𝜕a𝛾𝛿

= 2 𝜕M
𝛼𝛽

0i
𝜕a𝛾𝛿

,

f
𝛼𝛽𝛾𝛿

ij ∶= 𝜕2W

𝜕b
i
𝛼𝛽

𝜕b
j
𝛾𝛿

= 𝜕M
𝛼𝛽

0i

𝜕b
j
𝛾𝛿

,

g𝛼𝛽𝛾𝛿i ∶= 𝜕2W

𝜕b𝛼𝛽 𝜕b
i
𝛾𝛿

= 𝜕M𝛼𝛽

0

𝜕b
i
𝛾𝛿

,

h
𝛼𝛽𝛾𝛿

i ∶= 𝜕2W

𝜕b
i
𝛼𝛽

𝜕b𝛾𝛿
= 𝜕M

𝛼𝛽

0i
𝜕b𝛾𝛿

,

(42)

Equation (41) becomes

Δ𝛿W = c𝛼𝛽𝛾𝛿 1
2
𝛿a𝛼𝛽

1
2
Δa𝛾𝛿 + d𝛼𝛽𝛾𝛿 1

2
𝛿a𝛼𝛽 Δb𝛾𝛿 + 𝜏𝛼𝛽

1
2
Δ𝛿a𝛼𝛽

+ e𝛼𝛽𝛾𝛿 𝛿b𝛼𝛽
1
2
Δa𝛾𝛿 + f 𝛼𝛽𝛾𝛿 𝛿b𝛼𝛽 Δb𝛾𝛿 + M𝛼𝛽

0 Δ𝛿b𝛼𝛽

+
nf∑

i=1

(
d
𝛼𝛽𝛾𝛿

i
1
2
𝛿a𝛼𝛽 Δb

i
𝛾𝛿 + ē𝛼𝛽𝛾𝛿i 𝛿b

i
𝛼𝛽

1
2
Δa𝛾𝛿

)
+

nf∑
i,j=1

(
f
𝛼𝛽𝛾𝛿

ij 𝛿b
i
𝛼𝛽 Δb

j
𝛾𝛿

)
+

nf∑
i=1

(
g𝛼𝛽𝛾𝛿i 𝛿b𝛼𝛽 Δb

i
𝛾𝛿 + h

𝛼𝛽𝛾𝛿

i 𝛿b
i
𝛼𝛽 Δbi

𝛾𝛿
+ M

𝛼𝛽

0i Δ𝛿b
i
𝛼𝛽

)
. (43)

Here and elsewhere, the increments of kinematical quantities like Δa𝛼𝛽 , Δb𝛼𝛽 , and Δb𝛼𝛽 can be taken from their
corresponding variations simply by replacing 𝛿 with Δ.

Considering the minor symmetries of the material tangents,# we find

c𝛼𝛽𝛾𝛿 1
2
𝛿a𝛼𝛽

1
2
Δa𝛾𝛿 = 𝛿a𝛼 ⋅ a𝛽 c𝛼𝛽𝛾𝛿 a𝛾 ⋅ Δa𝛿,

d𝛼𝛽𝛾𝛿 1
2
𝛿a𝛼𝛽 Δb𝛾𝛿 = 𝛿a𝛼 ⋅ a𝛽 d𝛼𝛽𝛾𝛿 n ⋅ Δd𝛾𝛿,

e𝛼𝛽𝛾𝛿 𝛿b𝛼𝛽
1
2
Δa𝛾𝛿 = 𝛿d𝛼𝛽 ⋅ n e𝛼𝛽𝛾𝛿 a𝛾 ⋅ Δa𝛿,

f 𝛼𝛽𝛾𝛿 𝛿b𝛼𝛽 Δb𝛾𝛿 = 𝛿d𝛼𝛽 ⋅ n f 𝛼𝛽𝛾𝛿 n ⋅ Δd𝛾𝛿,

d
𝛼𝛽𝛾𝛿 1

2
𝛿a𝛼𝛽 Δb𝛾𝛿 = −𝛿a𝛼 ⋅ a𝛽 d

𝛼𝛽𝛾𝛿

(a𝛿 ⋅ Δc,𝛾 + c,𝛾 ⋅ Δa𝛿),

ē𝛼𝛽𝛾𝛿 𝛿b𝛼𝛽
1
2
Δa𝛾𝛿 = −(𝛿c,𝛼 ⋅ a𝛽 + 𝛿a𝛽 ⋅ c,𝛼) ē𝛼𝛽𝛾𝛿 a𝛾 ⋅ Δa𝛿,

f
𝛼𝛽𝛾𝛿

𝛿b𝛼𝛽 Δb𝛾𝛿 = +(𝛿c,𝛼 ⋅ a𝛽 + 𝛿a𝛽 ⋅ c,𝛼) f
𝛼𝛽𝛾𝛿

(a𝛿 ⋅ Δc,𝛾 + c,𝛾 ⋅ Δa𝛿),

g𝛼𝛽𝛾𝛿 𝛿b𝛼𝛽 Δb𝛾𝛿 = −𝛿d𝛼𝛽 ⋅ n g𝛼𝛽𝛾𝛿 (a𝛿 ⋅ Δc,𝛾 + c,𝛾 ⋅ Δa𝛿),

h
𝛼𝛽𝛾𝛿

𝛿b𝛼𝛽 Δb𝛾𝛿 = −(𝛿c,𝛼 ⋅ a𝛽 + 𝛿a𝛽 ⋅ c,𝛼) h
𝛼𝛽𝛾𝛿

n ⋅ Δd𝛾𝛿, (44)

where Equation (35) has been used. The linearization of 𝛿a𝛼𝛽 and 𝛿b𝛼𝛽 follows from Equations (35.1) and (35.2) as40
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10 DUONG et al.

Δ𝛿a𝛼𝛽 = 𝛿a𝛼 ⋅ Δa𝛽 + 𝛿a𝛽 ⋅ Δa𝛼,

Δ𝛿b𝛼𝛽 = −(𝛿d𝛼𝛽 ⋅ a𝛾 ) (n ⋅ Δa𝛾 ) − (𝛿a𝛾 ⋅ n) (a𝛾 ⋅ Δd𝛼𝛽) − b𝛼𝛽 a𝛾𝛿 (𝛿a𝛾 ⋅ n) (n ⋅ Δa𝛿). (45)

From Equation (35.3), we find

M
𝛼𝛽

0 Δ𝛿b𝛼𝛽 = −M
𝛼𝛽

0 (𝛿a𝛼 ⋅ Δc,𝛽 + Δa𝛼 ⋅ 𝛿c,𝛽 + a𝛼 ⋅ Δ𝛿c,𝛽), (46)

due to the symmetry of M
𝛼𝛽

0 . Using Equation (36), the last term in (46) can be expressed as

M
𝛽𝛼

0 a𝛽 ⋅ Δ𝛿c,𝛼 = 𝛿a𝛾 P𝛾𝛽 Δa𝛽 + 𝛿a𝛽 Q𝛽𝛾𝛼 Δa𝛾,𝛼 + 𝛿a𝛾,𝛼 Q𝛽𝛾𝛼 Δa𝛽 , (47)

where we have defined the tensors

P𝛾𝛽 ∶= P𝛾𝛽
cc c ⊗ c + P𝛾𝛽

𝓁𝓁 𝓵 ⊗ 𝓵 + P𝛾𝛽
nn n ⊗ n + P𝛾𝛽

𝓁c (𝓵 ⊗ c + c ⊗ 𝓵)

+ P𝛾𝛽

𝓁n (𝓵 ⊗ n + n ⊗ 𝓵) + P𝛾𝛽
nc (n ⊗ c + c ⊗ n),

Q𝛽𝛾𝛼 ∶= 𝓁𝛽𝛾 M
𝛼

c c ⊗ c − 𝓁𝛽𝛾 M
𝛼

𝓁(c ⊗ 𝓵 + 𝓵 ⊗ c) + c𝛽 𝓁𝛾 M
𝛼

𝓁 n ⊗ n. (48)

Here, M
𝛼

c ∶= −M
𝛼𝛽

0 c𝛽 , M
𝛼

𝓁 ∶= −M
𝛼𝛽

0 𝓁𝛽 , and

P𝛾𝛽
cc ∶= 3

2
M

𝛼

𝓁

(𝛾
𝛼 𝓁𝛽 + 𝛽

𝛼 𝓁𝛾
)
+ M

𝛼

c

(𝛾
𝛼 𝓁𝛽 + 𝛽

𝛼 𝓁𝛾
)
,

P𝛾𝛽

𝓁𝓁 ∶= −M
𝛼

𝓁

(
𝓁𝛾 𝛽

𝛼 + 𝓁𝛽 𝛾
𝛼

)
,

P𝛾𝛽
nn ∶= M

𝛼

𝓁 𝛽
𝛼 c𝛾 + M

𝛼

𝓁 𝛽
𝛼 𝓁𝛾 − M

𝛼

𝓁 c𝛽 Γ𝛾

𝛼𝛿
𝓁𝛿 − M

𝛼

c 𝛽
𝛼c𝛾 − M

𝛾𝛼

0 𝛽
𝛼,

P𝛾𝛽

𝓁c ∶= −M
𝛼

𝓁

(𝛾
𝛼 𝓁𝛽 + 𝓁𝛾 𝛽

𝛼

)
+ M

𝛼

c

(
𝓁𝛾 𝛽

𝛼 + 𝓁𝛽 𝛾
𝛼

)
,

P𝛾𝛽

𝓁n ∶= − M
𝛼

𝓁

( 𝛾
𝛼 𝓁𝛽 + 𝓁𝛾  𝛽

𝛼

)
,

P𝛾𝛽
nc ∶= − M

𝛼

𝓁 b𝛼𝛿 𝓁𝛿
(
𝓁𝛾𝛽 + c𝛾𝛽

)
+ M

𝛼

c

( 𝛾
𝛼 𝓁𝛽 + 𝓁𝛾  𝛽

𝛼

)
, (49)

where 𝛼
𝛽
, 𝛼

𝛽
, and  𝛼

𝛽
are given in Equation (37).

4 FE DISCRETIZATION

This section presents the isogeometric finite element discretization and corresponding linearization of weak form (30).
An efficient implementation of the FE formulation can then be found in Appendix B.

4.1 Surface discretization

The geometry within an undeformed element Ωe
0 and its deformed counterpart Ωe is interpolated from the positions of

elemental control points Xe and xe, respectively, as

X = N Xe, and x = N xe, (50)

where N(𝝃) ∶= [N11, N21, … , Nne 1] is defined based on isogeometric shape functions41 and ne denotes the number of
control points defining the element. From Equation (50) follows

𝛿x = N 𝛿xe,

a𝛼 = N,𝛼 xe,

𝛿a𝛼 = N,𝛼 𝛿xe,

a𝛼,𝛽 = N,𝛼𝛽 xe,

a𝛼;𝛽 = N;𝛼𝛽 xe,

𝛿c,𝛼 = C,𝛼 𝛿xe,

(51)
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with

N,𝛼 ∶= [N1,𝛼1, N2,𝛼1, … , Nne,𝛼1],
N,𝛼𝛽 ∶= [N1,𝛼𝛽1, N2,𝛼𝛽1, … , Nne,𝛼𝛽1],
N;𝛼𝛽 ∶= N,𝛼𝛽 − Γ𝛾

𝛼𝛽
N,𝛾 ,

C,𝛼 ∶=
[𝛾

𝛼 (n ⊗ n + c ⊗ c − 𝓵 ⊗ 𝓵) − 𝛾
𝛼 𝓵 ⊗ c − 𝛾

𝛼 𝓵 ⊗ n
]

N,𝛾 − 𝓁𝛾 (𝓵 ⊗ c) N,𝛾𝛼. (52)

Here, NA,𝛼 = 𝜕NA∕𝜕𝜉𝛼 , and NA,𝛼𝛽 = 𝜕2NA∕(𝜕𝜉𝛼𝜕𝜉𝛽) (A = 1, … ,ne). Further 𝛾
𝛼 , 𝛾

𝛼 , and  𝛾
𝛼 are defined by Equation (37).

Inserting (51) into (35) gives

𝛿a𝛼𝛽 = 𝛿xT
e

(
NT

,𝛼 N,𝛽 + NT
,𝛽

N,𝛼

)
xe,

𝛿b𝛼𝛽 = 𝛿xT
e NT

;𝛼𝛽 n,

M
𝛼𝛽

0 𝛿b𝛼𝛽 = −M
𝛼𝛽

0 (c,𝛽 ⋅ N,𝛼 𝛿xe + a𝛼 ⋅ C,𝛽 𝛿xe). (53)

4.2 FE force vectors

Substituting Equations (51) and (53) into Equation (30) gives the discretized weak form as

nel∑
e=1

(
Ge

in + Ge
int − Ge

ext
)
= 𝛿x ⋅ f = 0 ∀ 𝛿x ∈ h, (54)

where nel is the number of elements, f denotes the global FE force vector, and h denotes the set of kinematically
admissible variations for the control points.

In order to obtain the virtual work of the internal FE forces, we insert interpolation (53) into Equation (31.2). This
gives

Ge
int = 𝛿xT

e

(
fe

intτ + fe
intM + fe

intM

)
, (55)

where

fe
intτ ∶= ∫Ωe

0

𝜏𝛼𝛽 NT
,𝛼 a𝛽 dA,

fe
intM ∶= ∫Ωe

0

M𝛼𝛽

0 NT
;𝛼𝛽 n dA,

fe
intM

∶= −∫Ωe
0

M
𝛼𝛽

0 (NT
,𝛼 c,𝛽 + CT

,𝛽
a𝛼) dA. (56)

Discretization of the external virtual work in Equation (40) gives, see Equation (39) and also References 40,42,

Ge
ext = 𝛿xT

e
(
fe

ext0 + fe
extp + fe

extt + fe
extm + fe

extm

)
+ 𝛿xA ⋅ fA

extm𝜈
, (57)

where

fe
ext0 ∶= ∫Ωe

0

NT f0 dA,

fe
extp ∶= ∫Ωe

NT p n da,

fe
extt ∶= ∫

𝜕tΩ
e

NT t ds,
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12 DUONG et al.

fe
extm𝜏

∶= −∫
𝜕m𝜏Ω

e
NT

,𝛼 𝜈𝛼 m𝜏 n ds,

fe
extm ∶= ∫

𝜕mΩ
e

NT
,𝛼 𝓁𝛼 m c ds,

fA
extm𝜈

∶= m𝜈 nA (58)

are the external FE force vectors. Here, fA
extm𝜈

is a possible corner force at corner node xA due to a twisting moment m𝜈

applied on a non-smooth boundary (cf. Reference 40(sec. 6.3)).

Remark 4. The out-of-plane bending term (56.2) requires at least second order derivatives of the shape functions. As seen
in (56.3) and (52.4), similar second order derivatives are now also required for the newly added in-plane bending term.
This indicates that membrane-bending locking, which is an issue in out-of-plane bending of thin shells, in principle,
could now also appear for in-plane bending. To alleviate such locking phenomena (although it has not been done in the
present work) various existing (reduced) integration techniques—see for example, References 34,43-45 and references
therein—can be adapted to in-plane fiber bending, if necessary. Here, all integrals are evaluated by standard Gaussian
quadrature.

4.3 Tangent matrices

The tangent matrices associated with the internal and external FE forces in (56) and (58) are derived as follows.

4.3.1 Tangent matrices of the internal FE forces

The internal tangent matrices can be found by linearizing (55). This gives

ΔGe
int = 𝛿xT

e
(
ke

mat + ke
geo

)
Δxe, (59)

where kmat denotes the material tangent

ke
mat = ke

𝜏𝜏 + ke
𝜏M + ke

M𝜏 + ke
MM + ke

𝜏M
+ ke

M𝜏
+ ke

MM
+ ke

MM
+ ke

MM
, (60)

with

ke
𝜏𝜏 ∶= ∫Ωe

0

c𝛼𝛽𝛾𝛿 NT
,𝛼 (a𝛽 ⊗ a𝛾 ) N,𝛿 dA,

ke
𝜏M ∶= ∫Ωe

0

d𝛼𝛽𝛾𝛿 NT
,𝛼 (a𝛽 ⊗ n) N;𝛾𝛿 dA,

ke
M𝜏 ∶= ∫Ωe

0

e𝛼𝛽𝛾𝛿 NT
;𝛼𝛽 (n ⊗ a𝛾 ) N,𝛿 dA,

ke
MM ∶= ∫Ωe

0

f 𝛼𝛽𝛾𝛿 NT
;𝛼𝛽 (n ⊗ n) N;𝛾𝛿 dA,

ke
𝜏M

∶= −∫Ωe
0

d
𝛼𝛽𝛾𝛿

NT
,𝛼 a𝛽 ⊗

(
a𝛿 C,𝛾 + c,𝛾 N,𝛿

)
dA,

ke
M𝜏

∶= −∫Ωe
0

ē𝛼𝛽𝛾𝛿
(

CT
,𝛼 a𝛽 + NT

,𝛽
c,𝛼

)
⊗ a𝛾 N,𝛿 dA,

ke
MM

∶= +∫Ωe
0

f
𝛼𝛽𝛾𝛿

(
CT
,𝛼 a𝛽 + NT

,𝛽
c,𝛼

)
⊗

(
a𝛿 C,𝛾 + c,𝛾 N,𝛿

)
dA,

ke
MM

∶= −∫Ωe
0

g𝛼𝛽𝛾𝛿 NT
;𝛼𝛽 n ⊗

(
a𝛿 C,𝛾 + c,𝛾 N,𝛿

)
dA,
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ke
MM

∶= −∫Ωe
0

h
𝛼𝛽𝛾𝛿

(
CT
,𝛼 a𝛽 + NT

,𝛽
c,𝛼

)
⊗ n N;𝛾𝛿 dA, (61)

while ke
geo denotes the geometrical tangent

ke
geo = ke

𝜏 + ke
M + ke

M
, (62)

with

ke
𝜏 = +∫Ωe

0

𝜏𝛼𝛽 NT
,𝛼 N,𝛽 dA,

ke
M = −∫Ωe

0

M𝛼𝛽

0

[
NT

,𝛾 (n ⊗ a𝛾 ) N;𝛼𝛽 + NT
;𝛼𝛽 (a𝛾 ⊗ n) N,𝛾

]
dA − ∫Ωe

0

(b𝛼𝛽 M𝛼𝛽

0 ) a𝛾𝛿 NT
,𝛾 (n ⊗ n) N,𝛿 dA, (63)

and

ke
M
= −∫Ωe

0

M
𝛼𝛽

0

(
NT

,𝛼 C,𝛽 + CT
,𝛽

N,𝛼

)
dA − ∫Ωe

0

NT
,𝛾 P𝛾𝛽 N,𝛽 dA − ∫Ωe

0

(
NT

,𝛽
Q𝛽𝛾𝛼 N,𝛾𝛼 + NT

,𝛾𝛼 Q𝛽𝛾𝛼 N,𝛽

)
dA, (64)

where P𝛾𝛽 and Q𝛾𝛽𝛼 are defined by Equation (49). As expected, ke
mat and ke

geo are symmetric.

Remark 5. As seen in Equations (61) and (62), in-plane bending in general adds five material tangents (the last five terms
in (61)) and one geometrical tangent (64), to the rotation-free shell formulation of Duong et al.46

4.3.2 Tangent matrices of the external FE forces

By linearizing and rearranging (57), one obtains

ΔGe
ext = 𝛿xT

e ke
ext Δxe + 𝛿xT

A kA
extm𝜈

ΔxA, (65)

which contains the external tangent matrices

ke
ext ∶= ke

extp + ke
extt + ke

extm𝜏
+ ke

extm. (66)

Here, ke
extp, ke

extt, ke
extm𝜏

, ke
extm, and kA

extm𝜈
are the tangent matrices associated with fe

extp, fe
extt, fe

extm, fe
extm, and fA

extm𝜈
defined

in Equation (58), respectively. Their expressions are given in Appendix A.2.

5 MATERIAL MODEL EXAMPLES

This section presents two hyperelastic phenomenological material models for fabrics. The first is a simple
fabric model—motivated by numerical convenience—that can be used to test numerical aspects of the pro-
posed isogeometric finite shell element formulation. The second is a physically-based model for (plainly) woven
fabrics.

Since inducing invariants for the new in-plane curvature tensor K is very similar to inducing invariants for the
out-of-plane curvature tensor K, the construction of material models for the proposed shell formulation can fol-
low that of classical shells. Further, as in the FE formulation of Duong et al.,46 the proposed shell formulation can
admit material models expressed directly in terms of the invariants of the surface tensors such as is considered here.
The unit of the strain energy density W is thus energy per reference area. This approach facilitates efficient sim-
ulations since through-the-thickness integration is not required.||However, our proposed shell formulation can also
incorporate material models that are extracted from 3D continua by (numerical) integration over the thickness, see
Duong et al.46
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14 DUONG et al.

5.1 A simple fabric model

We consider a general fabric consisting of nf fiber families that can be initially curved and possibly bonded to a matrix. We
assume that the total strain energy function W can be additively decomposed into the strain energies of the matrix defor-
mation Wmatrix, fiber stretching Wfib-stretch, out-of-plane and in-plane fiber bending Wfib-bending, fiber torsion Wfib-torsion, and
the linkage between fiber families Wfib-angle. Accordingly,

W = Wmatrix + Wfib-stretch + Wfib-bending + Wfib-torsion + Wfib-angle. (67)

A simple material model is given by

Wmatrix = U(J) + 1
2
𝜇 (I1 − 2 − 2 ln J) ,

Wfib-stretch = 1
8

nf∑
i=1

𝜖i
L (Λi − 1)2,

Wfib-bending =
1
2

nf∑
i=1

[
𝛽 i

n (Ki
n)2 + 𝛽 i

g (Ki
g)2] ,

Wfib-torsion = 1
2

nf∑
i=1

𝛽 i
𝜏 (Ti

g)2,

Wfib-angle =
1
4

nf−1∑
i=1

nf∑
j=i+1

𝜖
ij
a

(
𝛾ij − 𝛾0

ij

)2
, (68)

where U(J) is the surface dilatation energy, and where Λi, Ti
g, Ki

n, and Ki
g are defined in Equation (21) for fiber family i.

Further, 𝛾ij ∶= C ∶ Li ⊗ Lj and 𝛾0
ij ∶= Li ⋅ Lj describe the angle between fiber families i and j in the current and reference

configuration, respectively. Parameters 𝜇, 𝜖i
L, 𝜖ij

a , 𝛽 i
n, 𝛽 i

g, and 𝛽 i
𝜏 denote material constants. The effective stress and moment

components follows from Equations (67) and (68) as

𝜏𝛼𝛽 = 𝜏
𝛼𝛽

matrix +
1
2

nf∑
i=1

𝜖i
L (Λi − 1) L𝛼𝛽

i +
nf−1∑
i=1

nf∑
j=i+1

𝜖
ij
a

(
𝛾ij − 𝛾0

ij

)
(L𝛼

i L𝛽

j )
sym,

M𝛼𝛽

0 =
nf∑

i=1
𝛽 i

n Ki
n L𝛼𝛽

i +
nf∑

i=1
𝛽 i
𝜏 Ti

g (c𝛼0i L𝛽

i )
sym,

M
𝛼𝛽

0 =
nf∑

i=1
𝛽 i

g Ki
g L𝛼𝛽

i , (69)

where 𝜏
𝛼𝛽

matrix = J U′ a𝛼𝛽 + 𝜇 (A𝛼𝛽 − a𝛼𝛽) is the stress due to the matrix response, and where (•𝛼𝛽)sym = (•𝛼𝛽 + •𝛽𝛼)∕2
denotes symmetrization. Further, the material tangents of (69) follow from Equation (42) as

c𝛼𝛽𝛾𝛿 = c𝛼𝛽𝛾𝛿matrix +
nf∑

i=1
𝜖i

L L𝛼𝛽

i L𝛾𝛿

i + 2
nf−1∑
i=1

nf∑
j=i+1

𝜖
ij
a

(
L𝛼

i L𝛽

j

)sym (
L𝛾

i L𝛿
j

)sym
,

f 𝛼𝛽𝛾𝛿 =
nf∑

i=1
𝛽 i

n L𝛼𝛽

i L𝛾𝛿

i +
nf∑

i=1
𝛽 i
𝜏

(
c𝛼0i L𝛽

i

)sym (
c𝛾0i L𝛿

i
)sym

,

f
𝛼𝛽𝛾𝛿

i =
nf∑

i=1
𝛽 i

g L𝛼𝛽

i L𝛾𝛿

i ,

d𝛼𝛽𝛾𝛿 = e𝛼𝛽𝛾𝛿 = d
𝛼𝛽𝛾𝛿

i = ē𝛼𝛽𝛾𝛿i = g𝛼𝛽𝛾𝛿i = h
𝛼𝛽𝛾𝛿

i = 0, (70)

with

c𝛼𝛽𝛾𝛿matrix = −
(

J U′ − 𝜇
) (

a𝛼𝛾 a𝛽𝛿 + a𝛼𝛿 a𝛽𝛾
)
+ J

(
U′ + J U′′) a𝛼𝛽a𝛾𝛿. (71)
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5.2 A woven fabric model

In this section, a physically-based hyperelastic material model of dry woven fabrics is proposed.** We consider plain weave
fabrics with two fiber families. The model will be fitted to the experiment data provided by Cao et al.47

For simplification, we assume that fibers embedded in the apparent textile surface are nearly inextensible in the aver-
aged fiber direction 𝓵i.†† We further assume that fibers in the fabrics are perfectly bonded to each other (i.e., without
inter-fiber sliding), such that hyperelasticity can be assumed. Accordingly, we propose a strain energy of the form

W = Wfib-stretch + Wfib-bending + Wfib-angle, (72)

with

Wfib-stretch = 1
2

2∑
i=1

𝜖i
L(𝜆i − 1)2,

Wfib-bending =
1
2

2∑
i=1

𝛽 i
g (Ki

g)2,

Wfib-angle =
𝜇

2

(
�̂� asinh(𝛼1 �̂�) − 1

𝛼1

√
𝛼2

1 �̂�2 + 1
)
+ 𝜂

2 𝛼2
cosh(𝛼2 �̂�), (73)

where Ki
g is defined in Equation (21.4) for fiber family i, and �̂� ∶= 𝓵1 ⋅ 𝓵2 describes the fiber angle between fiber family

1 and 2. Further, 𝜖i
L, 𝛽 i

g, 𝜇, 𝛼1, 𝛼2, and 𝜂 are material parameters (see Table 1). The choice of Wfib-angle in Equation (73)
is motivated both physically (i.e., to reproduce the shear response observed experimentally) and numerically (i.e., to get
a well-behaved and smooth tangent matrix). The two shear energy terms in Equation (73.3) phenomenologically reflect
two assumed mechanisms of bonding between yarns of the two fiber families. The first one is due to friction between
yarns dominating at small deformations, and the second is due to geometrical interlocking of yarns at large deformations
(or yarn-yarn lock-up47).

Following from (72) and (73), the effective stress and moment components become

𝜏𝛼𝛽 =
2∑

i=1
𝜖i

L (𝜆i − 1) 1
𝜆i

L𝛼𝛽

i + S l𝛼𝛽12 ,

M
𝛼𝛽

0 =
2∑

i=1
𝛽 i

g Ki
g L𝛼𝛽

i , (74)

where we have defined S(�̂�) ∶= 𝜇 asinh(𝛼1 �̂�) + 𝜂 sinh(𝛼2 �̂�), and

l𝛼𝛽12 ∶=
(
𝓁𝛼

1 𝓁𝛽

2

)sym
− �̂�

2

(
𝓁𝛼𝛽

1 + 𝓁𝛼𝛽

2

)
. (75)

T A B L E 1 Material parameters for material model (73)

Parameter Value Unit Physical meaning

𝜖i
L 50 N/mm Tensile stiffness of fiber family i

𝛽 i
g 4.8 N mm In-plane bending stiffness of fiber family i

𝜇 1.6 mN/mm Initial shear modulus due to yarn-yarn friction

𝛼1 305 - Plateau parameter of yarn-yarn friction

𝜂 2.0 mN/mm Shear modulus due to geometrical yarn-yarn interlocking

𝛼2 5.4215 - Plateau parameter of geometrical yarn-yarn interlocking

Note: The values are obtained from fitting (73) to the experimental data of the bias extension test for sample #1 of Cao et al.,47 see Section 7.1.1.
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16 DUONG et al.

By applying Equation (42) to material model (72), we further find the material tangents as

c𝛼𝛽𝛾𝛿 =
2∑

i=1
𝜖i

L 𝜆−3
i L𝛼𝛽

i L𝛾𝛿

i + 2 S l𝛼𝛽𝛾𝛿12 + 2 S′ l𝛼𝛽12 l𝛾𝛿12,

f
𝛼𝛽𝛾𝛿

=
2∑

i=1
𝛽 i

g L𝛼𝛽

i L𝛾𝛿

i ,

d𝛼𝛽𝛾𝛿 = e𝛼𝛽𝛾𝛿 = f 𝛼𝛽𝛾𝛿 = g𝛼𝛽𝛾𝛿 = h𝛼𝛽𝛾𝛿 = h
𝛼𝛽𝛾𝛿

= ē𝛼𝛽𝛾𝛿 = 0, (76)

where S′ = 𝜇 𝛼1

(
1∕

√
𝛼2

1 �̂�2 + 1
)
+ 𝜂 𝛼2 cosh(𝛼2 �̂�), and

l𝛼𝛽𝛾𝛿12 ∶=
𝜕l𝛼𝛽12

𝜕a𝛾𝛿

= −
(
𝓁𝛼

1 𝓁𝛽

2

)sym 1
2

(
𝓁𝛾𝛿

1 + 𝓁𝛾𝛿

2

)
− 1

2

(
𝓁𝛼𝛽

1 + 𝓁𝛼𝛽

2

)
l𝛾𝛿12 +

�̂�

2

(
𝓁𝛼𝛽

1 𝓁𝛾𝛿

1 + 𝓁𝛼𝛽

2 𝓁𝛾𝛿

2

)
. (77)

5.3 An effective (stabilized) fiber compression model

In most textile materials, fibers buckle under axial compression. If the buckling is microscopic,‡‡ the fibers macroscopi-
cally appear to have much smaller stiffness in compression than in tension. For simplification, the (microscopic) buckling
is usually not simulated explicitly and the compressive stiffness is usually neglected in the construction of material models.
For instance, one can simply set 𝜖i

L = 0 for 𝜆i < 1 in material models (68) and (73).
Although the latter simplification does not affect the accuracy much, it can still lead to a material instability§§

in quasi-static computations. Therefore, if no other medium, for example, matrix, effectively supports the fibers, a
stabilization technique may be necessary. For this purpose, we consider the additional stabilization term

Wfib-stab = 1
2
𝜖e

stab

nf∑
i=1

(𝜆i − 1)2 + 1
2
𝜖v

stab

nf∑
i=1

(
�̃�i − 1

)2
, (78)

in the strain energy in case 𝜆i < 1. Here, 𝜖e
stab and 𝜖v

stab are stabilization parameters, and

�̃�
2
i ∶= a𝛼𝛽 𝓁𝛼𝛽

i-pre =
a𝛼𝛽 L𝛼𝛽

i

apre
𝛾𝛿

L𝛾𝛿

i

, (79)

denotes the square of the instantaneous fiber stretch measured with respect to the configuration at the preceding
computational load or time step. Term (78) leads to the stabilization stress

𝜏
𝛼𝛽

fib-stab = 𝜖e
stab

nf∑
i=1

(𝜆i − 1) 1
𝜆i

L𝛼𝛽

i + 𝜖v
stab

nf∑
i=1

(�̃�i − 1) 1
�̃�i

𝓁𝛼𝛽

i-pre, (80)

and its tangent

c𝛼𝛽𝛾𝛿fib-stab = 𝜖e
stab

nf∑
i=1

𝜆−3
i L𝛼𝛽

i L𝛾𝛿

i + 𝜖v
stab

nf∑
i=1

�̃�
−3
i 𝓁𝛼𝛽

i-pre 𝓁𝛾𝛿

i-pre. (81)

Remark 6. Note that the stress in Equation (80) (and its tangent in Equation (81)) are added into the system only for fiber
compression, that is, 𝜆i < 1.

Remark 7. The first term in (78) describes the elastic response of fibers (or a bundle of fibers) in compression. In some
cases, this compressive resistance can be physically justified. For example, for woven fabrics, a small resistance stems
from the small local out-of-plane fiber bending stiffness due to initial crimping of yarns in the fabrics. On the other hand,
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the first term in Equation (78) can also be used as a penalty regularization for enforcing near incompressibility of fibers
(if required), by simply setting 𝜖e

stab to a large value.

Remark 8. The second term in (78) provides numerical damping to fibers in compression. It stems from the potential

W i
v ∶=

1
2
𝜂 ( ̇̃𝜆i)2, (82)

where 𝜂 denotes the so-called (instantaneous) stretching viscosity, and the approximation ̇̃𝜆i ≈ (�̃�i − 1)∕Δt, with Δt being
time step size, has been used. This approximation is first order accurate since �̃�i is the stretch w.r.t. the previous time step.
Therefore, 𝜖v

stab relates to the stretching viscosity by 𝜂 ∶= 2 𝜖v
stab Δt2.

Remark 9. The second term in (78) is influenced not only by the parameter 𝜖v
stab but also depends on step size Δt. That

is, for a fixed 𝜖v
stab, the stretch �̃�i approaches 1 when Δt decreases. Hence, the stored energy 𝜖v

stab

(
�̃�i − 1

)2 consistently
approaches zero as Δt → 0.

6 NUMERICAL EXAMPLES: HOMOGENEOUS DEFORMATION

This section verifies the proposed isogeometric finite element shell formulation via several benchmark examples charac-
terized by homogeneous deformations. The FE simulation results are compared with exact solutions provided by Duong
et al.38 For all these examples, the domain is discretized by a single quadratic NURBS patch. Material model (67) and (68)
is used, with its parameters specified separately for each example.

For unit normalization, we use a reference length L0, and a reference surface stress 𝜖0, which has the unit
[force/length]. Therefore, the unit of surface strain energy density W , reaction forces, and reaction moments is [𝜖0], [𝜖0 L0],
and [𝜖0 L2

0], respectively. The units of the material parameters in model (67) and (68) then follow as: [𝜖0] for membrane
stiffnesses 𝜇, 𝜖L, 𝜖a, and [𝜖0 L2

0] for bending stiffnesses 𝛽n, 𝛽𝜏 , 𝛽g.

6.1 Uniaxial tension

The first example considers uniaxial tension of a rectangular sheet of size 2L0 × L0 as shown in Figure 2A,B. The sheet
consists of two fiber families with initial directions L1 = (2 e1 + e2)∕

√
5 and L2 = (2 e1 − e2)∕

√
5. The top boundary is

free, while the left and bottom boundaries are fixed along e1 and e2, respectively. The sheet is pulled by applying the
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F I G U R E 2 Uniaxial tension: (A) Initial and (B) deformed configurations with two fiber families (in green). (C) Comparison with the
analytical solution of Duong et al.38 for the reaction force Rx versus displacement ux at X = 2 L0. Here, 𝜖L∕2 = 𝜇 = 𝜖a = 𝜖0
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displacement ux on the right boundary in the e1 direction. In this test we use the material parameters 𝜇 = 𝜖12
a = 𝜖0, 𝜖i

L =
2 𝜖0, while U(J) is set to zero, and 𝛽 i

n, 𝛽 i
g, and 𝛽 i

𝜏 have no influence.
Figure 2C shows the FE results in comparison to the exact solution. Our implementation is verified by obtaining an

error within machine precision for a single finite element.

6.2 Pure shear

Next, our implementation is tested for pure shear. A square sheet with diagonal fibers is considered as shown in Figure 3A.
A Dirichlet boundary condition is applied on all boundaries, such that the sheet with initial dimension L0 × L0 is deformed
into the rectangular shape 𝓁 × h, with 𝜆 ∶= 𝓁∕L0 = L0∕h (Figure 3B). The material parameters are 𝜇 = 𝜖0, 𝜖i

L = 2 𝜖0, and
𝜖12

a = 𝜖0. Further, U(J) is set to zero, while 𝛽 i
n, 𝛽 i

g, and 𝛽 i
𝜏 have no influence. The exact solution for the reaction forces is38

Rx = h
[
𝜇 (𝜆

2
− 1) + 1

4
𝜖L (𝜆

4
− 2 𝜆

2
+ 1) + 1

4
𝜖a (𝜆

4
− 1)

]
,

Ry = 𝓁

[
𝜇

(
1

𝜆
2 − 1

)
+ 1

4 𝜆
4 𝜖L (𝜆

4
− 2 𝜆

2
+ 1) − 1

4𝜆
4 𝜖a (𝜆

4
− 1)

]
. (83)

Figure 3C shows the comparison between the simulation and the exact solution. Again, we obtain an error within machine
precision for a single finite element.

6.3 Picture frame test

The third example verifies our implementation for the picture frame test. A L0 × L0 square sheet with two fiber families
is considered as shown in Figure 4A. The picture frame deformation (see Figure 4B) is obtained by applying the Dirichlet
boundary condition x(𝜑,X) =

√
2 (cos𝜑 e1 ⊗ e1 + sin𝜑 e2 ⊗ e2) X for every boundary node X of the frame. The material

parameters are taken as 𝜖12
a = 𝜖0, U(J) = 𝜇 = 0, while 𝜖i

L, 𝛽 i
n, 𝛽 i

g, and 𝛽 i
𝜏 have no influence. The exact solution of the shear

force (i.e., the tangential reaction) on the boundary of the sheet is Rs = −𝜖12
a cos(2 𝜑) L0∕2, see for example, Reference 38.

Figure 4C shows agreement between the simulation and the exact solution. Again, the error is within machine precision
for a single finite element.

6.4 Annulus expansion

The fourth example considers the homogeneous expansion of an annulus containing distributed circumferential fibers
embedded in a matrix material. Due to the symmetry, only one fourth of the annulus is simulated as shown in Figure 5A.

(C)(B)(A)

F I G U R E 3 Pure shear: (A) Initial and (B) deformed configurations with two fiber families. (C) Comparison with the exact solution38

for the reaction forces versus displacement ux at X = L0. Here, 𝜖L∕2 = 𝜖a = 𝜇 = 𝜖0

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


DUONG et al. 19

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

shear angle θ [deg.]

s
h
e
a
r 

fo
rc

e
  
R

s  
 [
 ε 0

 L
0
]

analytical

simulation

(A) (B) (C)

F I G U R E 4 Picture frame test: (A) Initial and (B) deformed configurations with two fiber families. (C) Comparison with the exact
solution38 for the shear force versus shear angle 𝜃 ∶= 2𝜑 − 90◦. Here, 𝜖12
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F I G U R E 5 Annulus expansion: (A) Initial and (B) deformed configurations at 𝜆 = 1.3 with distributed fibers. (C) Circumferential
reaction force versus 𝜆 compared to the analytical solution.38 (D) Relative error in the reaction force versus the number of Gauss points. Here,
the error is defined by |Rnum − Rexact|∕Rexact, where Rnum = ∫

𝜕c
𝝂 𝝈 𝝂 ds and Rexact are the circumferential reaction forces according to the FE

solution and the analytical solution, respectively, while 𝝂 denotes the normal vector of the interface 𝜕c

In the reference configuration, the annulus has inner radius Ri = L0∕2 and outer radius Ro = L0. A Dirichlet boundary
condition is applied on the inner and outer boundary, such that they both expand with the stretch 𝜆 ∶= ri∕Ri = ro∕Ro, see
Figure 5B.

In order to induce a homogeneous deformation within the annulus, a graded matrix material with the surface dilata-
tion energy U(J) = 1

2
K (J − 1)2, where K(R) = (𝜖L∕2) ln R, is required in Equation (68), see Reference 38. The material

parameter 𝜖L = 2 𝜖0 is used, while 𝛽n, 𝛽𝜏 , and 𝛽g have no influence since Kn = Tg = Kg = 0 during deformation.38 Figure 5C
shows that the reaction force versus stretch curve is in good agreement with the exact solution. The error is within machine
precision for a single finite element as long as numerical integration is sufficiently accurate as is shown in Figure 5D.

6.5 Pure bending

The fifth example considers pure bending of a flat rectangular sheet of size 2.5 L0 × L0 subjected to the distributed moment
Mext (unit [moment/length]) along the two shorter boundaries as shown in Figure 6A. The sheet contains a single fiber
family in the e1 direction embedded in a matrix material. Here, the material parameters are taken as 𝜇 = 10 𝜖0, 𝛽n = 𝜖0 L2

0,
and 𝜖L = 0, while 𝛽g and 𝛽𝜏 have no influence. The external moment deforms the sheet into a cylindrical segment as seen
in Figure 6B.
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F I G U R E 6 Pure bending of a flat sheet: (A) Initial configuration (2.5 L0 × L0) with fibers distributed along e1. (B) Deformed
configuration colored by the relative error in the mean curvature. Comparisons with the exact solution are shown in (C) for the mean
curvature and in (D) for surface stretch J = dets F. (E) Mesh convergence of the maximum relative error of 𝜆1 (over the sample domain).
Here, 𝜇 = 10 𝜖0 and 𝛽n = 𝜖0 L2

0

According to Duong et al.,38 the relationship

H = Mext

2 𝛽n 𝜆
4
1

, (84)

between the mean curvature H and external moment Mext is obtained. Additionally, the exact solution for the stretch
along the longer direction (due to high order effects) is

𝜆1 =

√
1
2
+

√
1
4
− 1

𝜇 𝛽n
M2

ext, with M2
ext ≤ 1

4
𝜇 𝛽n, (85)

while the stretch along the shorter direction is 𝜆2 = 1.
Figure 6C,D demonstrate good agreement between the exact and FEM solution for the mean curvature H and surface

stretch J = 𝜆1 𝜆2. The convergence with mesh refinement plotted in Figure 6E verifies the consistency of the isogeometric
finite element implementation.

7 NUMERICAL EXAMPLES: INHOMOGENOUS DEFORMATION

This section demonstrates the performance of the proposed shell formulation by two tests: the bias extension and torsion
tests of dry fabric sheets. Further, we fit material model (72) and (73) to the existing experimental data of Cao et al.,47 and
study the influence of in-plane bending.
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7.1 Bias extension of woven fabrics

The first example studies the bias extension test for plain weave fabrics using material model (73) within the proposed
shell formulation.

7.1.1 Bias extension of balanced weave fabrics: Fitting to experimental data

We first fit material model (72) and (73) to the experimental data of Cao et al.47 for the bias extension test of balanced weave
fabrics. In these fabrics, all fiber families are characterized by identical material properties. Two initially rectangular
samples, #1 and #2, with dimension 115mm×230mm and 150mm×450mm, respectively, are used for the test, see Figure 7.
Two fiber families, initially aligned by ±45◦ w.r.t. the boundaries, are considered. The two samples are discretized by
16 × 32 and 16 × 48 quadratic NURBS elements, respectively. The samples are stretched in the longer direction by applying
Dirichlet boundary conditions along the shorter sides.

Figure 7A,B show, that the two samples exhibit symmetric deformation in the bias extension test. Here, the material
parameters of model (73) are obtained by fitting the load-displacement curve of sample #1 to the experimental data of
Cao et al.47 The fitted curve is plotted in Figure 7C and the obtained parameters are listed in Table 1. The model is then
validated by comparing the corresponding experimental results to the simulation for sample #2 as shown in Figure 7C.
As seen, the proposed model demonstrates good prediction at small and medium deformations but deviates from the
experimental data at larger strains.

Remark 10. Note that the fit is based on a purely hyperelastic material model and hence does not capture plasticity. As
plastic deformations usually play an important role in woven fabrics, in the form of fiber-fiber sliding, the presented
model is only of limited use: it can help to understand the loading behavior, but it will not capture the unloading response
correctly. To this end, a plasticity model should be included, which lies outside the scope of the present work.

7.1.2 Bias extension of balanced weave fabrics: The role of in-plane bending

Next, we investigate the influence of the in-plane bending stiffness 𝛽g on the deformation, the load-displacement curve,
and the finite element convergence behavior, using the bias extension test for sample #1. We use the material parameters

(B) (C)(A)

F I G U R E 7 Bias extension test of plain weave fabrics: (A,B) Initial and deformed configurations of sample #1 and #2 at displacement
40 and 100 mm, respectively. The green lines show two fiber families. (C) Reaction-displacement curves compared to the experimental data
of Cao et al.47
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from Table 1, but vary the in-plane bending stiffness 𝛽g. In order to quantify the shear bands in the specimen, we examine
the sum of the geodesic curvatures for the two fiber families, as |𝜅1

g | + |𝜅2
g |.

Figure 8A shows the influence of 𝛽g on the load-displacement curve. Accordingly, larger values of 𝛽g lead to the
significantly stiffer response. Figure 8B shows the FE mesh convergence behavior of the shear bands measured by
max(|𝜅1

g | + |𝜅2
g |). The quantity |𝜅1

g | + |𝜅2
g | is also shown in Figure 9 to visualize the shear bands for various in-plane bend-

ing stiffnesses. As expected, in case of zero in-plane bending stiffness (𝛽g = 0), the shear bands do not converge to a finite
width.¶¶ On the other hand, for 𝛽g > 0, the shear bands converge to a finite width as observed in experiments (see e.g.,
Reference 5). The shear band width depends on the magnitude of the bending stiffness. Figure 9 also shows that 𝛽g visibly
affects the width of the shear bands: it increases with 𝛽g.

Figure 10 shows the shear angle (first row), stress invariant trs𝝈 (second row) and moment invariant trs𝝁1 (third row)
for various values of 𝛽g. Stress concentrations can be observed at the corners of the sample due to the high strains there.

7.1.3 Bias extension of unbalanced weave fabrics: The role of in-plane bending

We further consider the influence of in-plane bending on the bias extension test for unbalanced weave fabrics—that is,
when the two fiber families have different material properties. This case can appear for example when the two families are
made of different fiber materials, see for example, Reference 6. We assume here that only the in-plane bending stiffness
is different, while all other parameters are equal. Sample #2 and constitutive model (72) and (73) with the parameters
from Table 1 are used again but now both 𝛽1

g and 𝛽2
g are varied. The difference in bending stiffness of the fiber families is

characterized by the ratio rb: = 𝛽2
g∕𝛽1

g .
Figure 11 shows the deformed shapes of the sample for various bending stiffnesses 𝛽1

g and 𝛽2
g . As expected, unsym-

metric sample shapes are obtained for rb > 1, especially when 𝛽2
g is large. This is in qualitative agreement with the

experimental results given by Madeo et al.6

7.2 Torsion of dry fabrics

The second example considers the torsion of a rectangular sheet with dimension 2L0 × L0 as shown in Figure 12A. The
left boundary is fixed in all three directions, while the right boundary is only fixed along e1. The two longer boundaries
are free. A twisting angle 𝜙 is applied around the center line on the right boundary from 0◦ to 180◦ with 1◦ per load step.
The sheet contains dry fabrics with two fiber families, initially aligned by ±45◦ w.r.t. the e1 direction. Material model
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F I G U R E 8 Bias extension of balanced weave fabric sample #1: (A) Load-displacement curves for various in-plane bending stiffnesses
𝛽g using 32 × 64 quadratic NURBS elements. (B) Convergence of the shear bands measured by max(|𝜅1

g | + |𝜅2
g |) (over the sample domain)

versus mesh refinement. Here, 𝛽0 = 1.6 Nmm
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βg = 0
mesh 16 × 32

βg = 0
mesh 64 × 128

βg = 0
mesh 128 × 256

βg = 0
mesh 256 × 512

βg = 0 .1 β0
mesh 16 × 32

βg = 0 .1 β0
mesh 64 × 128

βg = 0 .1 β0
mesh 128 × 256

βg = 0 .1 β0
mesh 256 × 512

βg = 1 β0
mesh 16 × 32

βg = 1 β0
mesh 64 × 128

βg = 1 β0
mesh 128 × 256

βg = 1 β0
mesh 256 × 512

F I G U R E 9 Bias extension of balanced weave fabric sample #1: |𝜅1
g | + |𝜅2

g | (units [mm−1]), a measure of shear bands, for various
in-plane bending stiffnesses 𝛽g (from top to bottom), and for various FE meshes (from left to right). The shear bands only converge for
non-zero 𝛽g. Here, 𝛽0 = 1.6 Nmm
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βg = 0 βg = 0 .1 β0 βg = 1 β0 βg = 10 β0 θ [deg.]

βg = 0 βg = 0 .1 β0 βg = 1 β0 βg = 10 β0 trsσ

βg = 0 βg = 0 .1 β0 βg = 1 β0 βg = 10 β0 trsμ̄1

F I G U R E 10 Bias extension of balanced weave fabric sample #1: shear angle 𝜃 ∶= arccos(�̂�) − 90◦ in degrees (first row), the first stress
invariant I1 = trs𝝈 (second row, units [N/mm]), and the first moment invariant trs𝝁1 of fiber family #1 (third row, units [N]), all for various
in-plane bending stiffnesses 𝛽g, using 𝛽0 = 1.6 Nmm and mesh 32 × 64. The value of trs𝝁1 for 𝛽g = 0.1 𝛽0 and 𝛽g = 1 𝛽0 has been scaled by
20 and 5, respectively, w.r.t. the actual value to increase visibility (the distribution of trs𝝁2 of fiber family #2 (not shown) is the mirror image
of trs𝝁1)
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β 2
g = 10 β0

rb = 1
β 2

g = 10 β0
rb = 2

β 2
g = 10 β0

rb = 10
β 2

g = 10 β0
rb = 20

β 2
g = 103 β0

rb = 1
β 2

g = 103 β0
rb = 2

β 2
g = 103 β0

rb = 10
β 2

g = 103 β0
rb = 20

F I G U R E 11 Bias extension of unbalanced weave fabric sample #2: Deformed configuration for various rb = 𝛽2
g∕𝛽1

g (from left to right)
and various in-plane bending stiffnesses 𝛽2

g (from top to bottom). The color shows the shear angle 𝜃 ∶= arccos(�̂�) − 90◦ in degrees. Here,
𝛽0 = 1.6 Nmm

(67) and (68) is used. The sheet is discretized by 50 × 25 quadratic NURBS elements. In order to capture wrinkling of the
sheet (if any), a random imperfection of X3 is imposed (following a standard distribution) as shown in Figure 12B. Further,
to deal with possible out-of-plane instabilities due to wrinkling, a small viscosity (𝜖 = 𝜖0) is added for stabilization (see
e.g., Reference 48).##

7.2.1 Nearly incompressible fibers

We first consider the case with axially nearly inextensible and incompressible fibers. Therefore, the material parameters
are taken as 𝜖L = 4 𝜖e

stab = 2000 𝜖0, 𝜖a = 𝜖0, and 𝛽n = 𝛽g = 𝛽𝜏 = 𝜖0 L2
0, while 𝜇 and 𝜖v

stab are zero.
Figure 13 shows the deformed configuration with the embedded fibers at 𝜙 = 180◦. As seen, the deformed sheet

behaves similar to an isotropic elastic shell, and no wrinkling occurs in spite of the geometrical imperfection in the
out-of-plane direction.||||
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(B)(A)

F I G U R E 12 Torsion of dry fabrics: (A) Fabric specimen, boundary conditions, and fiber directions L1 and L2 of two fiber families. A
rotation is applied around the center axis (dashed line) on the right boundary. (B) Corresponding FE mesh with a small imperfection in the
X3-coordinate obtained by randomly displacing the control points in the e3 direction following a normal distribution with standard deviation
1.1 × 10−3 L0

(B) (C)

(A) (D)

F I G U R E 13 Torsion of dry fabrics with nearly incompressible fibers: Deformed configuration at 𝜙 = 180◦ showing embedded fibers in
(A) top view, (B) front view, (C) side view, and (D) 3D view

Figure 14A plots the reaction-twisting curve, which shows that both the reaction force and the reaction moment are
monotonically increasing. As seen in Figure 14B, most of the strain energy initially goes into out-of-plane bending. How-
ever, as the twisting angle increases, the in-plane fiber bending energy increases significantly, while the other membrane
energies remain relatively small.

7.2.2 Effectively compressible fibers

Next, we consider fabrics with effectively compressible fibers based on the phenomenological model of Section 5 that
accounts for the microscale buckling of compressed fibers. To this end, we reset material parameter 𝜖e

stab = 5 𝜖0 and 𝜖v
stab =

250 𝜖0, while the other parameters remain unchanged.
Figure 15 shows the deformed configuration with embedded fibers at 𝜙 = 180◦. As seen, the center of the sheet is

compressed significantly in the lateral direction, and consequently macroscopic wrinkling can be observed there as shown
in Figure 15E. As Figure 16 shows, fibers (of either family) are compressed not only at the sheet center, but also along its
diagonals. This implies that microscopic fiber buckling can also occur along the diagonals.
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F I G U R E 14 Torsion of dry fabrics with nearly incompressible fibers: (A) Support reactions and (B) strain energies (integrated strain
energy densities) of the sheet versus twisting angle 𝜙

(A) (D)

(B) (C)

(E)

F I G U R E 15 Torsion of dry fabrics with effectively compressible fibers: Deformed configuration at 𝜙 = 180◦ showing embedded fibers
in (A) top view, (B) front view, (C) side view, (D) 3D view, and (E) zoom into the sheet center

(A) (B)

F I G U R E 16 The torsion test for dry fabrics of compressible fibers: Deformed configuration at 𝜙 = 180◦ showing invariant Λ1 (A) and
Λ2 (B)
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F I G U R E 17 The torsion test for dry fabrics of effectively compressible fibers: (A) Reactions and (B) strain energies (integrated strain
energy densities) of the sheet versus twisting angle 𝜙

Figure 17A,B plot the reaction-twisting curves and the strain energies of the sheet, respectively. Similar to the incom-
pressible case, most of the strain energy initially goes into out-of-plane bending, but the out-of-plane energy loses
convexity and is exceeded by the in-plane bending energy as the twisting angle increases. This implies that the fibers
become unstable in out-of-plane bending. The resulting deformation and the reaction-twisting curve are shown in
Figures 16 and 17A, respectively.

8 CONCLUSION

We have presented a nonlinear rotation-free isogeometric shell formulation that can capture the in-plane bending behav-
ior of embedded fibers. The formulation is based on the generalized Kirchhoff-Love shell theory of Duong et al.38 Its finite
element implementation can be directly obtained from the isogeometric FE formulation of Duong et al.46 by complement-
ing it with the additional in-plane bending term. The construction of material models for the proposed shell formulation
can follow that of classical shells, since inducing invariants for the relative in-plane curvature tensor K is very similar to
that of the relative out-of-plane curvature tensor K. We have demonstrated this point by proposing two material models
for fabrics in Section 5. The woven fabric model of Section 5.2 shows good agreement with existing experiment data for
the bias extension test. With this material model, the influence of the in-plane bending stiffness on the bias extension test
has been investigated for both balanced and unbalanced weave fabrics. The proposed shell formulation can also admit a
wide range of other material models including those expressed directly in surface energy form and those obtained from
thickness integration of 3D material models. In order to suppress possible material instabilities due to fiber compression,
we have added a stabilization term within the proposed shell formulation. Finally, the accuracy and robustness of the
proposed formulation is verified by several numerical examples, characterized by both homogenous and inhomogenous
deformation, in Sections 6 and 7, respectively. Our formulation can be extended to capture inter-ply and intra-ply sliding
of yarns, which will be a subject of future work.
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ENDNOTES
∗That is, the second displacement gradient.
†Here and henceforth, the summation convention is applied to repeated Greek indices taking values 1 and 2.
‡∇s• ∶= i ∇s•, with i = 1 − n ⊗ n = a𝛼 ⊗ a𝛼 and ∇s• = •,𝛼 ⊗ a𝛼 .
§With the units [force/length] and [moment/length] commonly used in shell theory to avoid thickness integration.
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¶The minus sign in Equation (35.3) stems from the definition of the in-plane curvature tensor in Equation (11).
#That is, 𝛼 and 𝛽 as well as 𝛾 and 𝛿 can be exchanged in the material tangents.||This does not imply that the thickness is neglected, instead its influence is embedded in the model.

∗∗Dry fabrics are fabrics that are not embedded within a matrix material.
††Due to initial crimping, fibers are not straight initially and hence may appear extensible.
‡‡That is, at the length scale of a single fiber.
§§That is, a instability due to a lack of stiffness in a particular direction at a material point.
¶¶Without in-plane bending stiffness, the theoretical shear band width becomes zero, which is unphysical.
##Apart from numerical damping, arc-length solvers can also be used for the treatment of instabilities.||||A similar deformed shape is also obtained in the simulation result of Schulte et al.36
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APPENDIX A. TANGENT MATRICES OF THE EXTERNAL FORCES

This appendix summarizes the linearization and discretization of the external virtual work term (40) appearing in the
weak form.
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A.1 Linearization of the external virtual work
For the first term of Gext in Equation (40), no linearization is required as f0 dA is constant for dead loading. The
linearization of the remaining terms in Equation (40) can be found as (see also References 40,42,46)

ΔGext = ∫
𝛿x p (n ⊗ a𝛼 − a𝛼 ⊗ n) Δa𝛼 da

+ ∫
𝜕t

𝛿x t ⊗ a𝜉
1||a𝜉||2 Δa𝜉 ds − 𝛿x m𝜈 (a𝛼 ⊗ n) Δa𝛼 + ∫

𝜕m
𝛿a𝛼

(
𝜈𝛼 a𝛽 ⊗ n + 𝜈𝛽 n ⊗ a𝛼

)
Δa𝛽 m𝜏 ds

− ∫
𝜕m

𝛿a𝛼 𝜈𝛼 n ⊗ a𝜉
1||a𝜉||2 Δa𝜉 m𝜏 ds + ∫

𝜕m
𝛿a𝛼 𝜏𝛼 n ⊗ 𝝂

1||a𝜉|| Δa𝜉 m𝜏 ds

+ ∫
𝜕m

𝛿a𝛼

[
𝓁𝛼 c𝛽 n ⊗ n − 𝓁𝛼𝛽 (𝓵 ⊗ c + c ⊗ 𝓵)

]
Δa𝛽 m ds + ∫

𝜕m
𝛿a𝛼 𝓁𝛼 c ⊗ a𝜉 Δa𝜉

m||a𝜉||2 ds, (A1)

where p is assumed to be constant, and 𝜉 is the convective coordinate along the boundary, so that 𝝉 = a𝜉∕||a𝜉|| and
Δds = (a𝜉∕||a𝜉||2) ⋅ Δa𝜉 ds. For the last term in Equation (A1), we have used Equation (38) and Δ𝓁𝛼 = −𝓁𝛼𝛽 𝓵 ⋅ Δa𝛽 (see
Reference 38).

A.2 Discretization of the external virtual work
The tangent matrices in Equation (66) follow from applying discretization to Equation (A1), which gives

ke
extp = ∫

NT p (n ⊗ a𝛼 − a𝛼 ⊗ n) N,𝛼 da,

ke
extt = ∫

𝜕t
NT t ⊗ a𝜉

1||a𝜉||2 N,𝜉 ds,

kn
ext𝜈 = −m𝜈

(
a𝛼

A ⊗ nA
)

NA,𝛼,

ke
extm = ∫

𝜕m
NT

,𝛼

(
𝜈𝛼 a𝛽 ⊗ n + 𝜈𝛽 n ⊗ a𝛼

)
N,𝛽 m𝜏 ds

− ∫
𝜕m

NT
,𝛼 𝜈𝛼 n ⊗ a𝜉 N,𝜉

m𝜏||a𝜉||2 ds +
[
∫
𝜕m

NT
,𝛼 𝜏𝛼 n ⊗ 𝝂 N,𝜉

m𝜏||a𝜉|| ds
]
,

ke
extm = ∫

𝜕m
NT

,𝛼

[
𝓁𝛼 c𝛽 n ⊗ n − 𝓁𝛼𝛽 (𝓵 ⊗ c + c ⊗ 𝓵)

]
N,𝛽 m ds + ∫

𝜕m
NT

,𝛼 𝓁𝛼 c ⊗ a𝜉 N𝜉
m||a𝜉||2 ds. (A2)

Remark 11. The tangent matrices in Equation (A2) account for live loading. In case t ds, m𝜏 ds, and m ds are constant,
the last term in ke

extt, the last two terms in ke
extm, and the last term in ke

extm vanish, respectively.

Remark 12. Note, that the last term in ke
extm (in square bracket) accounts for the variation of 𝝂, which is missing in

Reference 46 (cf. Appendix A, eq. (128)).

APPENDIX B. EFFICIENT FE IMPLEMENTATION

This appendix presents an efficient implementation of Equation (54) for the Newton–Raphson method. The implemen-
tation can be viewed as an extension of Duong et al.46 by the in-plane bending term.

Since Equation (54) holds for all nodal variations 𝛿x, it leads, after the application of the essential boundary conditions,
to the system of nonlinear equations

f(u) ∶= fint − fext = 0, (B1)

where u are the nodal unknowns, and fint and fext are the global FE forces obtained from assembling the elemental FE
forces given by Equations (56) and (58), respectively.

During Newton–Raphson, Equation (B1) is solved iteratively for the increment Δu from

K(ui−1) Δui = −f(ui−1),
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ui = ui−1 + Δui, (B2)

where K is the (reduced) global stiffness matrix. It is obtained by assembling the elemental tangent matrices, that is,

K =
nel∑
e=1

(
ke

mat + ke
geo − ke

ext
)
, (B3)

and then eliminating the constrained degrees-of-freedom. Here, ke
mat, ke

geo, and ke
ext are defined by Equations (60), (62),

and (66), respectively.

B.1 Implementation of FE force vectors
Due to the symmetry of the stress and moment tensors, they can be represented compactly in Voigt notation as

�̂� ∶= [𝜏11, 𝜏22, 𝜏12]T, M̂0 ∶= [M11
0 , M22

0 , M12
0 ]T,

̂M0 ∶= [M
11
0 , M

22
0 , M

12
0 ]T. (B4)

Defining the 3nne × 1 arrays

La
𝛼𝛽

∶= NT
,𝛼 a𝛽 ,

Ln
𝛼 ∶= NT

,𝛼 n,
Gn

𝛼𝛽
∶= NT

;𝛼𝛽 n

Ga
𝛼𝛽

∶= −NT
,𝛼 c,𝛽 − CT

,𝛽
a𝛼, (B5)

where nne is the number of control points per element, and organizing them into the arrays

L̂a ∶= [La
11, La

22, La
12 + La

21],
Ĝn ∶= [Gn

11, Gn
22, Gn

12 + Gn
21],

Ĝa ∶= [Ga
11, Ga

22, Ga
12 + Ga

21], (B6)

the FE forces (56) can be implemented as

fe
intτ = ∫Ωe

0

L̂a �̂� dA, fe
intM = ∫Ωe

0

Ĝn M̂0 dA, fe
intM

= ∫Ωe
0

Ĝa
̂M0 dA. (B7)

Note, that for classical shell formulations without fiber bending, the last term and its associated tangent matrices are
simply dropped.

B.2 Implementation of material stiffness matrices
To implement the material stiffness matrices, the nine material tangents c𝛼𝛽𝛾𝛿 , d𝛼𝛽𝛾𝛿 , e𝛼𝛽𝛾𝛿 , f 𝛼𝛽𝛾𝛿 , d

𝛼𝛽𝛾𝛿

, ē𝛼𝛽𝛾𝛿 , f
𝛼𝛽𝛾𝛿

, g𝛼𝛽𝛾𝛿 ,
and h

𝛼𝛽𝛾𝛿

are arranged into the 3 × 3 matrices C, D, E, F, D, E, F, G, H, respectively, as, for instance,

C ∶=
⎡⎢⎢⎢⎣
c1111 c1122 c1112

c2211 c2222 c2212

c1211 c1222 c1212

⎤⎥⎥⎥⎦ . (B8)

Note, that for hyperelastic material models, we further have C = CT, E = DT, F = FT, E = D
T

, F = F
T

, G = H
T

. With these
and Equation (B6), the material stiffness matrices in Equation (61) can be implemented as
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ke
𝜏𝜏 = ∫Ωe

0
L̂a C L̂T

a dA,

ke
𝜏M = ∫Ωe

0
L̂a D ĜT

n dA,

ke
M𝜏 = ∫Ωe

0
Ĝn E L̂T

a dA,

ke
MM = ∫Ωe

0
Ĝn F ĜT

n dA,

ke
𝜏M

= ∫Ωe
0

L̂a D ĜT
a dA,

ke
M𝜏

= ∫Ωe
0

Ĝa E L̂T
a dA,

ke
MM

= ∫Ωe
0

Ĝa F ĜT
a dA,

ke
MM

= ∫Ωe
0

Ĝn G ĜT
a dA,

ke
MM

= ∫Ωe
0

Ĝa H ĜT
n dA.

(B9)

Compared to classical Kirchhoff-Love shell theory, the five terms on the right hand side are additional terms due to
in-plane bending.

B.3 | Implementation of geometrical matrices
Using (B5) and (B6), the geometric stiffness matrices in Equation (63) can be implemented as

ke
τ = +∫Ωe

0

(
𝜏11 NT

,1 N,1 + 𝜏22 NT
,2 N,2 + 𝜏12 NT

,1 N,2 + 𝜏21 NT
,2 N,1

)
dA,

ke
M = −∫Ωe

0

bM
[
a11 Ln

1 LnT
1 + a22 Ln

2 LnT
2 + a12 (

Ln
1 LnT

2 + Ln
2 LnT

1
)]

dA

− ∫Ωe
0

(
Ln

1 (a1)T + Ln
2 (a2)T) (

M11
0 N;11 + M22

0 N;22 + 2 M12
0 N;12

)
dA

− ∫Ωe
0

(
M11

0 NT
;11 + M22

0 NT
;22 + 2 M12

0 NT
;12

) (
a1LnT

1 + a2LnT
2
)

dA,

ke
M
= −∫Ωe

0

(
M

11
0 NT

,1 C,1 + M
22
0 NT

,2 C,2 + M
12
0 NT

,1 C,2 + M
21
0 NT

,2 C,1

)
dA

− ∫Ωe
0

(
M

11
0 CT

,1 N,1 + M
22
0 CT

,2 N,2 + M
12
0 CT

,2 N,1 + M
21
0 CT

,1 N,2

)
dA

− ∫Ωe
0

(
NT

,1 P11 N,1 + NT
,2 P22 N,2 + NT

,1 P12 N,2 + NT
,2 P21 N,1

)
dA

− ∫Ωe
0

[
NT

,1 Q1 + NT
,2 Q2 + (Q1)T N,1 + (Q2)T N,2

]
dA, (B10)

where we have defined bM ∶= b𝛼𝛽 M𝛼𝛽

0 , and Q𝛼 ∶= Q𝛼𝛽𝛾 N,𝛽𝛾 . The last term ke
M

is associated with in-plane bending.

Remark 13. We note the term a12 (
Ln

1 LnT
2 + Ln

2 LnT
1
)

in ke
M is given incorrectly by 2 a12 Ln

1 LnT
2 in Duong et al.46

(cf. Appendix B.1, eq. (135.1)).
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