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A GENERALIZED VERSION OF THE LIONS-TYPE LEMMA

Magdalena Chmara

Abstract. In this short paper, I recall the history of dealing with the lack of
compactness of a sequence in the case of an unbounded domain and prove the
vanishing Lions-type result for a sequence of Lebesgue-measurable functions.
This lemma generalizes some results for a class of Orlicz–Sobolev spaces. What
matters here is the behavior of the integral, not the space.

1. Introduction

In 1984 P.L. Lions published his celebrated article [10], in which he intro-
duced a concentration-compactness method for solving minimization problems
on unbounded domains. One of the main tool provided by [10] is lemma I.1.
A variety of formulations of this lemma has been widely used to deal with the
lack of compactness on unbounded domains for different types of equations.
In [7, p. 102] we can find the following version of the Lions Lemma:

Lemma 1. Suppose {un} ∈ H1(RN ) is a bounded sequence satisfying

lim
n→∞

(
sup
y∈RN

∫
Br(y)

|un|p
)

= 0
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for some p ∈ [2, 2∗] and r > 0, where Br(y) denotes the open ball of radius r
centered at y ∈ RN . Then un → 0 strongly in Lq(RN ) for all 2 < q < 2∗, where
2∗ is the limiting exponent in the Sobolev embedding H1(RN ) ↪→ Lp(RN ).

This version of lemma has been used for solving semilinear elliptic equation
in the whole space RN , i.e.

−∆u+ u = h(u), u ∈ H1(RN ).

In [8] and [12] you can find a comprehensive description of lack of compactness
in Sobolev spaces

The Lions Lemma has been generalized in some ways, for example in [3]
we can find the formulation of the lemma for isotropic Orlicz–Sobolev spaces
W1

0 L
A(RN ), i.e. spaces obtained by the completion of C∞0 (RN ) with respect

to the norm ‖u‖W1 LA(RN ) = ‖|∇u|‖LA(RN ) + ‖u‖LA(RN ), where

‖u‖LA(RN ) = inf

{
k > 0 :

∫
RN

A

(
|u|
k

)
dt ≤ 1

}
is a Luxemburg norm, A : R → [0,∞) is an N -function (i.e. is convex, even,
coercive and vanishes only at 0) satisfying ∆2∇2 condition (i.e. there exist
K1,K2 > 0, such that K1A(v) ≤ A(2v) ≤ K2A(v) for all v ∈ Rn).

Lemma 2 ([3, Theorem 1.3]). Assume that a(t)t is increasing in (0,+∞)
and that there exist l,m ∈ (1, N) such that

(1) l ≤ a(|t|)t2

A(t)
≤ m for all t 6= 0,

where A(t) =
∫ |t|

0
a(s)s ds, l ≤ m < l∗ = lN

N−l . Let {un} ⊂W1 LA(RN ) be a
bounded sequence such that there exists r > 0 satisfying:

(L1) lim
n→∞

(
sup
y∈RN

∫
Br(y)

A(|un|)
)

= 0.

Then, for any N-function B verifying ∆2-condition (i.e. there exsists K > 0
such that B(2t) ≤ KB(t) for all t > 0) and satisfying

lim
t→0

B(t)

A(t)
= 0 and lim

t→∞

B(t)

A∗(t)
= 0,

where A∗ is a Sobolev measurete of A (defined by (A∗)−1(t) =
∫ t

0
A−1(s)
s(N+1)/N ds),

we have

un → 0 in LB(RN ).
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In [3] the authors use Lemma 2 to prove the existence of solutions to some
isotropic quasilinear problems.

It is worth noticing, that in the proof of the lemma above authors essen-
tially use the fact that function A satisfies ∆2∇2 condition, which is guar-
anteed by condition (1). Isotropic Young function satisfying globally ∆2∇2

condition is bounded by some power functions with power 1 < p < ∞ (see
e.g [6, Lemma C.4]). If A satisfies ∆2∇2 then W1 LA is a reflexive, separable
Banach space (see e.g. [1, Theorem 8.31]).

There are also papers, where authors consider non-reflexive spaces, e.g. [2].
In this case instead of condition (L1) authors use the assumption (L2) (see [9])
and assume that the sequence

{∫
RN A

∗(|un|) dx
}
is bounded.

Lemma 3 ([2, Theorem 1.3]). Let A,B be an N-functions, A∗ be a Sobolev
conjugate of A and

lim
t→0

B(t)

A(t)
= 0 and lim

t→∞

B(t)

A∗(t)
= 0.

If {un} ⊂ W1 LA(RN ) is a sequence such that
{∫

RN A(|un|) dx
}

and{∫
RN A

∗(|un|) dx
}
are bounded, and for each ε > 0 we have

(L2) meas(|un| > ε)→ 0 as n→∞,

then ∫
RN

B(un)→ 0 as n→∞.

In [13] the author uses the lemma similar to Lemma 2, but for sequences
from anisotropic Orlicz–Sobolev spaces, to find solutions of the anisotropic
quasilinear problem

−div(∇Φ(∇u)) + V (x)N ′(u) = f(u), where u ∈W1 LΦ(Rn),

where Φ is an anisotropic n-dimensional N -function (see more in [5]), satisfy-
ing ∆2∇2 condition and N is a differentiable N -function, such that N ≈ Φ0,
where Φ0 : [0,∞)→ [0,∞) is the left-continuous increasing function obeying

|{v ∈ Rn : Φ0(|v|) ≤ t}| = |{v ∈ Rn : Φ(v) ≤ t}| for t ≥ 0,

where | · | stands for Lebesgue measure.
In [11] the authors prove the Lions type lemma for reflexive fractional

Orlicz–Sobolev spaces, while in [4] the authors prove it for non-reflexive frac-
tional Orlicz–Sobolev spaces.
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2. Main Theorem

In this paper, we generalize the Lions-type Lemmas 1, 2, 3, we mentioned
in the introduction. We do not assume that functions Ψ, Φ1, and Φ2, from
the theorem below, are N -functions.

We need only the fact that they are locally essentially bounded, non-
negative, essential supremum of Ψ is greater than zero and Φ1 vanishes only
at zero (assumption (2)). It is worth noticing that they can have growth not
bounded by polynomials, so it will be possible to use this lemma in non-
reflexive spaces. In the proof of the following lemma we will use some tech-
niques from [11].

Theorem 4. Assume that Φ1,Φ2,Ψ ∈ L∞loc(Rn, [0,∞)),

∀R>0 ess supBR(0)Ψ > 0,

Φ1(x) = 0 ⇐⇒ x = 0,
(2)

lim
|v|→0

Ψ(v)

Φ1(v)
= 0,(Ψ1)

lim
|v|→∞

Ψ(v)

Φ2(v)
= 0.(Ψ2)

Let {uk} be a sequence of Lebesgue-measurable functions uk : RN → Rn such
that

∫
RN Φ1(uk),

∫
RN Φ2(uk) exist,

M1 = sup
k

∫
RN

Φ1(uk) <∞, M2 = sup
k

∫
RN

Φ2(uk) <∞,

and

(3) lim
k→∞

[
sup
y∈RN

∫
Br(y)

Φ1(uk)

]
= 0,

for some r > 0. Then

lim
k→∞

∫
RN

Ψ(uk) = 0.
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Proof. We let |A| denote the Lebesgue measure of a subset A. Let {uk},
Φ1, Φ2, Ψ satisfy the above assumptions.

Fix ε > 0. From (Ψ1), there exists δ > 0, such that

(4)
Ψ(v)

Φ1(v)
<

ε

3M1

for all |v| ≤ δ.
Similarly from (Ψ2), there exists T > 0, such that

(5)
Ψ(v)

Φ2(v)
<

ε

3M2

for all |v| ≥ T . Let us denote:

Ak =
{
x ∈ RN : |uk(x)| < δ

}
, Bk =

{
x ∈ RN : δ ≤ |uk(x)| ≤ T

}
,

Ck =
{
x ∈ RN : |uk(x)| > T

}
.

Then ∫
RN

Ψ(uk) =

∫
Ak

Ψ(uk) +

∫
Bk

Ψ(uk) +

∫
Ck

Ψ(uk).

By (4), we obtain ∫
Ak

Ψ(uk) ≤ ε

3M1

∫
RN

Φ1(uk) <
ε

3

and by (5), we get ∫
Ck

Ψ(uk) ≤ ε

3M2

∫
RN

Φ2(uk) <
ε

3
.

We need to show that ∫
Bk

Ψ(uk) <
ε

3
.

We will show that |Bk| → 0 as k →∞.
Assume, by contradiction, that (up to subsequence)

(6) |Bk| → L > 0.
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First of all, we will show (just as in [11, p. 506]), that for some subsequence
{uk}, there exist y0 ∈ RN and σ > 0, such that

(7) |Bk ∩Br(y0)| ≥ σ > 0.

Assume, again by contradiction, that for all ε > 0, m ∈ N, y ∈ RN we
have

(8) |Bk ∩Br(y)| < ε

2m
.

The last estimate holds for any subsequence of {uk}, and WLOG we can
take just {uk}. Let us choose {ym} ⊂ RN , such that

B :=

∞⋃
m=1

Br(ym) = RN .

Using (8), for arbitrary ε we obtain

|Bk| = |Bk ∩B| ≤
∞∑
m=1

|Bk ∩Br(ym)| <
∞∑
m=1

ε

2m
= ε,

which contradicts (6).
Let

CΨ = ess supδ≤|v|≤TΨ(v), cΦ = ess infδ≤|v|≤TΦ1(v),

CΦ = ess supδ≤|v|≤TΦ1(v).

We observe that∫
Br(y0)

Φ1(uk) ≥
∫
Br(y0)∩Bk

Φ1(uk) ≥ cΦ|Bk ∩Br(y0)|.

Hence, by assumption (3), we have that

|Bk ∩Br(y0)| → 0 as k →∞

which contradicts (7) and as a result |Bk| → 0 as k →∞. Hence we have that
there exists k0 such that for all k ≥ k0

|Bk| < cΦ (3CΦCΨ)
−1
ε.
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Then

|Bk| ≤ (cΦ)
−1
∫
Bk

Φ1(uk) ≤ CΦ (cΦ)
−1 |Bk|

and ∫
Bk

Ψ(uk) ≤ CΨ (cΦ)
−1
∫
Bk

Φ1(uk) ≤ CΨCΦ (cΦ)
−1 |Bk| <

ε

3
. �

Remark 5. Note that what matters in this theorem (just as in the con-
centration-compactness lemma of Lions in [9]) is the behavior of the integral,
not the space.
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