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The problem of estimation of unmeasured state variables and unknown reaction kinetic functions for selected biochem-
ical processes modelled as a continuous stirred tank reactor is addressed in this paper. In particular, a new hierarchical
(sequential) state observer is derived to generate stable and robust estimates of the state variables and kinetic functions.
The developed hierarchical observer uses an adjusted asymptotic observer and an adopted super-twisting sliding mode ob-
server. The stability of the proposed hierarchical observer is investigated under uncertainty in the system dynamics. The
stability analysis of the estimation error dynamics is carried out based on the methodology associated with linear parameter-
varying systems and sliding mode regimes. The developed hierarchical observer is implemented in the Matlab/Simulink
environment and its performance is validated via simulation. The obtained satisfactory estimation results demonstrate high
effectiveness of the devised hierarchical observer.
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1. Introduction
Urban water systems containing drinking water supply
and distribution systems and water resource recovery
facilities (WRRFs) are some of the most necessary
systems for the functioning of a modern society. Efficient
operation of these systems should be based on proper
understanding of natural phenomena taking place in them
and, at the same time, should be supported by advanced
control and monitoring algorithms. These algorithms
require current information about the state of a particular
process (system), primarily passed from the measuring
infrastructure installed at the plant. However, it is well
known that many process variables, especially state ones,
may be unmeasurable (Torfs et al., 2022; Łangowski
and Brdys, 2018; 2017; Junosza-Szaniawski et al.,
2022). In such situations, a state observer is employed,
which makes it possible to estimate (reconstruct) state
variables based on the knowledge of inputs to the plant,
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available measurements (measured outputs), as well as
the knowledge of the system dynamics represented by
its appropriate mathematical model. The system state
estimation domain has been developed for many years,
but there is room for improvement, especially concerning
complex systems. The topic undertaken in this paper
concerns the reconstruction of unmeasured state variables
and unknown kinetic functions in WRRFs.

As mentioned above, a proper mathematical model
of the biochemical processes considered is necessary for
estimation purposes. Typically, this utility model can be
developed using a mechanistic (white-box) approach, or
by applying a data-driven (black-box) framework. In this
paper, the first type of model is used. Two main groups of
non-linear mechanistic models of biochemical processes
occurring in WRRFs can be distinguished. These are
activated sludge models (ASMs) and balance models
(Bastin and Dochain, 1990; Dochain and Vanrolleghem,
2001; Henze et al., 2000; Ujazdowski et al., 2023).
The ASM model family is perceived as most faithfully
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reflecting the behaviour of natural processes in WRRFs.
However, these models are characterised by a significant
degree of complexity, and, therefore, it is not always
possible to use them to synthesise a state observer. An
alternative is to use models from the second group. The
balance models are based on physical balance laws and
aggregate certain fractions occurring in ASMs. The
most common balance models are continuous stirred tank
reactors (CSTRs). Unfortunately, a relatively simple
structure of these models often entails the appearance of
uncertainty, which is primarily accumulated in the kinetic
function (growth rate function). In the broadest case,
this function may be completely unknown (Bastin and
Dochain, 1990; De Battista et al., 2011; Czyżniewski and
Łangowski, 2022b).

In the context of developing an observer for
biochemical processes modelled in this way at the WRRF,
two main issues may be considered. Firstly, it is the
reconstruction of (unmeasured) state variables in the
presence of uncertainty, and, secondly, it is the estimation
of an unknown kinetic function. Whereas the state
variables are invoked for individual compounds residing
in the WRRF bioreactor, the kinetic function is a crucial
part of the dynamics responsible for shaping the overall
process. Many types of observers can be found in
the literature to reconstruct bioreactor state variables in
the face of uncertainty. These include Luenberger-like
observers (Bastin and Dochain, 1990; Dochain and
Perrier, 2002; Bogaerts and Coutinho, 2014; Czyżniewski
et al., 2023; López-Estrada et al., 2015), adaptive
observers (Moshksar and Guay, 2014; Srinivasarengan
et al., 2018; Rodríguez et al., 2015; Reis de Souza
et al., 2020) together with Kalman filters (Dewasme
et al., 2013; Bogaerts and Vande Wouwer, 2003; Bogaerts,
1999; Sun et al., 2008), high-gain observers (Bastin
and Dochain, 1990; Dochain and Vanrolleghem, 2001;
Lafont et al., 2014), interval observers (Hadj-Sadok and
Gouzé, 2005; Alcaraz-González et al., 2005; Oubabas
et al., 2018), moving- and full-horizon observers (Yin
and Liu, 2017; Taylor et al., 2022; Elsheikh et al.,
2021; Tuveri et al., 2022; Dewasme and Vande Wouwer,
2020; Bogaerts and Hanus, 2001; Hulhoven et al.,
2008), asymptotic observers (Bastin and Dochain, 1990;
Dochain and Vanrolleghem, 2001; Hadj-Sadok and
Gouzé, 2005; Ha Hoang et al., 2013), and various
types of sliding mode observers (Coutinho et al., 2019;
Czyżniewski and Łangowski, 2022b; De Battista et al.,
2012; López-Caamal and Moreno, 2016; Nuñez et al.,
2013; Czyżniewski et al., 2023; Fridman et al., 2011).
Moreover, many solutions combining different estimation
techniques can be found, i.e., the so-called hybrid
observers (Bogaerts and Coutinho, 2014; Bogaerts and
Vande Wouwer, 2003; Oubabas et al., 2018; Hulhoven
et al., 2006; Lemesle and Gouzé, 2005; Rueda-Escobedo
et al., 2022; Bárzaga-Martell et al., 2021; Ríos et al.,

2018; López-Caamal and Moreno, 2016). It is worth
adding that many of the observers mentioned above
reveal the robustness property. Robustness means the
ability to reject the effects of uncertainties by, e.g., using
the interval approach, appropriate transformation of the
state coordinates, or fine-tuning the algorithm parameters.
Moreover, this property is often associated with the
possibility of direct reconstruction of unknown inputs
(disturbances) and parameters.

This work focuses on developing and combining
the asymptotic and sliding mode approaches. This
is because the structure of the asymptotic observer
(AO) allows the elimination of the unknown kinetic
function by transforming the state vector, which leads
to the reconstruction of the unmeasured state variables.
However, the AO requires explicit knowledge of the
input and does not have any tunable correction terms
(Bastin and Dochain, 1990; Dochain and Vanrolleghem,
2001; Hadj-Sadok and Gouzé, 2005; Ha Hoang et al.,
2013). On the other hand, the sliding mode observer, in
the second-order variant called a super-twisting sliding
mode observer (STSMO), allows exact estimation of
the unknown kinetic function in the finite-time horizon
and offers robustness against noise and discretization
(Fridman et al., 2011; De Battista et al., 2012).
However, the STSMO requires the knowledge of an
adequate number of measurements. Utilising the
advantages of the above two techniques while adapting
the AO and STSMO to multiple input signals, and
exploiting additional information (pseudo-measurements)
have made it possible to propose a new hierarchical
(sequential) observer.

The main aim of this work is to provide a
new hierarchical observer that allows the estimation of
both unmeasured state variables and unknown kinetic
function in a separate manner. In detail, an adjusted
AO enables the reconstruction of the unmeasured state
variables independently of the impact of the kinetic
function. In turn, an adopted STSMO allows the
estimation of the unknown kinetic function based on both
direct measurements and AO-generated estimates called
pseudo-measurements. A certain class of CSTR-type
models was used as a model of the biochemical processes
occurring in the WRRF for estimation purposes. The
performance of the developed hierarchical observer was
simulation-verified in the Matlab/Simulink environment.
To summarise, the main contributions of this paper are as
follows:

• A new hierarchical observer producing
asymptotically stable estimates of the unmeasured
state variables and the unknown kinetic function is
devised for the non-linear uncertain CSTR model of
biochemical processes.

• New proofs of asymptotic convergence of the
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estimates of the unmeasured state variables
generated by the asymptotic observer and the
estimates of the unknown kinetic function generated
by the super-twisting sliding mode observer are
derived.

• A comprehensive simulation analysis, including
scenarios for various measured outputs, is presented.

The paper is organised as follows. The problem
is formulated in Section 2, while Section 3 includes
the synthesis of the asymptotic observer and the super
twisting sliding mode observer, together forming the
hierarchical observer. In Section 4, the case study is
presented, with division into detailed observer design and
the obtained simulation results. The paper is concluded in
Section 5 and completed with Appendix.

2. Problem formulation
From the constituent mass balance law, a model of
biochemical processes occurring in a bioreactor can be
viewed as an n-dimensional multiple-input single-output
(MISO) system belonging to a sub-class of the general
class of affine non-linear dynamic systems. Let us
consider a model of this type describing a certain class of
CSTRs, which can be defined as follows (Khalil, 2002;
Dochain and Vanrolleghem, 2001; Bastin and Dochain,
1990):

ΣG :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = μ(t)X(t)−mxX(t)

−(1 + r)X(t)D(t) + rXr(t)D(t),

Ẋr(t) = v(1 + r)X(t)D(t)

−v(w + r)Xr(t)D(t),

φ̇jn(t) = −Y −1
jn
μ(t)X(t)−mjnX(t)

+φinjn(t)D(t)− (1 + r)φjn (t)D(t)

+Qjn (t) ,

X(t0) = X0, Xr(t0) = Xr,0,

φjn(t0) = φjn,0,

jn = 1, n− 2,
(1)

where ˙(·) stands for the derivative with respect to t; t ∈
T = R+ is the time instant; R+ denotes the positive part
of R; X(t) [mg/L] ∈ R+, Xr(t) [mg/L] ∈ R+, and
φjn(t) [mg/L] ∈ R+ are the concentrations of aggregated
biomass, aggregated recirculated biomass, and the jn-th
(aggregated) non-biomass compound, respectively, with
initial conditions X0, Xr,0 and φjn,0; μ(t) [h−1] ∈ W ⊂
R+ signifies the kinetic function (growth rate function);
D(t) = Qin(t)/Va [h−1] ∈ R+ is the dilution rate,
where Qin(t) [m

3/h] ∈ R+ and Va [m3] ∈ R+ are the
inflow rate to the bioreactor and its volume, respectively;
φinjn(t) [mg/L] ∈ R+ stands for the concentration
of a given compound in inflow to the bioreactor;

Qjn (t) [mg/h L] ∈ R+ is the gas-liquid transfer
rate of the jn-th non-biomass compound; mx [h−1] ∈
R+ denotes the biomass mortality rate; mjn [h−1] ∈
R+ signifies the maintenance coefficient for the jn-th
non-biomass compound; Yjn [−] ∈ R+ denotes the
yield coefficient for the jn-th non-biomass compound;
r = Qr(t)/Qin(t) [−] ∈ R+ is the constant proportion
between the rates of inflow and recirculated flow, where
Qr(t) [m3/h] ∈ R+ is the recirculated flow rate; v =
Va/Vs [−] ∈ R+ denotes the constant proportion between
the bioreactor and settler volumes, where Vs [m3] ∈ R+

is the settler volume; and w = Qw(t)/Qin(t) [−] ∈ R+

stands for the constant proportion between the rates of
wastewater flow and inflow, where Qw(t) [m

3/h] ∈ R+

is the wastewater flow rate.

Assumption 1. The vector of state variables of the model
(1) is defined as x(t) ∈ R

n
+. More specifically, the vector

of the state variables is proposed as

x(t) �
[
X(t) φjn (t) Xr(t)

]T
.

Assumption 2. By their nature, in operational conditions
all variables and parameters in the model (1) are positive
and uniformly bounded. For further discussion, ∀t ∈ T

the set of all possible system states, is defined as (Dochain
and Vanrolleghem, 2001; Bastin and Dochain, 1990)

Xn =
{∀t ∈ T, x(t) ∈ R

n
+ : x � x(t) � x

}
,

where (·) and (·) signify the real and positive lower and
upper bounds on the particular variable, and � refers to
element-wise operations between the laid-out elements of
a given vector or matrix. Xn is the invariant set known
with the condition of the general theory of dynamics of
biochemical processes.

Assumption 3. Only one state variable is transferred to
the system output, i.e., y(t) ∈ Yq ⊂ R+, and it represents
the measured output, hence y(t) = h(x(t)) = Cx(t),
where C ∈ R

1×n is the output matrix.

Assumption 4. In the operational conditions, the inputs
to the model (1) are defined as u(t) ∈ Up ⊂ R

p:

u(t) �
[
D(t) D(t)φinjn (t) kLajn(t)

]T
,

Up =
{∀t ∈ T, u(t) ∈ R

p
+ : u � u(t) � u

}
.

Vector u(t) is the vector of time-dependent functions,
which are at least u(t) ∈ C1 (T,Up) uniformly bounded
Lipschitz continuous functions. Let us define ‖·‖∞ for
the supremum norm (Shilov and Chilov, 1996); then ∀t ∈
T :

∥
∥u̇ip(t)

∥
∥
∞ = sup

{| u̇ip | : t ∈ T
} ≤ udip

< ∞
for ip = 1, p. Moreover, due to the physical properties
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of the system considered, it is assumed that all inputs
are the permanently excited positive signals, i.e., ∀t ∈
T; the following matrix is bounded and positive definite
(Khalil, 2002; Jenkins et al., 2018):

αuI(p×p) �
∫ T+t

t

u(τ)uT(τ) dτ � αuI(p×p) ,

where � refers to the domination order of the particularly
definite matrices; αu and αu ∈ R+ are the constant
parameters; T ∈ T is the selected time period; and
I((·)×(·)) is the identity matrix of the appropriate size.

Assumption 5. The model of the gas-liquid transfer
rate of the jn-th non-biomass compound that describes
direct transfer between gas and liquid surroundings, e.g.,
the oxygen transfer rate from the gas phase to the liquid
phase and the carbon transfer rate from the liquid phase
to the gas phase (Dewasme et al., 2013; Lindberg, 1997;
Dochain and Vanrolleghem, 2001; Bastin and Dochain,
1990), yields

Qjn(t) � kLajn(t)
(
φsatjn − φjn(t)

)
,

where kLajn(t) [h
−1] ∈ R+ is the particular gas-liquid

transfer function and φsatjn
[mg/L] ∈ R+ is the saturation

concentration of the jn-th non-biomass compound.
It is worth emphasising that kLajn(t) can be viewed

not only as an input modelled in various ways, but also
as a time-varying parameter (Lindberg, 1997; Piotrowski
et al., 2021; Dewasme et al., 2019; Czyżniewski et al.,
2023).

Assumption 6. By their nature, in the operational
conditions all parameters in the model (1), i.e., mx, mjn ,
Yjn , r, v, w and φsatjn

, are positive and assumed known
and constant (Dochain and Vanrolleghem, 2001; Bastin
and Dochain, 1990).

Assumption 7. It is assumed here that the kinetic
function μ(t) is unknown and thus introduces uncertainty
alone into the model (1). However, due to the physical
understanding of distinctive biochemical processes, it
is possible to impose the following properties on this
function (Czyżniewski and Łangowski, 2022b; Dochain
and Vanrolleghem, 2001):

• μ(t) is always non-negative and uniformly bounded,
i.e., ∀t ∈ T : ‖μ(t)‖∞ = sup {| μ(t) | : t ∈ T} ≤
μ <∞;

• μ(t) is always the Lipschitz continuous function of
its arguments, which means that its derivative is also
uniformly bounded, i.e., ∀t ∈ T : ‖μ̇(t)‖∞ =
sup {| μ̇(t) | : t ∈ T} ≤ μd <∞.

Proposition 1. For the sake of simplicity, according to
Assumptions 1–4, the model (1) can be rewritten in the
following way:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ (t) = Rμ(t)x1(t)− ϕx1(t)− (1 + r)X (t)u1(t)

+Q(t) + ζ(t) + s(t),

ẋn(t) = v(1 + r)x1(t)u1(t)− v(w + r)xn(t)u1(t),

y(t) = Cx(t),

x(t0) = x0,
(2)

where X (t) =
[
x1(t) . . . xn−1

]T ∈ R
n−1
+ is the

reduced state vector; R =
[
1 −Yjn

]T ∈ R
n−1
+

stands for the vector of yield coefficients; Q(t) =
[
0 Qjn(t)

]T ∈ R
n−1
+ denotes the vector of gas-liquid

inflow/outflow rates; ϕ =
[
mx mjn

]T ∈ R
n−1
+ sig-

nifies the vector of mortality and maintenance coeffi-
cients; ζ(t) =

[
0 ζ2(u(t)) . . . ζn−1(u(t))

]T ∈
R

n−1
+ is the vector of combined inputs; s(t) =

[
rxn(t)u1(t) 0 . . . 0

]T ∈ R
n−1
+ denotes the vector

describing the relation between the recirculated biomass
and other compounds; and jn = 1, n− 2.

It is noteworthy that the introduced structure (2) fits
into the general structure of biochemical systems (Bastin
and Dochain, 1990; Dochain and Vanrolleghem, 2001).

Remark 1. It is worth emphasising that the CSTR
class represented by the models (1) and (2) may be
easily transformed to the fed batch form known from,
e.g., the works of Dochain and Vanrolleghem (2001),
Bastin and Dochain (1990), Moreno and Dochain (2008),
López-Caamal and Moreno (2016) or Bogaerts and
Coutinho (2014). In this regard, it is necessary to make
r = 0, which cancels the impact of the concentration of
the recirculated biomass (or other concentrations of the
recirculated compounds) in these models.

As mentioned above, the main goal of this work is
developing a robust hierarchical observer for biochemical
systems belonging to the class described by the model (2).
The robustness property is related to the estimation
of the unmeasured state variables and the unknown
kinetic function in a global asymptotic way. This is
done by applying a sequential structure of two separate
observers responsible for independent estimation tasks,
where the AO allows the reconstruction of the unmeasured
state variables irrelevant of how the kinetic function
behaves, while the STSMO uses a simplified model of
the process to assess the unknown value of μ(t) with the
assumption that the upper bound on the kinetic function
derivative is known. This operation is performed when
there is only one state measurement and the knowledge
about the inputs enabling to provide the u-detectability
property of the state (Czyżniewski and Łangowski, 2022a;
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Moreno and Dochain, 2008; Moreno et al., 2012).
Since the developed STSMO used to estimate μ(t)
gets the information from both the measured output
and the pseudo-measurements, which are the AO-related
estimates of state variables, the global asymptotic stability
of the entire structure must be proved by utilising the
Lyapunov tools. This is the main difference between this
study and the previous works (e.g., Bastin and Dochain,
1990; López-Caamal and Moreno, 2016; Dochain and
Vanrolleghem, 2001; De Battista et al., 2011; Farza et al.,
1998; Dewasme et al., 2019; Rueda-Escobedo et al., 2022;
Nuñez et al., 2013; Moshksar and Guay, 2014), where
only direct measurements were applied to reconstruct
the kinetic function, but more detailed knowledge on
its structure was required. The proposed hierarchical
approach adopts less restrictive assumptions about the
number of direct measurements and the properties of the
utility model for synthesis purposes. It is noteworthy
that the estimation process is not parallel, unlike in
other hybrid approaches (e.g., Bogaerts, 1999; Bogaerts
and Coutinho, 2014; Oubabas et al., 2018; Hulhoven
et al., 2006; Lemesle and Gouzé, 2005; Rueda-Escobedo
et al., 2022; Bárzaga-Martell et al., 2021). Instead, it is
executed in two steps, with one observer receiving the
input from the other through a feed-forward connection.
In this case, the pseudo-measurements provide additional
information; however, their use may affect the STSMO
performance due to longer transient states.

3. Synthesis of the hierarchical observer
The structure of the proposed hierarchical observer is
shown in Fig. 1, where the flow of signals and causal
dependencies between its particular parts are marked.
According to Fig. 1, the estimation process is realised
sequentially. An adjusted asymptotic observer allowing
multiple inputs to be taken into account is used to
reconstruct the unmeasured state variables, whereas
the super-twisting sliding mode observer estimates the
unknown kinetic function based on not only direct
measurements of CSTR inputs and outputs but also
the computed state estimates (pseudo-measurements)
generated by the AO.

3.1. Design of an asymptotic observer. A well-known
approach to designing an asymptotic observer for CSTR
state reconstruction purposes is based on using the
dilution rate D(t) as the input to the dynamics observer
(Dochain and Vanrolleghem, 2001; Bastin and Dochain,
1990; Hadj-Sadok and Gouzé, 2005; Ha Hoang et al.,
2013). In this paper, the vector of inputs is extended by
kLajn(t) and D(t)φinjn (t), which makes the synthesis of
the observer more challenging.

Proposition 2. For such conditions, it is possible to se-

lect one k-th element, where k ∈ {1, . . . , n− 1}, from the
n-dimensional state vector x(t), except for xn(t), which
is the measured output y(t) (according to Assumption 3).
Thus, the (n − 1)-dimensional vector v(t) ∈ Vn−1 ∈
R

n−1
+ of unmeasured state variables can be introduced as

part of vector x(t) by excluding a particular xk(t) vari-
able. Next, to decline the unknown kinetic function μ(t)
(see Assumption 7) from the system dynamics, a new vec-
tor of state variables c(t) ∈ Gn−1 ∈ R

n−1 is introduced
in the following way:

c(t) =

{
v(t) +Ky(t) if y(t) 	= x1(t),

1(n−1)×1y(t) + Fv(t) if y(t) = x1(t),

K =

[

R−1
k −Rκ

Rk
0

]T

if k ∈ {2, . . . , n− 1}, κ = 1, n− 1 \ {k},
F = diag

([
R−1

2 . . . R−1
n−1 1

]T
)

if k = 1,

where 1(n−1)×1 is the vector consisting of elements equal
to 1 excluding the element associated with xn(t) while
K ∈ R

n−1, F ∈ R
(n−1)×(n−1) are, respectively, the ma-

trix and vector of coordinate transformations that consist
of the particular yield coefficients determined in vectorR.

Given the transformation from Proposition 2, the
model (2) can be rewritten as

Σc

{
ċ(t) = A(u(t))c(t) +B(y(t),u(t)),

c(t0) = c0,
(3)

where A(u(t)) : Up → R
n×n is the time-varying

matrix of differentiable functions representing the internal
dynamics of the system, while B(y(t),u(t)) : Yq×Up →
R

n denotes the time-varying vector of differentiable
functions related to inputs and the measured output.

The derivation of A(u(t)) and B(y(t),u(t)) is
premised on an appropriate composition of components
s(t), Q(t), R, ζ(t), ϕ, X (t) and xn(t) introduced in
Proposition 1. Specifically, it is done by applying the state
coordinate transformation from Proposition 2. Taking into
account that the μ(t) related term has been eliminated
from the new dynamics and only linear or bi-linear
dependencies between particular signals and parameters
occur, particular elements of A(u(t)) and B(y(t),u(t))
can be obtained.

Remark 2. Whereas the form of vector B (y(t),u(t))
is fully dependent on linear or non-linear combinations of
parameters with inputsu(t) and the measured output y(t),
the form of matrix A (u(t)) is based on combinations
between parameters and inputs. For comparison, in a
typical approach to AO design, the matrix responsible
for the internal dynamics depends only on parameters.
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Fig. 1. Diagram of the proposed hierarchical observer.

Therefore, this new representation of system dynamics
must be viewed as a linear parameter-varying system
(LPV).

Lemma 1. To design the asymptotic observer, the follow-
ing conditions must hold:

1. The elements of vector K must satisfy Kl 	= 0, l =
1, n− 2, excluding the last element, i.e., l = n− 1 if
y(t) 	= x1(t).

2. The rank of diagonal matrix F must meet
rank (F ) = n− 1, if y(t) = x1(t).

3. The rank of matrix A(u(t)) must meet
rank(A(u(t))) = n− 1, ∀t ∈ T.

The impact of the measured output y(t) on the
modelled dynamics (3) decoupled from μ(t) can be
directly considered to be stabilising. Hence, the vector
of unmeasured state variables v(t) may be reconstructed
in an asymptotic way by the asymptotic observer.

Theorem 1. Assuming that vector c(t) represents the
solution of the system (3) over time t ∈ T and denoting
by ĉ(t) ∈ Gn−1 ∈ R

n−1 and v̂(t) ∈ Vn−1 ∈ R
n−1
+

the estimates of state variables, the following asymptotic
observer:

ΣAO :

⎧
⎪⎨

⎪⎩

˙̂c(t) = A (u(t)) ĉ(t) +B (y(t),u(t)) ,

v̂(t) = ĉ(t)−Ky(t),

ĉ(t0) = ĉ0,

(4)

or

ΣAO :

⎧
⎪⎨

⎪⎩

˙̂c(t) = A (u(t)) ĉ(t) +B (y(t),u(t)) ,

v̂(t) = F−1
[
ĉ(t)− 1(n−1)×1y(t)

]
,

ĉ(t0) = ĉ0

generates the estimates of state variables x̂(t) asymptot-
ically (exponentially) converging to the state vector x(t)
of the system (1) as t → ∞ for any initial conditions and
any permanently excited vector u(t).

Proof. By combining (3) and (4), the dynamics of the
estimation error e(t) � ĉ(t) − c(t) ∈ En−1 ⊂ R

n−1 are
given as

Σe :

{
ė(t) = A (u(t)) e(t),

e(t0) = e0.
(5)

Referring to, e.g., Khalil (2002), Ilchmann et al.
(1987) or Zhou (2016), the LPV dynamics (5)
can be considered to be globally and asymptotically
(exponentially) stable (GAES) if and only if the following
conditions hold:

1. The real parts of all eigenvalues of matrix A (u(t))
are negative, i.e., ∀t ∈ T : λjn [A(u(t))] ⊂ {z ∈
C|�(z) < 0}, where z is the complex number and
�(·) denotes the real part of the complex number z.

2. Matrix A (u(t)) is uniformly bounded, i.e., ∀t ∈
T : ‖A(u(t))‖2 ≤ γ.

3. The time derivative Ȧ (u(t)) is uniformly bounded,
i.e., ∀t ∈ T : ||Ȧ (u(t)) ||2 ≤ δ;.

Here δ, γ ∈ R+ are the constant parameters.
If the conditions presented in Lemma 1 are met

and the input vector u(t) is permanently excited (see
Assumption 4), then the GAES property of the proposed
AO related to the estimation error equilibrium zero point
is assured for every e(t0) = e0 in the classic way, i.e.,

Φ(t, t0) = exp

(∫ t

t0

A(u(τ)) dτ

)

,

‖Φ(t, t0)‖2 ≤ η1exp (−η2(t− t0)) ,

e(t) = Φ(t, t0)e(t0) → 0(n−1) as t→ ∞,

where Φ(t, t0) : T → Gn−1 denotes the state transition
matrix of the LPV system and η1, η2 ∈ R+ are the
positive constant parameters.

The justification of the second and the third condition
is based on the fact that the input u(t) and its derivatives
u̇(t) are uniformly bounded and continuous, which is
guaranteed by Assumptions 2–4. Additionally, since
matrix A (u(t)) is the differentiable function with respect
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to u(t) (see Remark 2), there exist uniformly bounded and
continuous partial derivatives ∂uA (u(t)) (for a detailed
discussion of this issue, see Appendix).

The final part of the stability proof is performed
in the same manner as in the works of Khalil (2002)
and Ilchmann et al. (1987), hence only necessary stages
are presented here. To show that the trajectories of the
estimation error converge to the zero equilibrium point,
the quadratic radially unbounded Lyapunov function
VA (e(t), t) : En−1 × T → R+ ∪ {0} is proposed:

VA (e(t), t)

= eT(t)PA(t)e(t), λ (PA(t)) ‖e(t)‖22
≤ VA (e(t), t) ≤ λ (PA(t)) ‖e(t)‖22 ,

(6)

where PA(t) : T → R
(n−1)×(n−1) is the real, positive

definite and time dependent symmetric matrix, and
λ (PA(t)) ∈ R+ and λ (PA(t)) ∈ R+ denote the largest
and smallest eigenvalues of PA(t) ∀t ∈ T, respectively.

Assuming that there exists a real, positive-definite
and symmetric matrix QA(t) : T → R

(n−1)×(n−1)
+

meeting the condition of uniform boundedness, i.e.,

0(n−1)×(n−1) � σI(n−1)×(n−1)

� QA(t) � σI(n−1)×(n−1), ∀t ∈ T,

where σ, σ ∈ R+, the Lyapunov equation is fulfilled by
PA(t) in the following way:

PA(t) =

∫

T

(
ΦT(τ, t0)QA(τ)Φ(τ, t0)

)
dτ,

−ṖA(t) = PA(t)A(u(t)) +AT(u(t))PA(t) +QA(t)

= A(u(t))

∫

T

(
ΦT(τ, t0)QA(τ)Φ(τ, t0)

)
dτ

+AT(u(t))

∫

T

(
ΦT(τ, t0)QA(τ)Φ(τ, t0)

)
dτ

+QA(t).

(7)

By combining (5), (6) and (7), the time derivative of
VA (e(t), t) is given as

V̇A (e(t), t) = ėT(t)PA(t)e(t)

+ eT(t)ṖA(t)e(t) + eT(t)PA(t)ė(t)

= −eT(t)QA(t)e(t).

(8)

Therefore, taking into account that ||A(u(t))||2 ≤
γ and ||Ȧ (u(t)) ||2 ≤ δ, ∀t ∈ T, the rest of the
proof can be performed canonically (for more details, see
(Khalil, 2002, pp. 147–159)), which guarantees the GAES
property of dynamics (5). To sum up, knowing that the

vector of the original state variables x(t) is combined by
y(t) and v(t), the full information about the system state
is ensured and Theorem 1 is proven. �

Remark 3. According to Moreno and Dochain (2008) as
well as López-Caamal and Moreno (2016), the feasibility
condition of the ‘classic’ AO is not involved with
fulfilling the strong u-observability property, but only the
less restrictive property of strong u-detectability, which
arises from both the dynamics and the observer structure
attributes. This means that, if the feasibility condition
is satisfied, then any additional analysis of system
observability is unnecessary for both the ‘classic’ and the
proposed AO, which results from the global asymptotic
convergence of the estimation error (5) dynamics to the
zero point.

3.2. Design of the super-twisting sliding mode ob-
server. By invoking Fig. 1, the modified super-twisting
sliding mode observer known from De Battista et al.
(2012) can be applied to the estimation of an unknown
kinetic function. This is because the biomass-related
concentration dynamics introduced in model (1) neatly fit
the general form of the model presented by De Battista
et al. (2012); see Remark 1.

In fact, the unknown kinetic function μ(t) is
generally an uncertain and complex component
of the dynamics of biochemical processes, whose
non-linear behaviour depends on particular compound
concentrations, pH, temperature, or other environmental
factors (Czyżniewski et al., 2023; De Battista et al.,
2012; 2011; Bastin and Dochain, 1990; Dochain and
Vanrolleghem, 2001). Thus, by taking the first dynamics
equation from the model (1), the proportional biomass
representation of the kinetic function is applied:

ΣX :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ẋ(t) = μ(t)X(t)−mxX(t)

−(1 + r)D(t)X(t) + rD(t)Xr(t),

μ̇(t) = ρ(t)X(t),

X(t0) = X0, μ(t0) = μ0,
(9)

where ρ(t) : T → R is the unknown function uniformly
bounded by the known constant ρ, i.e., ∀t ∈ T : |ρ(t)| ≤
ρ ∈ R+ (see Assumption 7), which describes the dynamic
behaviour of the kinetic function μ(t).

Assumption 8. Any solution, understood in the sense
of Filipov (Khalil, 2002), of the μ(t) related dynamics (9)
satisfies the differential inclusion μ̇(t) ∈ UρX(t), ∀t ∈
T, where the convex set U is given as U = [−1 , 1] ∈ R.

In contrast to De Battista et al. (2012), the proposed
STSMO uses not only direct measurements of inputs
to the CSTR, and outputs from the CSTR but also
pseudo-measurements. Hence, the main issue is to
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show that the structure (9) can be efficiently united with
the proposed AO (4) when the pseudo-measurements
‘play the role’ of real measurements. Consequently,
the global asymptotic stability of the estimation error in
the finite time horizon (uniform stability), i.e., at time
t0 < Treach ∈ T, must be converted to the GAES
property. Taking into account the form of the X(t)
related differential equation (1), the following cases can
be considered:

1. The output given by y(t) = X(t) is measured,
whereas the estimate X̂r(t) of Xr(t) stands for
pseudo-measurement.

2. The estimates X̂(t) and X̂r(t) of X(t) and Xr(t),
respectively, signify pseudo-measurements.

Hence, by taking theX(t) related dynamics equation
from the model (1) and defining a new signal X̌(t) ∈ R+

as the universal indication representing both X(t) and
X̂(t), regardless of the case, the following theorem is
formulated.

Theorem 2. Let a pair of (X(t), μ(t)) , ∀t ∈ T, rep-
resent the part of the solution of the system (1), under-
stood in the sense of Filipov, with respect to the biomass
concentration and kinetic function. Moreover, let us as-
sume that the measurements and pseudo-measurements
are available in the two particular cases. Then, the fol-
lowing super-twisting sliding mode observer:

ΣSTSMO :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂
X(t) = rX̂r(t)D(t) +

(
μ̂(t)

−mx − (1 + r)D(t)
)
X̌(t)

+2β
[
ρ
∣
∣X̌(t)− X̂(t)

∣
∣
]0.5

×sgn
(
X̌(t)− X̂(t)

)
X̌(t),

˙̂μ(t) = αρsgn
(
X̌(t)− X̂(t)

)
X̌(t),

X̂(t0) = X̂0, μ̂(t0) = μ̂0,
(10)

where α, β ∈ R+ are the tuning parameters and sgn(·)
signifies the signum function, generates the estimate of the
kinetic function μ̂(t) asymptotically (exponentially) con-
verging to the kinetic function μ(t) (GAES property) if the
tuning parameters meet α ∈ (1 ; ∞) ⊂ R+ and β ∈ R+,
and ρ is properly calculated, for any initial conditions.

Lemma 2. Based on Assumptions 2, 4 and 7, the follow-
ing properties are introduced:

• The AO related estimation error eX(t) � X(t) −
X̌(t) ∈ R, which, due to the introduced prop-
erties of the AO (see Section 3.1), is GAES, i.e.,
|eX(t)| → 0 as t → ∞, and uniformly bounded, i.e.,
∀t ∈ T : |eX(t)| ≤ eX =

∣
∣X(t0) − X̌(t0)

∣
∣ ∈ R+.

Moreover, if X̌(t) ≡ X(t), i.e., y(t) = x1(t), then
eX(t) = 0, ∀t ∈ T.

• The AO related estimation error, eXr(t) � Xr(t) −
X̂r(t) ∈ R reveals the same properties as eX(t),
i.e., is GAES and uniformly bounded, i.e., ∀t ∈
T : |eXr(t)| ≤ eXr =

∣
∣Xr(t0)− X̂r(t0)

∣
∣ ∈ R+.

• The estimation errors of the STSMO denoted as
X̃(t) � X(t) − X̂(t) ∈ R and μ̃(t) � μ(t) −
μ̂(t) ∈ R are, at least, uniformly bounded, i.e.,
∀t ∈ T :

∣
∣X̃(t)

∣
∣ ≤ X̃b ∈ R+, |μ̃(t)| ≤ μ̃b ∈ R+,

where both bounds are taken conservatively.

Proof. Taking into account that the pseudo-measurements
may ’supply’ the correction term of the STSMO, the
classic Lyapunov method-based stability analysis has to
be invoked and reconsidered (De Battista et al., 2011;
Nuñez et al., 2013; Moreno and Osorio, 2012; Moreno
and Mendoza, 2014; Moreno, 2012). The proof of
stability can be given by taking the fundamental properties
of the proposed AO (4) and the STSMO (10) into account.

By combining the first differential equation from
(1), the model (9), and Assumption 8 with the observer
equations (10), the following error dynamics are obtained

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃X(t) = μ̃(t)X̌(t)

+
[
μ(t)−mx − (1 + r)D(t)

]
eX(t)

+rD(t)eXr(t)− 2β
[
ρ
∣
∣X̌(t)− X̂(t)

∣
∣
]0.5

×sgn
(
X̌(t)− X̂(t)

)
X̌(t),

˙̃μ(t) ∈ UρX(t)− αρsgn
(
X̌(t)− X̂(t)

)
X̌(t),

X̃(t0) = X̃0, μ̃(t0) = μ̃0.
(11)

It can be noticed that, due to the occurrence
of X̌(t), the classic Lyapunov method-based stability
analysis cannot be performed in a straightforward
manner. However, by rearranging the correction term
in the proposed STSMO, it is possible to introduce
into the dynamics (11) the additive term w(t) =
[
w1(t) w2(t)

]T ∈ R
2 representinga certain class of

disturbances’:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̃X(t) = μ̃(t)X̌(t) + w1(t)

−2β
[
ρ
∣
∣X̃
∣
∣
]0.5

sgn
(
X̃(t)

)
X̌(t),

˙̃μ(t) ∈ UρX̌(t)− αρsgn
(
X̃(t)

)
X̌(t) + w2(t),

X̃(t0) = X̃0, μ̃(t0) = μ̃0.
(12)

Taking into account Lemma 2, the components of
vector w(t) can be presented as

w1(t) � rD(t)eXr(t) + [μ(t)−mx − (1 + r)D(t)] eX(t)

− 2β
[
ρ
∣
∣X̃(t)− eX(t)

∣
∣
]0.5
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× sgn
(
X̃(t)− eX(t)

)
X̌(t)

+ 2β
[
ρ
∣
∣X̃(t)

∣
∣
]0.5

sgn
(
X̃(t)

)
X̌(t),

w2(t) � UρeX(t)

+ αρX̌(t)
[
sgn

(
X̃(t)

)− sgn
(
X̃(t)− eX(t)

)]
.

The transition from (11) to (12) can be understood
in that there exists a ‘nominal’ observer for the system
(9), i.e., comprising direct measurements of X(t)
and Xr(t), when its dynamics are affected by w(t).
Furthermore, taking into account Lemma 2, and together
with Assumptions 2, 4, and 7, it can be claimed that vector
w(t) is asymptotically vanishing to zero point we =
(0, 0) ∈ R

2 for any initial conditions. Also, this vector
is uniformly bounded for every t ∈ T:

|w1(t)| ≤ w1 = max {|w1(t)| : t ∈ T} ,
|w2(t)| ≤ w2 = max {|w2(t)| : t ∈ T} ,

w = || [w1 w2

]T ||2 ∈ R+,

(13)

where both w1, w2 ∈ R+ are taken conservatively.
Let us apply the following global and homeomorphic

state transformation (De Battista et al., 2012; Moreno and
Osorio, 2012; Moreno, 2012) to the error dynamics (12):

ξ(t) �
[[
ρ
∣
∣X̃(t)

∣
∣
]0.5

sgn
(
X̃(t)

)
μ̃(t)

]T
∈ Ξ ⊂ R

2.

(14)
Next, knowing that, for any t ∈ T, sgn

(
X̃(t)

)
=

sgn (ξ1(t)) and ξ̇1(t) = 0.5ρ |ξ1(t)|−1 ˙̃X(t), the
transformation (14) converts the error dynamics (12) to
the following differential inclusion:

{
ξ̇(t) ∈ ρ (|ξ1(t)|)−1 [

X̌(t)Λξ(t) + ω(t)
]
,

ξ(t0) = ξ0,
(15)

where for every t ∈ T we have here that : ω(t) �
[
0.5w1(t) |ξ1(t)| (ρ)−1 w2(t)

]T ∈ R
2 is bounded by

term ω =
∥
∥
∥
[
ω1 ω2

]T
∥
∥
∥
2
∈ R+,

∣
∣ξ1(t)

∣
∣ ≤ [

ρX̃b

]0.5

and Λ ⊂ R
2×2 denotes the convex polytope ‘playing the

role’ of the state matrix (Boyd et al., 1994).
The differential inclusion (15) can be presented as

the linear (affine) polytopic differential inclusion, i.e., the
polytope Λ becomes equivalent to the following convex
hull (De Battista et al., 2012; Nuñez et al., 2013):

∀t ∈ T : Λ = conv {A1,A2} , A1,A2 ∈ R
2×2

A1 =

[ −β 0.5
−(α− 1) 0

]

,

A2 =

[ −β 0.5
−(α+ 1) 0

]

.

(16)

If the differential inclusion (15) is unperturbed and
the convex hull (16) is given, then, for any time dependent

matrix A(t) ∈ Λ ∀t ∈ T, A : T → R
2×2, the quadratic

global asymptotic and uniform stability of ξ(t) is ensured
if α > 1 and β > 0.

This means that for the subsequent Lyapunov
equation (inequality) and quadratic Lyapunov function
(analogous to (6)) VS (ξ(t), t) : Ξ × T → R+ ∪ {0}
(Khalil, 2002; Moreno, 2012),

VS(ξ(t), t) = ξT(t)PSξ(t),

λ (PS) ‖ξ(t)‖22 ≤ VS (ξ(t), t) ≤ λ (PS) ‖ξ(t)‖22 ,
−λ (QS) I2×2 > −QS = AT(t)PS +PSA(t), (17)

PS ∈ R
2×2
+ , QS ∈ R

2×2
+ ,

there exists a feasible solution to the quasi-convex linear
matrix inequality (LMI) (Boyd et al., 1994). Moreover,
the Lyapunov matrix PS is ‘common’ for any A(t) ∈
Λ, and λ (QS) ∈ R+ denotes the smallest eigenvalue
selected from among any possible spectrum of QS

(De Battista et al., 2012; Nuñez et al., 2013). The key
properties of the quadratic Lyapunov function, which is
an absolutely continuous and continuously differentiable
function except set Γ = {ξ(t) ∈ Ξ : ξ1(t) = 0}, are
introduced by Moreno (2012), Moreno and Osorio
(2012) as well as Moreno and Mendoza (2014). Thus,
VS (ξ(t), t) is supposed to be monotonically decreasing
and converging to ξe = (0, 0) ∈ Ξ, with respect to all
non-zero solutions of (15) in time t ∈ T.

However, in (15) ω(t) can be found, which causes
the differential inclusion to be perturbed. In this case,
the stability proof is more elaborated compared with
De Battista et al. (2012). By combining (15) and (17),
the time derivative of VS (ξ(t), t) yields

V̇S (ξ(t), t) = pa
[
ξT(t)pb

]

≤ pa
[− λ (QS) X̌(t)ξT(t)ξ(t)

+ 2ξT(t)PSω(t)
]

, (18)

where

pa = ρ (|ξ1(t)|)−1
,

pb = X̌(t)
(
AT(t)PS +PSA(t)

)
ξ(t)

+ 2PSω(t).

In general, the proof can be divided into two steps.
The first step covers the issue of the global ultimate and
uniform boundedness (GUUB) of vector ξ(t) in time t ≥
t0 + Treach, assuming that ω(t) is not vanishing to the
zero point. Moreover, the exact formula for time Treach
is delivered. The second step extends the discussion by
showing that the GAES property of ξ(t) can be justified
in time t ≥ t0 + Treach, assuming that ω(t) tends to the
zero point.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl
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For the first one, let us apply the input to
state stability (ISS) tools (López-Caamal and Moreno,
2016; Khalil, 2002). Hence, by invoking Lemma 2,
Assumption 2, and (13) as well as (17), the Lyapunov
inequality (18) can be rewritten ∀ξ(t) ∈ Ξ \ {ξe} in the
following way:

V̇S (ξ(t), t) ≤ pa ‖ξ(t)‖2
[− pc − pd

+ 2λ (PS) ‖ω(t)‖2
]
< 0,

(19)

where

pc = λ (QS)χX̌ ‖ξ(t)‖2 ,
pd = λ (QS) (1− χ) X̌ ‖ξ(t)‖2 ,

χ ∈ (0 , 1) ⊂ R+ and X̌ ∈ R+ is the lower bound of the
biomass concentration-related pseudo-measurement.

It can be realised that the derivative (19) is negative
if the following condition holds ∀t ∈ T (Khalil, 2002;
Moreno and Osorio, 2012; Moreno, 2012):

V̇S (ξ(t), t) ≤ −λ (QS)χρX̌ (|ξ1(t)|)−1 ‖ξ(t)‖22 < 0

(20)

if

λ (QS) (1− χ) X̌ ‖ξ(t)‖2 ≥ 2λ (PS)ω

≥ 2λ (PS) ‖ω(t)‖2 .
In other words, if the state trajectories ξ(t) belong to

the compact and invariant set Sω ⊂ R+,

Sω =

{

∀ξ(t) ∈ Ξ :

‖ξ(t)‖2 ≥ 2
λ (PS)

λ (QS) (1− χ) X̌
ω

}

,

∀t ∈ T, Ψ = 2
λ (PS)

λ (QS) (1− χ) X̌

×
√

λ (PS) λ
−1 (PS)ω,

then V̇S (ξ(t), t) is locally negative definite for this set and
the ultimate bound Ψ ∈ R+ is given.

Therefore, the GUUB property of ξ(t) in the finite
time t ≥ t0 + Treach is confirmed, which justifies
the robustness of the estimation process of the pair
(X(t), μ(t)) for the case of the non-vanishing ω(t).
Next, by applying the comparison principle (Khalil, 2002;
Moreno and Osorio, 2012; Moreno, 2012) with (16) and
(20), the exact formula for Treach is ∀t ∈ T given as

Treach ≈ 2

[
λ (PS)

]1.5

λ (QS)χρX̌
√
λ (PS)

× ‖ξ(t0)‖2
(21)

whenever

‖ξ(t)‖2 ≤ ‖ξ(t0)‖2
[
λ (PS)

λ (PS)

]0.5

− λ (QS)χρX̌

2λ (PS)
t.

This property can be commented on as follows.
By invoking the general idea of the AO, the asymptotic
(exponential) convergence of the estimation error is
only dependent on the behaviour of u(t). Knowing
that the operation of the AO (4) is not anticipated
as having a finite time (see Section 3.1), it is not
possible to state that the AO dynamics will be faster
than those of the STSMO. Therefore, for both pairs
of measurements/pseud-measurements delivered to the
proposed STSMO, it is clear that the tunable time Treach
is primarily related to them and not to the original
X(t) and Xr(t) generated by the system considered.
Hence, it can be stated that the estimation error between
pairs (X(t), μ(t)) and

(
X̂(t), μ̂(t)

)
is globally ultimately

uniformly bounded after time t > t0 + Treach.
For the second step, the GAES property of ξ(t)

is justified when ω(t) vanishes asymptotically (see
Lemma 2). Taking into account the existence of the
time instant Treach (21), there is a constant ωT =
‖ω(Treach)‖2 ∈ R+, ωT < ω preserving its GUUB
property. Therefore, the bounded set Sω ⊂ SR ⊂ Ξ
is given as follows: for every t ∈ T,

SR =

{

∀ξ(t) ∈ Ξ :

‖ξ(t)‖2 ≥ 2
λ (PS)

λ (QS) (1− χ) X̌
ωT

}

.

Now, it can be noticed that the relationship between
ξ(t) and ω(t) from (20) imposes the following property.
If ‖ω(t)‖2 tends to zero asymptotically for any initial
conditions, then ‖ξ(t)‖2 → 0 as t → ∞. This coincides
simultaneously with the fact that the derivative of the
Lyapunov function is globally negative semi-definite in
the whole set Ξ, i.e., V̇S (ξ(t), t) = 0 only at the
equilibrium point ξe. This particular property can be
explained by applying the theory of limit sets (Khalil,
2002). Assume that there exists a sequence of time
moments {t}∞ϑ ⊂ T, ϑ ∈ N+, where t1 = Treach,
and tϑ → ∞, as well as ϑ → ∞. Then, by taking
ξ (tϑ) ≡ ξϑ, SR ≡ S1 and ξ(t1) ≡ ξ (Treach), the
following dependence holds: if

0 ≤ ‖ω (tϑ+1)‖2 < ‖ω (tϑ)‖2 ,
then

Sϑ ⊂ Sϑ+1 ⊂ R+ ∪ {0}, ∀ϑ ∈ N+.
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As a result, if (20) holds, then for all consecutive tϑ ∈
T the distance function dist (ξe,Sϑ) and the Lyapunov
function VS (tϑ) satisfy

dist (ξe,Sϑ) = inf
{
‖ξϑ‖2 ∈ Sϑ :

|‖ξϑ‖2 − ‖ξe‖2|
}
→ 0,

and

0 ≤ VS (ξϑ+1, tϑ+1) < VS (ξϑ, tϑ) , ∀ϑ ∈ N+.

Thus, the family of sets Sϑ constitutes the sequence
whose limit set Se ∈ R+ ∪ {0} (last element) fulfils:
Se ∩ {‖ξe‖2} 	= ∅ as ϑ → ∞. To sum up, the
equilibrium point ξe is the limit point of sequence ξ (tϑ)
and sequence VS

(
tϑ
)

converging to zero, fulfilling the
Lyapunov theorem. Therefore, it is shown that vector
ξ(t), and the pair

(
X̃(t), μ̃(t)

)
are GAES in time t ≥

t0 + Treach, which completes the proof. �

Remark 4. The choice between the two above-named
pairs of measurements/pseudo-measurements can
significantly affect the convergence rate of μ̂(t) to its real
value. If X(t) is directly measured and the concentration
of Xr(t) constitutes a pseudo-measurement, then
assuming the same initial conditions x0, ĉ0, X̂0, μ̂0,
the same values of parameters α, β, ρ, and identical
inputs u(t) ∀t ∈ T, the convergence rate of the estimates
generated by the proposed STSMO is naturally faster than
when both signals are reconstructed by the proposed AO.

Proposition 3. To avoid the chattering phenomenon, the
following smooth approximations of functions sgn(·) and
|(·)| are proposed (Czyżniewski et al., 2023):

sgn(·) � χ(·) = (·)
θ1 + |(·)| ,

|(·)| � ψ(·) = θ−1
2

[
log (1 + exp(θ2(·)))

+ log (1 + exp(−θ2(·)))
]
,

where θ1, θ2 ∈ R+ denote the tuning parameters.

4. Case study
In order to validate the ability to reconstruct the
unmeasured state variables in the presence of the
uncertainty introduced by the unknown kinetic function,
and to estimate this unknown kinetic function by the
developed hierarchical observer, a system consisting of a
bioreactor with a settler is used. This system is shown in
Fig. 2.

The model of the system presented in Fig. 2
considering the microbial growth reaction and microbial
mortality belonging to the class of CSTR models of the
form (2) is given as follows (Dochain and Vanrolleghem,

2001; Bastin and Dochain, 1990; Hadj-Sadok and Gouzé,
2005):

ΣCSTR :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ(t) = μ(t)X(t) + rXr(t)D(t)

−mxX(t)− (1 + r)X(t)D(t),

Ṡ(t) = − 1

Ys
μ(t)X(t)−msX(t)

+Sin(t)D(t) − (1 + r)S(t)D(t),

ḊO(t) = − 1

Yo
μ(t)X(t)−moX(t)

+DOin(t)D(t)

−(1 + r)DO(t)D(t)

+kLa(t)(DOsat −DO(t)),

Ẋr(t) = v(1 + r)X(t)D(t)

−v(w + r)Xr(t)D(t),

X(t0) = X0, S(t0) = S0,

DO(t0) = DO0, Xr(t0) = Xr0 .
(22)

By invoking the model (1), the concentrations of
two non-biomass compounds can be distinguished in
the model (22). These are the concentrations of the
aggregated substrate S(t) [mg/L] ∈ R+ and dissolved
oxygen DO(t) [mg/L] ∈ R+. Hence, the parameters
Ys [−] ∈ R+, Yo [−] ∈ R+ and ms [h−1] ∈
R+, mo [h−1] ∈ R+ are the appropriate yield and
maintenance coefficients, whereas Sin(t) [mg/L] ∈ R+,
DOin(t) [mg/L] ∈ R+ and DOsat [mg/L] ∈ R+ stand
for the concentrations of substrate, dissolved oxygen,
and dissolved oxygen saturation in the inflow to the
bioreactor, respectively. The gas-liquid transfer function
kLa(t) (see Assumption 5) is linked with the mass
transfer of the dissolved oxygen concentration into the
bioreactor (Lindberg, 1997; Garcia-Ochoa and Gomez,
2009; Czyżniewski et al., 2023).

Proposition 4. A large number of kinetic function models
that differ in the number of variables and/or in the struc-
ture representing the biochemical processes taking place
in the bioreactor can be found in the literature (Bastin
and Dochain, 1990; Dewasme et al., 2013; López-Caamal
and Moreno, 2016; Dochain and Vanrolleghem, 2001;
Czyżniewski and Łangowski 2022b; 2022a; Hadj-Sadok
and Gouzé, 2005). For the sake of developing the so-
called ‘virtual model’ (simulator), the kinetic function ful-
filling Assumption 7 is proposed to be the following prod-
uct of two distinct Monod functions:

μ(t) = μmax(t)
S(t)

Ks(t) + S(t)

DO(t)

Ko(t) +DO(t)
,

where ∀t ∈ T : μmax(t) [h
−1] ∈ R+, Ks(t) [mg/L] ∈

R+, and Ko(t) [mg/L] ∈ R+ denote the bounded time-
varying coefficients of the maximum specific growth rate,
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Fig. 2. Diagram of the system considered.

Table 1. Ranges and values of signals and parameters.
No. Symbol Value/Range Unit
1. D(t) [0.155, 0.325]

[
h−1

]

2. kLa(t) [11.755, 26.239]
[
h−1

]

3. DOin 100 [mg/L]
4. DOsat 30 [mg/L]
5. Ko [3.5, 6.5] [mg/L]
6. Ks [17.5, 32.5] [mg/L]
7. mo 0.01

[
h−1

]

8. ms 0.02
[
h−1

]

9. mx 0.05
[
h−1

]

10. Sin 150 [mg/L]
11. r 1 [−]
12. v 2 [−]
13. w 0.05 [−]
14. μmax [0.28, 0.54]

[
h−1

]

15. Yo 1.8 [−]
16. Ys 0.8 [−]

saturation of substrate concentration, and saturation of
dissolved oxygen concentration, respectively.

To impose the presentation-related coherency, the
vectors of state variables and inputs of the CSTR model
(see Assumptions 1 and 4) are defined as

x(t) �
[
x1(t) x2(t) x3(t) x4(t)

]T

=
[
X(t) S(t) DO(t) Xr(t)

]T
,

u(t) �
[
u1(t) u2(t) u3(t) u4(t)

]T

=
[
D(t) D(t)Sin(t) D(t)DOin(t) kLa(t)

]T
.

(23)

The ranges and values of particular signals and
parameters are outlined in Table 1. As can be noticed, the
values of parameters related to the kinetic function (see
Proposition 4) are burdened by parametric uncertainty.

4.1. Hierarchical observer design. This section
presents the synthesis of the hierarchical observer for

the model (22) for different measured outputs (see
Assumption 3). More specifically, cases are considered
where the measured output is the concentration of
aggregated biomass, i.e., y(t) = h(x(t)) = X(t), or
the concentration of aggregated substrate, i.e., y(t) =
h(x(t)) = S(t).

4.1.1. AO design with aggregated biomass concen-
tration measurement. According to Section 3.1 and by
defining the measured output as y(t) � X(t), we get

c1(t) � S(t), c2(t) � DO(t), c3(t) � Xr(t),

1(n−1×1) �

⎡

⎣
1
1
0

⎤

⎦ , F �

⎡

⎣
Ys 0 0
0 Yo 0
0 0 1

⎤

⎦ . (24)

By combining (22) and (24), the following AO
structure is obtained:

ΣX
AO :

⎧
⎪⎨

⎪⎩

˙̂c(t) = A(u(t))ĉ(t) +B(y(t),u(t)),

v̂(t) = F−1
[
ĉ(t)− 1(n−1×1)y(t)

]
,

ĉ(t0) = ĉ0

(25)

where

A(u(t))

=

⎡

⎣
−(1 + r)u1(t) 0 ru1(t)

0 −(1 + r)u1(t)− u4(t) ru1(t)
0 0 A

⎤

⎦ ,

A = −v(w + r)u1(t),

B(y(t),u(t))

=

⎡

⎣
Ysu2(t)− (mx + Ysms)y(t)

You3(t)− (mx + Yomo)y(t) + u2(t)y(t) +B
v(1 + r)u1(t)y(t)

⎤

⎦ ,

B = YoDOsatu4(t).

According to the conditions introduced in the proof
of Theorem 1, the following eigenvalues λXix [A(u(t))] ∈
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C, ix = 1, 3 of matrix A(u(t)) defined in (25) are given
∀t ∈ T:

λX1 [A(u(t))] = −2u1(t)− u4(t) ≤ −12.065,

λX2 [A(u(t))] = −2u1(t) ≤ −0.31,

λX3 [A(u(t))] = −2.1u1(t) ≤ −0.3255.

Due to the fact that for every t ∈ T all inputs u(t) are
positive and uniformly bounded (see Assumption 4), the
internal dynamics of the designed AO (25) are globally
asymptotically stable.

4.1.2. AO design with aggregated substrate concen-
tration measurement. According to Section 3.1 and by
defining the measured output as y(t) � S(t), we get

c1(t) � X(t), c2(t) � DO(t), c3(t) � Xr(t),

K �
[
Ys −Ys/Yo 0

]T
. (26)

By combining (22) with (26), the following AO
structure is obtained:

ΣS
AO :

⎧
⎪⎨

⎪⎩

˙̂c(t) = A(u(t))ĉ(t) +B(y(t),u(t)),

v̂(t) = ĉ(t)−Ky(t),

ĉ(t0) = ĉ0

(27)

where

A(u(t))

=

⎡

⎣
A1 0 ru1(t)
A2 −(1 + r)u1(t)− u4(t) 0
A3 0 −v(w + r)u1(t)

⎤

⎦ ,

B(y(t),u(t)) =

⎡

⎣
B1

B2

−Ysv(1 + r)u1(t)y(t)

⎤

⎦

and

A1 = −mx − Ysms − (1 + r)u1(t),

A2 = Ysms/Yo −mo,

A3 = v(r + 1)u1(t),

B1 = Ys(mx + (1 + r)u1(t) + Ysms)y(t)

+ Ysu2(t)− Ys(1 + r)u1(t)y(t),

B2 = u3(t) + (Ys/Yo)(1 + r)u1(t)y(t)

− (Ys/Yo)u2(t) +DOsatu2(t)

+moYsy(t) + (Ys/Yo)y(t)(u1(t)− u4(t))

− (Y 2
s /Yo)msy(t).

According to the conditions introduced in the proof
of Theorem 1, the following eigenvalues λSix [A(u(t))] ∈
C, iS = 1, 3 of matrix A(u(t)) defined in (27) are given
∀t ∈ T:

λS1 [A(u(t))] = −2u1(t)− u4(t) ≤ −12.065,

λS2 [A(u(t))] = −2.05u1(t)− 0.033− 0.001Υ(u1(t))

≤ −0.3509,

λS3 [A(u(t))] = −2.05u1(t)− 0.033 + 0.001Υ(u1(t))

≤ −0.3504,

Υ(u1(t)) =
√

4002500u21(t)− 3300u1(t) + 1089.

Due to the fact that for every t ∈ T all inputs u(t) are
positive and uniformly bounded (see Assumption 4), the
expressions Υ(u1(t)) ∈ R+, ∀u1(t) ∈ Up are uniformly
bounded, i.e., Υ(u1(t)) ∈ [0.155 ; 0.325]. Thus, the
internal dynamics of the designed AO (27) is globally
asymptotically stable.

4.1.3. STSMO design with aggregated biomass con-
centration measurement. Taking the measured output
as y(t) � X(t), the structure of the STSMO comes
directly from (10), and only X̂r(t) constitutes the
pseudo-measurement provided by the AO designed in
Section 4.1.1. Hence, the designed STSMO is given as

ΣX
STSMO :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂
X(t) = (μ̂(t)−mx − (1 + r)D(t))X(t)

+rX̂r(t)D(t)

+2β
[
ρ
∣
∣X(t)− X̂(t)

∣
∣
]0.5

×sgn
(
X(t)− X̂(t)

)
X(t),

˙̂μ(t) =
(
αρsgn

(
X(t)− X̂(t)

))
X(t),

X̂(t0) = X̂0, μ̂(t0) = μ0.
(28)

The selection of tuning parameters α, β and ρ is
explained in the next section, where the simulation study
is presented.

4.1.4. STSMO design with aggregated substrate con-
centration measurement. Taking the measured output
as y(t) � S(t), the structure of the STSMO comes
directly from (10) but both biomass concentrations, i.e.,
X̂(t) and X̂r(t), constitute the pseudo-measurements
provided by the AO designed in Section 4.1.2. Hence,
the designed STSMO is given as

ΣS
STSMO :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂
X(t) = (μ̂(t)−mx − (1 + r)D(t)) X̂(t)

+rX̂r(t)D(t)

+2β
[
ρ
∣
∣X̂(t)− X̂(t)

∣
∣
]0.5

×sgn
(
X̂(t)− X̂(t)

)
X̂(t),

˙̂μ(t) =
(
αρsgn

(
X̂(t)− X̂(t)

))
X̂(t),

X̂(t0) = X̂0, μ̂(t0) = μ0.
(29)
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Fig. 3. Trajectory of dilution rate D(t).

0 20 40 60 80 100
10

15

20

25

Fig. 4. Trajectory of gas-liquid transfer function kLa(t).

The selection of tuning parameters α, β and ρ is
explained in the next section, where the simulation study
is presented.

4.2. Simulation results. The devised hierarchical
observers (25) and (28), as well as (27) and (29) have
been applied to the CSTR model (22). This model and
all observers was implemented in the Matlab/Simulink
environment.

The adopted input ranges, i.e., D(t) and kLa(t),
set in Table 1, represent the boundary values of their
trajectories shown in Figs. 3 and 4, respectively. In
turn, the variability (shape) of these trajectories within the
adopted ranges was established based on other trajectories
of these variables available in the literature. Various
literature items were used to establish the values contained
in Table 1. On the other hand, the trajectories of the
measured outputs, i.e., the measurably available state
variables, X(t) and S(t), presented in Figs. 5 and 6, were
generated by employing the model (22).

It should be noted that the dynamics of the modelled
system allows the measurement noise to be neglected.
This situation is often found in the literature when using
biomass or substrate concentration measurements. This
assumption should be modified so that the dissolved
oxygen concentration is used as a measurement. Then,

0 20 40 60 80 100
280

290

300

310

320

330

Fig. 5. Aggregated biomass concentration X(t) measurement
trajectory.

0 20 40 60 80 100
0

5

10

15

20

25

30

Fig. 6. Aggregated substrate concentration S(t) measurement
trajectory.

the use of the developed hierarchical observer has to
be completed with the appropriate treatment of the
dissolved oxygen concentration measurement to consider
the dynamics of the measuring device and filter out the
measurement noise. One possible solution to this problem
can be found in the work of Czyżniewski et al. (2023).

The simulation time was assumed as 150 [h],
although some results were presented on a shorter time
scale. This was due to the fact that the repeatability
of the trajectories of inputs and measurements after
100 [h] was used. Thus, wherever the estimation results
unambiguously showed the convergence of the estimation
trajectories to the originals on the shorter time scale, the
simulation calculation was not extended to 150 [h].

Taking the above into account, a series of simulation
experiments for the two measurement scenarios were
carried out, the selected results of which are shown in
the next sections. These results are presented with the
following initial conditions for the model (22): x0 =
[
300 25 35 700

]T. In turn, to test the performance
of the developed hierarchical observer, the following three
sets of initial conditions, different for a given measured
output, were assumed for the unmeasured state variables.
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0 10 20 30 40 50
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50

100

Fig. 7. Trajectories of S(t) and its estimates Ŝ(t) for measure-
ment X(t).
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-20

0
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60

80

Fig. 8. Trajectories of DO(t) and its estimates D̂O(t) for mea-
surement X(t).

In detail, for the measured output X(t),

ĉ1(t0) =
[
360 411 780

]T
,

ĉ2(t0) =
[
240 274 520

]T
,

ĉ3(t0) =
[
420 480 910

]T
,

while for S(t)

ĉ1(t0) =
[
330 31.8 715

]T
,

ĉ2(t0) =
[
270 26 585

]T
,

ĉ3(t0) =
[
360 37 780

]T
.

Knowing that the convergence of the designed AO is
always dependent on the behaviour of vector u(t), it was
necessary to select the values of the tuning parameters for
the designed STSMO. For all the results presented, they
were α = 2, β = 1.5, ρ = 0.1. In turn, the parameter
values of the approximating functions (see Proposition 3)
were θ1 = 0.01 and θ2 = 0.001.

4.2.1. Estimation results: Aggregated biomass
concentration measurement. In this section, the
estimation results obtained using the hierarchical
observers (25) and (28) are presented. The trajectories

0 10 20 30 40 50
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650

700

750

800

Fig. 9. Trajectories of Xr(t) and its estimates X̂r(t) for mea-
surement X(t).
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0.25
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Fig. 10. Trajectories of µ(t) and its estimates µ̂(t) for measure-
ment X(t).

of state variables representing S(t), DO(t), and Xr(t),
and the kinetic function μ(t) which were generated by
the model (22) and their estimates from the AO (25)
and the STSMO (28) are shown in Figs. 7, 8, 9 and 10,
respectively.

Analysing the trajectories presented in Figs. 7–9,
it can be concluded that the estimation performance
for the state variable representing the concentration
of dissolved oxygen is very high practically from the
beginning of the simulation, while for the other two
state variables this performance is satisfactory after about
13 [h]. This difference in the rate of convergence is due
to different time scales in the dynamics of particular state
variables. Naturally, it also results from the design of the
developed hierarchical observer, which takes into account
the variability and value of the measurably available state
variable (measured output) and the vector of inputs. In
turn, the behaviour of the original and reconstructed
kinetic function (see Fig. 10) shows that the tracking of
the unknown kinetic function using the sliding term of
the developed observer is satisfactory. Moreover, the
estimate μ(t) converges to its real trajectory at the rate
of convergence of the unmeasured state variables.
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0 50 100 150
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Fig. 11. Trajectories of X(t) and its estimates X̂(t) for mea-
surement S(t).
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Fig. 12. Trajectories of DO(t) and its estimates D̂O(t) for
measurement S(t).

4.2.2. Estimation results: Aggregated substrate
concentration measurement. This section presents the
estimation results obtained using the hierarchical observer
(27) and (29). The trajectories of state variables
representing X(t), DO(t), and Xr(t), and the kinetic
function μ(t) which were generated by the model (22) and
their estimates from the AO (27) and the STSMO (29) are
shown in Figs. 11, 12, 13 and 14, respectively.

When analysing the trajectories shown in
Figs. 11–13, it can be noticed that, like in Section
4.2.1, the estimation performance for the state variable
representing the concentration of dissolved oxygen
is very high practically from the beginning of the
simulation, while for the state variables representing the
concentrations of biomass this performance is satisfactory
after about 80 [h]. Compared with the case previously
considered, this increase in the convergence time of
the estimation trajectories to the real values of state
variables is due to the features of the measurement
used (aggregated substrate concentration—see Fig. 6).
However, it is worth noting that, also in this case, the rate
of convergence can be increased by selecting the initial
conditions appropriately—see the trajectories with the
dotted line in Figs. 11 and 13. In turn, the behaviour of
the original and reconstructed kinetic function (Fig. 14)

0 50 100 150
500
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600

650

700

750

Fig. 13. Trajectories of Xr(t) and its estimates X̂r(t) for mea-
surement S(t).
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-1

-0.5

0

0.5

Fig. 14. Trajectories of µ(t) and its estimates µ̂(t) for measure-
ment S(t).

shows that the tracking of the unknown kinetic function
using two pseudo-measurements is also satisfactory.

5. Conclusions
In this paper, the problem of estimation of unmeasured
state variables and an unknown kinetic function for
biochemical processes modelled as a continuous
stirred tank reactor was investigated. In detail, a
novel hierarchical observer which unites the adjusted
asymptotic observer and the adopted super-twisting
sliding mode observer was devised to produce stable
estimates of the unmeasured state variables and the
unknown kinetic function. The designed asymptotic
observer allows reconstructing the unmeasured state
variables in the presence of uncertainties in the dynamics
introduced by the unknown kinetic function. Moreover,
this observer takes into account several input signals.
Then, the generated estimates of the unmeasured state
variables constituting the pseudo-measurements are used
together with the available direct measurements by the
super-twisting sliding mode observer to estimate the
unknown kinetic function. In this way, the estimation
process is completed and provides full information
about the unknown variables. The global asymptotic
convergence of the produced estimates or the asymptotic
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stability of the estimation errors was rigorously
proved using the methodology associated with linear
parameter-varying systems and sliding mode regimes.
The developed hierarchical observer was implemented in
the Matlab/Simulink environment, and its performance
was verified by simulation. Simulation experiments
were carried out for various measured outputs that may
be available in the water resource recovery facility. A
satisfactory performance of the generated estimates was
obtained, which confirms the high effectiveness of the
devised hierarchical observer.

The obtained estimation results can be applied
both in state monitoring systems for processes in water
resource recovery facilities, and in advanced control
algorithms for these plants. Future research will aim
at using the developed approach for more sophisticated
models of biochemical processes, in general, in urban
water systems.
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Appendix

Analysis of the boundedness of the internal
dynamics matrix

This section outlines the key issues related to the uniform
boundedness of matrices A(u(t)) and Ȧ(u(t)) referred
to in Section 3.1. For the sake of deriving the constant
parameter γ, a matrix norm is defined as the Frobenius
matrix norm (Shilov and Chilov, 1996). This approach
is based on solving an appropriate optimisation task
concerning the objective function defined as

‖A(u(t))‖2
� max

{[ n∑

iA=1

n∑

jA=1

A2
iAjA(u(t))

] 1
2

: u(t) ∈ Up

}

≤ γ,

(A1)
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where iA, jA = 1, n.
Due to the fact that the input vector u(t) is bounded

and continuous (see Assumption 4), the norm defined in
(A1) can be easily calculated. To accomplish the constant
parameter δ, the matrix norm is again defined as the
Frobenius matrix norm (A1). This approach is based on
solving the following optimisation task:

∥
∥
∥Ȧ(u(t))

∥
∥
∥
2
=
∥
∥∂uA(u(t))

[
1(n×1) ⊗ u̇(t)

]∥
∥
2

≤ ‖∂uA(u(t))‖2
∥
∥1(n×1) ⊗ u̇(t)

∥
∥
2

≤ ‖∂uA(u(t))‖2 ‖u̇(t)‖2
≤ ‖∂uA(u(t))‖2 ud ≤ δ,

dim (∂uA(u(t))) = n× (np), (A2)

dim
(
1(n×1) ⊗ u̇(t)

)
= (np)× 1,

‖∂uA(u(t))‖2
� max

{[ n∑

idA=1

np∑

jdA=1

∂uA
2
idAjdA

(u(t))
] 1

2
}
,

u(t) ∈ Up, idA = 1, n, jdA = 1, np,

where ⊗ denotes the Kronecker product (Shilov and
Chilov, 1996; Khalil, 2002), and ud ∈ R

n
+ is the

vector composed of particular inputs udip
introduced in

Assumption 4.
Knowing that matrix A(u(t)) is n× n-dimensional,

its Jacobi matrix with respect to u(t) must be n ×
(np)-dimensional. Therefore, the u̇(t) associated
Kronecker multiplication must be introduced. Next,
the Frobenius matrix norm is assessed by using the
Schwartz inequality for vectors and matrices (Shilov and
Chilov, 1996). Since the input vector u(t) is bounded
and continuous, the norm defined in (5) can be easily
calculated.
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