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Abstract

We propose a novel, highly-efficient approach for the evaluation of bond-orientational order parameters
(BOPs). Our approach exploits the properties of spherical harmonics and Wigner 3j-symbols to reduce
the number of terms in the expressions for BOPs, and employs simultaneous interpolation of normalised
associated Legendre polynomials and trigonometric functions to dramatically reduce the total number of
arithmetic operations. Using realistic test cases, we show how the above, combined with a CPU-cache-
friendly data structure, leads to a 10- to 50-fold performance increase over approaches currently in use,
depending on the size of the interpolation grids and the machine used. As the proposed approach is an
approximation, we demonstrate that the errors it introduces are well-behaved, controllable and essentially
negligible for practical grid sizes. We benchmark our approach against other structure identification methods
(centro-symmetry parameter (CSP), common neighbour analysis (CNA), common neighbourhood parameter
(CNP) and Voronoi analysis), generally regarded as much faster than BOPs, and demonstrate that our
formulation is able to outperform them for all studied systems.

Keywords:
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interpolation
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1. Introduction

Bond-orientational order parameters (BOPs) were proposed by Steinhard et al. in 1981 [1, 2] as a
generalisation of the two-dimensional hexatic order parameter [3]. Initially BOPs were applied to the study
of the orientational order in liquids and glasses, later to become a standard tool in all of solid state physics.
Nowadays BOPs are chiefly used to differentiate between crystalline phases, such as sc, bec, fec or hep [4-11].

BOPs have been used to study nucleation and crystal growth [6, 10-17], helping to elucidate the structure
of critical nuclei [5] and nucleation kinetics [18]. They also constitute a standard tool for the study of
melting processes [19-21], where global BOPs are used as a direct indicator of a phase transtion, while
local BOPs serve as measures for the determination of solid and liquid fractions. Studies of undercooling
and glassification [10, 17, 22, 23] also employ BOPs, as do investigations of local icosahedral order in liquid
metals [21, 24] and in other systems [1, 2, 25, 26].

Many model systems have been studied with the aid of BOPs: hard- [6, 16, 27-29] and soft-spheres [4],
Lennard-Jones systems [5, 9, 13, 14, 18, 20, 30, 31] (including binary [32] and polydisperse [22]), quantum
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Lennard-Jones solids [19, 33] and Gaussian-core systems [9, 17]. Systems described with more complex
potentials, such as Morse [34], modified Buckingham [15] and many-body potentials (pair functionals) [7, 8,
35, 36] have also been studied using BOPs.

The BOP technique is commonly used in the investigations of nanoscale systems, such as atomic clus-
ters [35-37], and gold nanowires [7, 8. BOPs have also been used in studies of shear-induced phenom-
ena (e.g. shear-induced ordering [38], shear-induced crystallisation [39], and shear-induced overaging [40]),
anomalies in liquids [41, 42], the {reezing of argon in porous carbon [43], quasicrystals [26], and even plasma
[44].

The widespread use of the BOP technique spurred a number of extensions or generalisations over the
last decade. A modification, where an additional averaging over nearest neighbours is performed during the
calculation of local BOPs was proposed by Lechner et al. [9] in order to improve identification of a variety of
crystalline structures. A new formulation, where BOPs are combined with Voronoi tesselation, was proposed
by Mickel et al. [45]. This formulation removes the ambiguities introduced by the arbitrariness in the choice
of a cutoff radius, allowing a better characterisation of the orientational order of disordered systems.

The fact that calculating BOPs involves repeated evaluation of spherical harmonics (SHs) [46] means that
it is a computationally intensive approach. In a benchmark of methods for structural analysis Stukowski
[47] assigns it a computational cost factor of 100, compared with 50 for Voronoi analysis [48, 49|, 3 for
common neighbour analysis (CNA) [50] and 1 for the centro-symmetry parameter technique (CSP) [51].
The high computational effort associated with BOPs narrows the spectrum of their potential applications,
and we are not aware of any examples in the literature where they would be used for the analysis of large-
scale simulations — these typically employ computationally cheaper methods, such as energy filtering (e.g.
Ref. [52, 53]), or CSP (e.g. Ref. [54]). Being able to use a more involved method that BOP constitutes for
large-scale systems is an enticing prospect. A discussion of accuracy and limitations inherent in a number
of approaches to structural analysis is given in Ref. [47].

Moreover, the availability of the BOP approach to researchers is limited. To our knowledge, its imple-
mentation is not bundled with any of the well-known molecular dynamics codes or visualisation tools, while
CSP, CNA or Voronoi analysis are offered by e.g. LAMMPS [55] or OVITO [56]. The authors are aware of
only two implementations available to the scientific community: one due to Lechner et al. [9], and another
one due to Wang et al. [36]. Both of these implementations are less computationally efficient compared to
competing, simpler approaches.

With the above considerations in mind, we feel a highly-efficient approach for the evaluation of bond-
orientational order parameters has the potential to widen their spectrum of application. In this paper we
propose a novel, approximate method for efficient calculation of BOPs, which can reduce the computational
effort by a factor of up to 50, allowing it to outperform even the four approaches generally regarded as faster,
i.e. CSP, CNA, CNP (common neighbourhood parameter) [57] and Voronoi analysis.

The paper is organised as follows. In section 2 we describe the BOP approach, highlighting the steps
in the calculation that can be optimised. Section 3 outlines the proposed technique for evaluating BOPs.
Section 4 is devoted to benchmarking the efficiency and accuracy of the proposed approach. Section 5
contains conclusions.

2. The bond-orientational order parameter (BOP) method

Bond-orientational order parameters [1, 2] (BOPs) are used to characterise short-range order by classi-
fying each atom as belonging to one of a number of close-packed structures. For every reference atom ¢, the
classification is performed in four stages, outlined below.

Stage 1.

The set B(t) of nearest neighbours j of atom 4 is determined. Nearest neighbours are defined as atoms
that are no further away from atom 4 than a prescribed cutofl radius r.. The bond vectorsr;; =r; —r;
joining atom ¢ with the neighbours j are calculated as Cartesian components. The number of neigh-
bours of atom i (cardinality of B(i)) will be denoted by N, (4).
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Structure Parameter

Q4 QG W4 W@
sc 0.76376 0.35355  0.15932 0.01316
bce 0.08202 0.50083 0.15932 0.01316
fce 0.19094 0.57452 -0.15932 -0.01315
hep 0.09722 0.48476  0.13410 -0.01244
icos 0 0.66332 0 -0.16975

Table 1: BOP values for typical ideal structures.
Stage 2.

Each bond vector r;; is projected to the unit sphere, and its spherical coordinates 6(r;;) and ¢(r;;)
are calculated.

Stage 3.
A vector of complex spherical harmonics (SHs) [46] Y (0(ri;), ¢(ri;)) is evaluated for every bond
vector r;;, for a chosen value of [ and m € {—I,...,l}.
Stage 4.
A vector of complex quantities Q;.,(7), defined as
) 1 m
Qum(i) = = Y Y"(0(r;), 6(rs;)) (1)
Noli) ;5

is constructed. Subsequently so-called second-order (Steinhardt) invariants are constructed, according
to

. p 1/2
Qi) = <2H7f1 > |Qz,m(i)|2> : (2)
1 =—1
Third-order invariants [58] can also be constructed:
; -3/2
Wi(i) = Wi(i) x < > |Qz,m(i)|2> , (3)
m=—1
where
W= X (e ) Qo) Qa9 Quns ) @

my,ma,ms
mi+mao—+msz=0

The quantities
Ll s
mip Mmo M3

are Wigner 3j-symbols [59].

Invariants for [ < 3 vanish for lattices with cubic symmetry, and in practice bce, fec and hep are
differentiated using [ = 4 and [ = 6. Each atom i is classified as belonging to a particular structure by direct
comparison of calculated invariants Q4(i), Qg(i), Wa(i) and Ws(i) with reference values. The values for a
number of ideal structures are given in Table 1.

At non-zero temperatures thermal motions lead to a smearing of the BOP values, and in practice classifi-
cation is performed on a two-dimensional plane of parameter values (e.g. Q4(i) — Qg (i) or Qg(i) — W4(4)), on
which regions corresponding to particular packings are defined. For examples see e.g. Refs.[7, 15]. However,
no single, consistent approach to the classification itself has been proposed to date.

3
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3. A highly-efficient approach for evaluating BOPs

The four stages of the calculation of BOPs outlined in Sec. 2 differ in computational effort. For the
identification of neighbours (stage 1) efficient, linear-scaling algorithms, such as the linked-cell approach
[60, 61] are typically used, and calculating bond vectors r;; and their spherical coordinates (stage 2) are
very simple operations. The computational effort of stages 1 and 2 is thus very small.

3.1. Ewvaluation of spherical harmonics by fast simultaneous interpolation

The most computationally demanding (about 60% of total effort for a standard implementation) is
stage 3, where a large number of spherical harmonics (SHs) has to be evaluated, with the effort for the
entire system scaling as O(N72). As an example, let us consider a system of modest size, N = 4000 atoms
arranged in an fcc structure (thus with Ny, = 12 neighbours within r.). Assuming we are interested in
invariants with [ = 4 and [ = 6, a total of (2 x 4+ 1+2 x 6+ 1) x 4000 x 12 = 1.056 x 10 SHs need to be
evaluated. In a direct approach these are calculated as

Y"™(0,9) P (cos 0)e™? (5)
= K"P/"(cosf)e™™?
2041 (1 —m)!

= I (U rm) P/"(cos0)

[cos(me) + isin(mae)],

X

where P/"(x) are associated Legendre polynomials (ALPs) and
PM(a) = K["P{" () (6)

denote normalised associated Legendre polynomials (NALPs).

Below we propose a highly-efficient alternative to direct evaluation, based on simultaneous interpolation.
Our approach proceeds by interpolating both the trigonometric functions and the NALPs in (6), exploiting
the fact that each interpolation node only has to be calculated once for an entire set of interpolated functions.
In the discussion that follows we assume a typical case where invariants with [ = 4 and [ = 6 are calculated.

The interpolated functions satisfy the necessary requirements for stable interpolation (bounded domain
and codomain, continuity, low variability). We divide the domain of NALPs into p intervals, with a width
of hy = 2/p each, locating the interpolation nodes at z; = —1+ jh,, where j = 0,1,...,p—1. Similarly, we
divide the domain of the trigonometric functions into ¢ intervals, with a width of hy = 27 /q each, locating
the interpolation nodes at ¢; = jhg, where j =0,1,...,¢ — 1.

Interpolation tables, constructed at the outset of the calculation, are organised as follows:

1. For NALPs we store P"(z;) and AP™(z;), where
AP (2i) = [B™(@i1) — B (1)) o (7)

for all 12 pairs of indices (I,m) = (4,0), (4,1),...,(4,4),(6,0),(6,1),...,(6,6). We exploit two well-
known properties of SHs:

Y™ (0(—ri5), ¢(—rij)) = (=) Y™ (0(xi;), p(xs;)), (8)
Y, ™0, ) = (—1)™ Y, (0, ¢) (9)

to elide interpolation and storage of values for m < 0. The data structure staggers Iglm(xz) and
Af’{”(mz) and uses [ as the fast-changing index for optimal cache efficiency. The precise ordering of
values for a single interpolation node is shown in Table 2. The size of the data structure is 24p double
precision values.
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2. For interpolating trigonometric functions we store sin(me), cos(mae), Asin(me), A cos(me), where

Asin(me:) = [sin(mis1) — sin(mey)]/hs,
A cos(me) = [cos(mei 1) — cos(mey)]/hs,

ordered as cos(me), Acos(mg), sin(me), Asin(me), with m = 1,2,...,6 being the slowly-changing
index. The precise ordering of values for a single interpolation node is shown in Table 3. The size of
the data structure is 24¢ double precision values. Note that in the calculation of interpolation slopes
in (10) we always divide by hy, and not by mhg. This helps increase computational efficiency by
allowing us to calculate each interpolation node only once for an entire set of functions.

(10)

Once the interpolation tables are constructed, the following steps are performed for every interpolation
node j. The inputs to the interpolation are ¢ and x = cos 6.

1. Find interpolation node z;, compute Az = x — x;.
2. Interpolate P/ (z) for the 12 pairs of (I,m) by linear interpolation:

P™(2) & B (@) + AP (2;) % A,

3. Find interpolation node ¢;, compute A¢ = ¢ — ¢;,

4. Interpolate sin(mge) and cos(me), for m € [1, 6] by linear interpolation:
sin(mao) = sin(ma;) + Asin(me;) X Ag
cos(mao) = cos(ma;) + A cos(me;) x Ad,

5. Evaluate spherical harmonics fﬁm, for the 12 pairs of (I, m) according to
Y776, 8) = B (cos6) [cos(me) + isin(mg)] (11)
where the interpolated values are used for the NALPs and the trigonometric functions.

The efficiency of this approach, to which we will refer as fast simultaneous interpolation (FSI), stems
from a combination of the following;:

e Linear interpolation is inherently faster compared to direct evaluation of trigonometric functions or
NALPs.

e For every bond, all 12 spherical harmonics are evaluated for the same arguments.

e The interpolation node is shared by an entire vector of 12 NALPs, and by six pairs of trigonometric
functions, and thus needs to be evaluated only once.

e A data structure that ensures maximum locality, and thus efficient use of CPU cache is employed.

With the proposed approach, a calculation of all 12 SHs involves only 27 additions, 48 multiplications, 53
assignments and 2 rounding operations (to find the interpolation nodes). Fast simultaneous interpolation
can be easily generalised to utilise higher-order interpolation — this would have the advantage of reducing
the memory footprint (as coarser grids would provide equivalent accuracy) at the cost of increasing the
number of arithmetic operations required. In Sec. 4.1 we show how the memory footprint of our approach
is ingignificant for grid sizes used in practice, which makes linear interpolation entirely satisfactory for our
needs.
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3.2. Reducing the number of operations needed to calculate BOPs from SHs

The final, fourth stage in the determination of BOPs consists in calculating the BOPs from the spherical
harmonics evaluated in stage 3. The direct approach (i.e. through (1)-(4)) is suboptimal. If we again use
the example of a system with N, = 12, the computational effort of evaluating Q4, Qg, Wi, W (which is
the typical scenario) is: 1464 additions, 1954 multiplications, 3 divisions and 2 square root operations for
a single atom. The above assumes that evaluating a complex modulus involves 2 multiplications and one
addition.

Below we outline how this effort can be reduced several-fold. First, we again exploit the properties of SHs
(8), (9) to elide all calculations where ¢ > j and all calculations where m < 0, reducing the computational
effort almost by a factor of 4. Subsequently we introduce:

Qi) = Y Y™ (0(riy), ¢(riy)), (12)

JEDB(3)

. 1/2
Qi) = ( > |ql7m<z‘>|2) : (13)

m=—1
and

TICEND DI QU PO PROPIOL (14)

m m me
my,m2,m3 1 2 3

mi+ma+msz=0

which are analogous to the quantities in eqs. (1), (2), (4), except for normalisation factors. Once the above
intermediate quantities are evaluated, BOPs can be calculated as

@) = (57 )1/2 (i) (15)

2041)  Ny()

and

Wi(i) = . (16)
By again exploiting a property of SHs (9), we obtain
@, —m (i) = (1) Gy (0), (17)

which in turn allows to rewrite (13) as

; 1/2
q(i) = <|ql,o(i)l2 +2) qu,m(i)l2> : (18)

Let us now consider the sum (14). In a direct approach, 61 and 127 non-vanishing terms (those where
my + ma +ms = 0) need to be evaluated for [ = 4 and | = 6, respectively, for a total of 188 terms. We now
recall several well-known properties of the Wigner 3j-symbol:

A A A A A A N2 A A (19)
m1 Mmoo M3 - mo M3 17 o ms mi M2 ’
( il I3 ) — (—1)htiats ( l b I3 ) = (—1)htlets ( b3 Do ) , (20)
mi Mo M3 mo M1 M3 mip M3 Mo
( ll l2 l3 ) — (_1)l1+l2+l3 ( ll l2 l3 ) (21)
—my1 —Mms —Mms3 mi me ms )
6
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By exploiting the above properties along with (15) we can reduce the computational effort to merely 9 terms
for I =4 and 16 terms for [ = 6, recasting w4(4) as

4
wm>=mem%( §§>mmwﬂﬁj(jléé>mmmﬂ
4
3
4
2

Re (74,3(1) X q1,1(7) X qa,2(7))

7 N N
|
B

4 4 4 _ . . .
b 6( g 5 ) R % aiald) x ()
4 4
1 1

)M@u@X%MW%Mma (22)

6
o 0 a6 (0 0 Yo
Re (Ts.6(1) % q6,1(2) % g6,5())

Re (dg,6(1) x d6,2(7) X q6,4(1))

e (T6.4(4) X g6,1(2) X q6,3(i))

=

e (G6.5(1) % g6,1(2) X go.4())

Re (T 5(1) % g6.2(i) ¥ ¢6,3(1))

WD W A WO A o T

TN TN N N
|
Lo

—HOY N RO RO N — O

~ M~ M~ —_~_ S~ =
=

Re (T 3(7) X g6,1(i) X g6,2(i))

+ 6 ( _66 g g ) Re (G6(1) x q6,3(i) X g6,3(7))
+ 6 ( _64 g g ) Re (T6,4(1) % g6,2(1) % g6,2())
+ 6 ( _62 ? ? ) Re (6.9(1) x g6,1(i) X g6,1(7)) - (23)

The above forms, although more verbose, allow for markedly more efficient computation — not only is the
number of terms reduced (from 188 to 25), but the terms themselves are simpler. The number of operations
necessary to calculate BOPs for a single atom (for the same model case) is reduced to 337 additions (from
1464), 176 multiplications (from 1954), 2 divisions (from 3). The number of square-root operations remains
at 2.

4. Efficiency and accuracy of the proposed approach

4.1. Fast simultaneous interpolation
Here we demonstrate the efficiency and accuracy of the simultaneous interpolation scheme we proposed
in Sec. 3.1. As an efficient and accurate approach to evaluating large numbers of spherical harmonics can

7
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also find use outside the context of the BOP method, we begin by benchmarking the sole calculation of the
SHs.

Our benchmark consisted in calculating the set of 12 SHs for 1 million randomly [62] chosen pairs of
(0, $). As a reference implementation we used the GNU Scientific Library [63] (GSL), which is widely used
in the scientific community. Since GSL does not directly calculate SHs, but only NALPs, an additional
calculation of trigonometric functions was needed, this was done through calls to native library functions.

The efliciency and accuracy of any interpolation scheme will depend on the size of the interpolation
grid(s) used. Our approach uses two grids, with p and ¢ intervals, respectively (cf. Sec. 3.1), resulting in
O(p + ¢) memory complexity. The time complexity of evaluating the SHs is O(1) (independent of the size
of either grid), while the computational effort of constructing the interpolation grids scales as O(p + ¢). In
practical applications the computational effort would be dominated by the interpolation itself, with the cost
of constructing the grids becoming increasingly more insignificant with increasing numbers of SHs calculated.

We begin by reporting (Fig. 1) the mean error in the obtained SHs as a function of p and ¢, using the
numerically exact GSL values as reference. Since the values of SHs can be arbitrarily close to complex zero,
we elect to report errors defined as

E = [Y/™"(0(ri;), d(ri;)) — V" (0(rij), d(ri;))| (24)

where }N/Z’"’ are the spherical harmonics evaluated with our approach according to (11), and Y, are understood
to be the numerically exact values obtained with GSL. By mean error, (F), we shall denote the average
of E over the 12 SHs calculated for 1 million randomly generated pairs of (6, ¢). We acknowledge that for
SHs extremely close (or exactly equal) to complex zero, the relative error of the approximation can become
arbitrarily large. In applications where this would be deemed problematic (e.g. where accurate phases
were vital for arbitrarily small moduli), numerically exact calculations could easily be carried out once the
value of the modulus was found to lie below a preset threshold. Here we chose not employ such a fallback
mechanism so as not to introduce a dependence of results on the value of the threshold.

Fig. 1 makes it apparent that highest accuracy, for a given memory footprint (proportional to p + g), is
obtained by using similar grid sizes, i.e. p =~ ¢. In order to simplify further analysis, in the text that follows
we assume p = ¢, and accordingly report efficiency and accuracy benchmarks for the case where the grid
sizes are taken to be identical.

We now turn to benchmarking the efficiency of the interpolation scheme for the SHs. We carefully ensured
that the control logic for traversing the pairs was identical between the reference and proposed approaches
and that that only the walltimes of the actual SH evaluations were measured. In an effort to minimise the
effect of any external factors (concurrent processes, paging, caching, etc.) we performed 10 runs for each
approach, presenting averaged results. Since the relative performance of any two implementations is likely
to vary depending on the machine of which they are executed, we performed benchmarks on three distinct
machines. Machine A was a high-performance workstation, machine B was a typical computational node of
a computer cluster, and machine C was a laptop. The three machines differed with respect to clock rates,
CPU types, CPU cache and RAM speeds — the relevant hardware details are given in Table 4.

Fig. 2 shows the speedup of the proposed approach compared to the reference (GSL) implementation,
demonstrating that simultaneous interpolation is several tens of times faster for machines typically used
in scientific computations and 21-45 times faster on a laptop computer (machine C), with greatest relative
speedups obtained for the fastest machine (machine A).

We will now demonstrate that the above speedups were obtained for grid sizes that guarantee negligible
loss of accuracy. In Fig. 3 we show the mean error (E) of the calculated complex spherical harmonics as a
function of the interpolation grid sizes p = ¢. Fast simultaneous interpolation is seen to yield very accurate
SHs even for modest grid sizes — for the coarsest setting (p = ¢ = 600 intervals) the errors were as small
as (E) = 5.6 x 1075, The error and thus the accuracy is seen to be controllable — the mean error is well-
described with a relation (E) = Cp~® (shown as line in the plot). The empirically obtained value of the
exponent « was 1.68, meaning that a fourfold increase of the grid size p leads to a 10.3-fold decrease of (E).

Fig. 4 shows the distribution of the errors, demonstrating that even for the coarsest grids (p = ¢ = 600)
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Mean error <E>

600 1200 2400 4800 9600
Grid size p

Figure 3: A log-log plot of the error introduced by the approximations of the fast simultaneous interpolation.
The line is a result of fitting Cp~ to the datapoints.
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Error E

Figure 4: Distribution histograms for the error (calculated according to 24) in the calculated spherical
harmonics for three representative grid sizes (p).
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they are well-behaved and increasing grid sizes quickly moderates the error distribution. For the medium-
quality grids (p = ¢ = 2400) we find that in > 99.98% cases the error F did not exceed 1074,

We finish the discussion of fast simultaneous interpolation with a comment on memory use. The proposed
approach has very modest memory requirements — even the finest grids used here (p = ¢ = 9600), for which
the approximation errors are extremely small ((E) = 5.3 x 10~7), necessitate storing only (p + q) x 24 =
(9600 + 9600) x 24 = 460800 double precision values, for a total of only 3.7 MB.

4.2. Efficiency and accuracy of the proposed approach to evaluating BOPs

We shall now assess the efficiency and accuracy of the approach to evaluating BOPs that combines the
fast simultaneous interpolation (FSI) described in Sec. 3.1 and the sum simplifications discussed in Sec. 3.2.
We compare the implementation of our approach against the two widely used implementations — one due
to Lechner et al. [9] and one due to Wang et al. [36]. Both of these employ the exact, direct approach of
(1)-(4). In order to disentangle the effects of FSI (which is an approximation) from the effects of the sum
simplifications (which do not involve approximations), we also performed benchmarks for calculations that
use GSL to evaluate SHs exactly.

In order to perform a realistic benchmark, we prepared thirteen test cases representing typical systems
whose structure would be analysed using the BOP approach. The test cases sample a variety of system
sizes and structures (cf. Table 5 for details). We measured the walltime corresponding to evaluating all four
BOP values for all atoms in every test case, for 50 different configurations of positions. The configurations
were obtained in advance from molecular dynamics simulations. We note that Lechner’s implementation
does not calculate W4 or W@, and these two invariants were not included in the datapoints for Lechner’s
implementation. We used the same three representative machines as in Sec. 4.1 and ensured the test
conditions were identical for all implementations. Depending on the machine, the size of the test case, and
the implementation we calculated walltimes as averages over 5-1000 independent runs. We were careful to
time only the BOP calculation itself, excluding the time necessary to identify nearest neighbours (stage 1).
The fact that the laptop machine (C) had very limited RAM (2 GB) prevented us from running the largest,
1M+-atom, systems (le, 4e, 4f) on this machine. For the same reason, we were not able to benchmark the
Lechner implementation for testcase 4f (8M+ atoms) on machine B.

Fig. 5 illustrates the speedups obtained for the thirteen test cases. Our approach is found to be between
11 and 40 times faster compared to the implementation of Lechner et al., depending on machine and test
case, and between 14 and 46 times faster compared to that of Wang et al.. We note (cf. the datapoints
labeled “GSL”) that most of the speedup (a factor of 7-24) can be attributed to the use of the interpolation
scheme, while the the rearrangements described in Sec. 3.2 account for a further improvement in efficiency
by a factor of 1.7-2.1.

As expected, the obtained speedups are seen to depend somewhat on the machine used for benchmark-
ing. These differences result from a combination of hardware factors. We do not set out to identify the
exact hardware details responsible for the degree of obtained speedup, rather, we only point out that the
proposed computational approach consistently affords speedups of over an order of magnitude, regardless of
architecture and hardware details.

We now turn to the assessment of errors that the proposed technique introduces in the values of the
BOPs @;(i) and W, (7). We followed a practical approach, whereby we compared BOP values calculated
using FSI with numerically exact values obtained using GSL for the thirteen test cases used earlier in the
text (cf. Table 5 for details). Here we only report on errors measured for test case 3 (liquid AlCu), which
performed the worst in terms of errors. The results that we present were averaged over 10000 snapshots
taken from an MD calculation in order to ensure good statistics. We calculated mean absolute errors in all
four parameters under consideration: Qu, Qg, Wy, and Ws.

Fig. 6 shows the measured absolute errors in BOPs as a function of the grid size p. For the coarsest
grids (p = ¢ = 600) the mean absolute errors were 5.3 x 1075, 1.1 x 107%, 1.4 x 10~% and 5.0 x 1075, for
Qu, Qs, Wu, and Wy, respectively. Using finer grids (p = ¢ = 9600) reduced the errors by two orders of
magnitude. The above means that the artifacts introduced by the interpolation scheme are well in the realm
of negligibility. In typical applications of the BOP method being able to determinie the parameters to the
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Figure 5: Measured speedup of the proposed approach over the implementations of Lechner et al., Wang
et al. and GSL. The three panels correspond to machines (A: top, B: middle, C: bottom). The datapoints
correspond to grid sizes of p = ¢ = 2400, while the error bars correspond to p = ¢ = 600 (coarsest grids,
highest speedup) and s = 9600 (finest grids, lowest speedup). Test cases (cf. Table 5) are shown on the X
axis. The timings for the Lechner approach do not include the calculation of Wy or Wy (see text). Speedups
for test cases le), 4ef) for machine C, and 4f) for machine B were not measured due to RAM limitations of
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Figure 6: Errors introduced by the proposed approach for evaluating BOPs, measured for and averaged
over 10000 snapshots of liquid AlCu (test case 3). The log-log plot in the top panel shows the mean absolute
error (squares), with lines denoting results of a fit to the form Cp~®. To facilitate comparison with typical
values of the parameters, the bottom panel shows the distributions of the BOPs themselves. Both panels
use the same coding: black squares — @4, red circles — Qg, blue diamonds — W4, green triangles — We.
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Figure 7: Distribution of absolute errors in BOPs for three grid sizes (coarsest: p = 600, medium: p = 2400,
finest: p = 9600). The vertical line denotes an arbitrarily defined acceptable error level of 1073,

absolute accuracy of 1072 is entirely satisfactory. Our results show that, in the mean sense, such accuracy
is obtained even for the coarsest grids we tested (p = ¢ = 600).

We appreciate that knowing the mean absolute accuracy may not be sufficient for some applications of
the BOP method. In Fig. 7 we show how the errors are distributed for three representative grid sizes, for
all BOPs of interest. The same test case was used. We find that for grids with p = ¢ = 9600, the prevalence
rate of absolute errors larger than the acceptance criterion assumed above (1072) is as small as 0.0004% (for
Q4), 0.001% (for Qg), 0.06% (for Wy), 0.002% (for Ws). None of the 4 x 107 sets of four BOPs constituting
our test case exhibited an absolute error larger than 10~2, meaning such errors are expected to occur at
most in 2.5 x 107%% cases.

4.8. Comparison of computational effort with other methods of structure characterisation

We demonstrated that the proposed approach reduces the computational effort of evaluating bond-
orientational order parameters by more than an order of magnitude. The associated increase in computa-
tional efficiency is significant enough to warrant a comparison with other approaches to structure charac-
terisation that are generally deemed to be more efficient.

A number of structure identification methods is reviewed in Ref. [47], including four widely used ap-
proaches — the centro-symmetry parameter (CSP), common neighbour analysis (CNA), the common neigh-
bourhood parameter (CNP) and Voronoi analysis. Stukowski assigns to each of the reviewed approaches a
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unitless computational cost factor, which essentially measures the relative slowness of an approach compared
to calculating the centro-symmetry parameter (CSP) [51], excluding the effort of neighbour identification.
The computational cost factors given in Ref. [47] for CNA, Voronoi and BOP approaches are, respectively,
3, 50 and 100 (Stukowski did not estimate the computational cost factor of the CNP method).

Below we re-evaluate the computational cost factor using the approach for evaluating BOPs proposed
in this work. For the purposes of this comparison, we re-implemented the CSP, CNA, CNP and Voronoi
approaches from scratch. The obtained implementations of CSP, CNA and Voronoi analysis mirror those
of Stukowski. In both cases Rycroft’s voro++ library [64] has been used to efficiently perform Voronoi
tesselation. Below we outline the operations performed within the framework of each approach.

In the CSP approach a single, real-valued parameter given by

CSP(i) = > |rij +rul’ (25)
JEB(i)/2

needs to be determined for every characterised central atom . In the above, r;; and r;;, denote the vectors
pointing {rom atom i to its two opposite neighbours j, k € B(i), and the number of elements in the sum is
equal to half the number of nearest neighbours. The calculation of CSP (i) necessitates identifying Ny (7)/2
pairs of opposite neighbours, which corresponds to calculating, for every possible pair (j, k) out of the total
of Ny (4)(Ny (i) —1)/2, the value |r;; + rix|” and using the Ny, (i)/2 smallest values in (25). This formulation
of CSP has been proposed by Kelchner et al. [51] and is implemented, e.g. in the LAMMPS package [55].

In the case of CNA, the analysis consists in the determination of three integer numbers ney, (45), 1 (45),
and niep (i) for every bond r;; joining the central atom ¢ with its neighbours j € B(¢). These are, respectively,
the number of neighbour atoms the central atom 4 and its neighbour j € B(i) have in common, ne,(77); the
total number of bonds between these common neighbours, n,(7j); and the number of bonds in the longest
chain of bonds connecting the common neighbours, nje,(ij). Apart from the need to determine Ny (i) such
triples, CNA involves the determination of the number of bonds of different types, which differ in the values
of Nen, N, and Ny,

The common neighbourhood parameter (CNP), proposed by Tsuzuki et al. [57], combines the advantages
of CSP and CNA. Here, for every central atom i, a single, real-valued parameter is calculated according to:

2

‘ 1
CNP(i) = ARG Z Z (rik +1j1)| - (26)
PV jeB) (ke BN BG)

The values of CNP(i) are calculated directly, by iterating over the neighbours of atom ¢ in the first sum,
and the common neighbours of atoms ¢ and j in the second sum.

In the case of Voronoi analysis, it becomes necessary to determine, for every atom 4 in the system, its
corresponding Voronoi polyhedron. The polyhedra are subsequently described through the use of signatures
(fs, f4, [5, f6,--.), where the symbol f. denotes the number of faces with e edges.

We measured the time needed for performing structural identification for each of the methods: tgop,
tosp, toNA, toNP, tvoronoi- Lhe time required for neighbour identification and the calculation of bond
vectors was excluded. Measurements were performed for all thirteen test cases, on all three machines
described earlier. Results were averaged over 10 independent runs. We appreciate that the obtained relative
efficiencies of the methods are going to depend on implementation details. The results we show are valid for
our implementations, which we diligently optimised.

The missing points in Fig. 8 correspond to scenarios where RAM limitations prevented us from performing
the benchmark for the largest (1M+ atoms) systems. This is mostly seen on machine C (a laptop PC with
merely 2 GB of RAM), or for Voronoi analysis (which has much higher memory requirements compared
to CSP, CNA, CNP or BOP). The above reflects the simplified nature of our test environment, where all
calculations have been done in post-processing, in a single-CPU environment. In practice structural analysis
of 1M+-atom systems would be done in a distributed memory parallel environment.

The measured relative timings (tcsp/tBor, tona /tBop, tane/tBop and tvorenci/tBop) shown in Fig. 8
demonstrate that with the approach we propose, BOP analysis can be carried out in less time than Voronoi
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analysis (by at least an order of magnitude), and, crucially, in less time than CNA analysis. In particular,
depending on the test case and the machine used, we achieve a speed-up between 8.1 and 50.1 compared to
(our implementation of) Voronoi analysis and between 1.1 and 10.6 compared to (our implementation of)
CNA analysis. Crucially, our timings also indicate that the computational effort of the proposed approach
for evaluating BOP is comparable to that of the CSP method (with ratios tcsp/tgop between 0.5 and 2.1),
and the CNP method (with ratios tonp/top between 1.0 and 4.4).

We can thus conclude that the computational effort of our approach to structure identification by BOP
is significantly lower than that of Voronoi analysis and even lower than (or at least comparable to) that
of CSP, CNP and CNA methods. We posit that BOP analysis should no longer be regarded as a more
computationally involved method of structure characterisation.

5. Conclusions

We devised an efficient technique for evaluating bond-orientational order parameters (BOPs). Our
approach combines simultaneous interpolation in the evaluation of spherical harmonics with rearrangements
in the expressions for obtaining BOPs from spherical harmonics. Cache-friendly data structures are employed
in the interpolation.

The memory complexity of our approach is linear in the grid size. The computational complexity of ini-
tialisation (constructing the interpolation grids) is linear, while the time of actual evaluation is independent
of the grid size. For sufficiently large numbers of evaluations and grid sizes used in practical calculations
the latter time dominates.

As one stage of our approach relies on interpolation, we carefully measured the errors in the approximation
both for the calculated spherical harmonics and the resultant BOPs. The errors inherent to our approach
are seen to be well-behaved and controllable, even with linear interpolation, vanishing according to p~1:68
with the grid size p. The errors are found to be negligible already at p = 9600, which corresponds to a
memory footprint of only 3.7 MB and an initialisation time below 200 ms.

Benchmarks for a number of realistic test cases performed on three hardware configurations demonstrate
that our approach is between 11 and 46 times faster compared to other widely used approaches to evaluating
BOPs, and can even outperform other methods of structure identification that are generally regarded as
computationally cheaper.

An implementation of the approach has been made available under the GNU GPLv3 license (see Sup-
plementary Materials).
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Figure 8: Computational cost factor of CSP, CNA, CNP and Voronoi methods relative to the proposed
approach to evaluating BOPs, i.e. the ratio of the time needed to perform CSP, CNA, CNP or Voronoi
analysis to the time needed to perform BOP analysis. The three panels correspond to machines (A: top,
B: middle, C: bottom). The datapoints correspond to grid sizes of p = ¢ = 2400, while the error bars
correspond to p = ¢ = 600 (coarsest grids, highest speedup) and s = 9600 (finest grids, lowest speedup).
Test cases (cf. Table 5) are shown on the X axis. Cost factors for the largest systems (1de, 4def) were not
calculated on every machine due to RAM limitations of the test environment (see text).
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Offset 0 1 2 3 4 ) 6 7
Contents | P{(z;) | APY(x;) | Po(x;) | APY(z;) | Pi(z:) | AP (xi) | Pi(xi) | AP (z)
Offset 8 9 10 11 12 13 14 15
Contents | PZ(z;) | AP (x;) | P2(x;) | APZ(z;) | Pi(z:) | AP (xi) | Pilwi) | AP ()
Offset 16 17 18 19 20 21 22 23
Contents | Pf(z;) | APH(xi) | Pi(xi) | AP§(z;) | Po(z:) | APS(xi) | P8(wi) | AP§(z)

Table 2: A cache-friendly ordering of values for a single NALP interpolation node.

Offset 0 1 2 3 4 ) 6 7
Contents | cos(¢;) | Acos(¢;) | sin(¢;) | Asin(¢;) | cos(2¢;) | Acos(2¢;) | sin(2¢;) | Asin(2¢;)
Offset 8 9 10 11 12 13 14 15
Contents | cos(3¢;) | Acos(3¢;) | sin(3¢;) | Asin(3¢;) | cos(4¢i) | Acos(4p;) | sin(4de;) | Asin(4g;)
Offset 16 17 18 19 20 21 22 23
Contents | cos(5¢;) | Acos(5¢;) | sin(bg;) | Asin(5¢;) | cos(6¢;) | Acos(6¢;) | sin(6¢;) | Asin(6¢;)

Table 3: A cache-friendly ordering of values for a single trigonometric function interpolation node.

Machine A B C
Processor type Intel 17-3820 Intel Xeon L5640 Intel Atom 330
Clock rate 3.60 GHz 2.27 GHz 1.60 GHz
Level 1 cache

instruction 4 x 32 KB 6 x 32 KB 2 x 32 KB

data 4 x 32 KB 6 x 32 KB 2 x 24 KB
Level 2 cache 2 x 256 KB 6 x 256 KB 2 x 512 KB
Level 3 cache 10 MB 12 MB —

Memory

DDR3, 16 GB @1333MHz

DDR3, 16 GB @1333MHz

DDR2, 2 GB @667MHz

Table 4: Hardware details of the machines used in benchmarks.
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Test case System characteristics
Description Size Coordination Cutoff radius

(atoms) number re (A)

la 500

1b 4000

lc fce Cu single-crystal at 300 K 32000 12 3.07

1d 256000

le 2048000

2 liquid Cu at 1900 K 500 12.16 3.54

3 liquid AlCu alloy at 1300 K 4000 12.73 3.77

4a 250

4b 2000

4c bee Mo single-crystal at 300 K 16000 14 3.5

4d 128000

de 1024000

4f 8192000

Table 5: Test cases used in error analysis and benchmarks.
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