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Abstra
t

We propose a novel, highly-e�
ient approa
h for the evaluation of bond-orientational order parameters

(BOPs). Our approa
h exploits the properties of spheri
al harmoni
s and Wigner 3j-symbols to redu
e

the number of terms in the expressions for BOPs, and employs simultaneous interpolation of normalised

asso
iated Legendre polynomials and trigonometri
 fun
tions to dramati
ally redu
e the total number of

arithmeti
 operations. Using realisti
 test 
ases, we show how the above, 
ombined with a CPU-
a
he-

friendly data stru
ture, leads to a 10- to 50-fold performan
e in
rease over approa
hes 
urrently in use,

depending on the size of the interpolation grids and the ma
hine used. As the proposed approa
h is an

approximation, we demonstrate that the errors it introdu
es are well-behaved, 
ontrollable and essentially

negligible for pra
ti
al grid sizes. We ben
hmark our approa
h against other stru
ture identi�
ation methods

(
entro-symmetry parameter (CSP), 
ommon neighbour analysis (CNA), 
ommon neighbourhood parameter

(CNP) and Voronoi analysis), generally regarded as mu
h faster than BOPs, and demonstrate that our

formulation is able to outperform them for all studied systems.

Keywords:

stru
ture identi�
ation, mole
ular dynami
s, bond-orientational order, spheri
al harmoni
s, linear

interpolation
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1. Introdu
tion

Bond-orientational order parameters (BOPs) were proposed by Steinhard et al. in 1981 [1, 2℄ as a

generalisation of the two-dimensional hexati
 order parameter [3℄. Initially BOPs were applied to the study

of the orientational order in liquids and glasses, later to be
ome a standard tool in all of solid state physi
s.

Nowadays BOPs are 
hie�y used to di�erentiate between 
rystalline phases, su
h as s
, b

, f

 or h
p [4�11℄.

BOPs have been used to study nu
leation and 
rystal growth [6, 10�17℄, helping to elu
idate the stru
ture

of 
riti
al nu
lei [5℄ and nu
leation kineti
s [18℄. They also 
onstitute a standard tool for the study of

melting pro
esses [19�21℄, where global BOPs are used as a dire
t indi
ator of a phase transtion, while

lo
al BOPs serve as measures for the determination of solid and liquid fra
tions. Studies of under
ooling

and glassi�
ation [10, 17, 22, 23℄ also employ BOPs, as do investigations of lo
al i
osahedral order in liquid

metals [21, 24℄ and in other systems [1, 2, 25, 26℄.

Many model systems have been studied with the aid of BOPs: hard- [6, 16, 27�29℄ and soft-spheres [4℄,

Lennard-Jones systems [5, 9, 13, 14, 18, 20, 30, 31℄ (in
luding binary [32℄ and polydisperse [22℄), quantum

Email address: wisnia�kdm.task.gda.pl (Szymon Win
zewski)
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Lennard-Jones solids [19, 33℄ and Gaussian-
ore systems [9, 17℄. Systems des
ribed with more 
omplex

potentials, su
h as Morse [34℄, modi�ed Bu
kingham [15℄ and many-body potentials (pair fun
tionals) [7, 8,

35, 36℄ have also been studied using BOPs.

The BOP te
hnique is 
ommonly used in the investigations of nanos
ale systems, su
h as atomi
 
lus-

ters [35�37℄, and gold nanowires [7, 8℄. BOPs have also been used in studies of shear-indu
ed phenom-

ena (e.g. shear-indu
ed ordering [38℄, shear-indu
ed 
rystallisation [39℄, and shear-indu
ed overaging [40℄),

anomalies in liquids [41, 42℄, the freezing of argon in porous 
arbon [43℄, quasi
rystals [26℄, and even plasma

[44℄.

The widespread use of the BOP te
hnique spurred a number of extensions or generalisations over the

last de
ade. A modi�
ation, where an additional averaging over nearest neighbours is performed during the


al
ulation of lo
al BOPs was proposed by Le
hner et al. [9℄ in order to improve identi�
ation of a variety of


rystalline stru
tures. A new formulation, where BOPs are 
ombined with Voronoi tesselation, was proposed

by Mi
kel et al. [45℄. This formulation removes the ambiguities introdu
ed by the arbitrariness in the 
hoi
e

of a 
uto� radius, allowing a better 
hara
terisation of the orientational order of disordered systems.

The fa
t that 
al
ulating BOPs involves repeated evaluation of spheri
al harmoni
s (SHs) [46℄ means that

it is a 
omputationally intensive approa
h. In a ben
hmark of methods for stru
tural analysis Stukowski

[47℄ assigns it a 
omputational 
ost fa
tor of 100, 
ompared with 50 for Voronoi analysis [48, 49℄, 3 for


ommon neighbour analysis (CNA) [50℄ and 1 for the 
entro-symmetry parameter te
hnique (CSP) [51℄.

The high 
omputational e�ort asso
iated with BOPs narrows the spe
trum of their potential appli
ations,

and we are not aware of any examples in the literature where they would be used for the analysis of large-

s
ale simulations � these typi
ally employ 
omputationally 
heaper methods, su
h as energy �ltering (e.g.

Ref. [52, 53℄), or CSP (e.g. Ref. [54℄). Being able to use a more involved method that BOP 
onstitutes for

large-s
ale systems is an enti
ing prospe
t. A dis
ussion of a

ura
y and limitations inherent in a number

of approa
hes to stru
tural analysis is given in Ref. [47℄.

Moreover, the availability of the BOP approa
h to resear
hers is limited. To our knowledge, its imple-

mentation is not bundled with any of the well-known mole
ular dynami
s 
odes or visualisation tools, while

CSP, CNA or Voronoi analysis are o�ered by e.g. LAMMPS [55℄ or OVITO [56℄. The authors are aware of

only two implementations available to the s
ienti�
 
ommunity: one due to Le
hner et al. [9℄, and another

one due to Wang et al. [36℄. Both of these implementations are less 
omputationally e�
ient 
ompared to


ompeting, simpler approa
hes.

With the above 
onsiderations in mind, we feel a highly-e�
ient approa
h for the evaluation of bond-

orientational order parameters has the potential to widen their spe
trum of appli
ation. In this paper we

propose a novel, approximate method for e�
ient 
al
ulation of BOPs, whi
h 
an redu
e the 
omputational

e�ort by a fa
tor of up to 50, allowing it to outperform even the four approa
hes generally regarded as faster,

i.e. CSP, CNA, CNP (
ommon neighbourhood parameter) [57℄ and Voronoi analysis.

The paper is organised as follows. In se
tion 2 we des
ribe the BOP approa
h, highlighting the steps

in the 
al
ulation that 
an be optimised. Se
tion 3 outlines the proposed te
hnique for evaluating BOPs.

Se
tion 4 is devoted to ben
hmarking the e�
ien
y and a

ura
y of the proposed approa
h. Se
tion 5


ontains 
on
lusions.

2. The bond-orientational order parameter (BOP) method

Bond-orientational order parameters [1, 2℄ (BOPs) are used to 
hara
terise short-range order by 
lassi-

fying ea
h atom as belonging to one of a number of 
lose-pa
ked stru
tures. For every referen
e atom i, the

lassi�
ation is performed in four stages, outlined below.

Stage 1.

The set B(i) of nearest neighbours j of atom i is determined. Nearest neighbours are de�ned as atoms

that are no further away from atom i than a pres
ribed 
uto� radius r



. The bond ve
tors rij = rj −ri

joining atom i with the neighbours j are 
al
ulated as Cartesian 
omponents. The number of neigh-

bours of atom i (
ardinality of B(i)) will be denoted by N
b

(i).
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Stru
ture Parameter

Q4 Q6 Ŵ4 Ŵ6

s
 0.76376 0.35355 0.15932 0.01316

b

 0.08202 0.50083 0.15932 0.01316

f

 0.19094 0.57452 -0.15932 -0.01315

h
p 0.09722 0.48476 0.13410 -0.01244

i
os 0 0.66332 0 -0.16975

Table 1: BOP values for typi
al ideal stru
tures.

Stage 2.

Ea
h bond ve
tor rij is proje
ted to the unit sphere, and its spheri
al 
oordinates θ(rij) and φ(rij)
are 
al
ulated.

Stage 3.

A ve
tor of 
omplex spheri
al harmoni
s (SHs) [46℄ Y m
l (θ(rij), φ(rij)) is evaluated for every bond

ve
tor rij , for a 
hosen value of l and m ∈ {−l, . . . , l}.

Stage 4.

A ve
tor of 
omplex quantities Ql,m(i), de�ned as

Ql,m(i) =
1

N
b

(i)

∑

j∈B(i)

Y m
l (θ(rij), φ(rij)) (1)

is 
onstru
ted. Subsequently so-
alled se
ond-order (Steinhardt) invariants are 
onstru
ted, a

ording

to

Ql(i) =

(
4π

2l + 1

l∑

m=−l

|Ql,m(i)|2
)1/2

. (2)

Third-order invariants [58℄ 
an also be 
onstru
ted:

Ŵl(i) = Wl(i)×
(

l∑

m=−l

|Ql,m(i)|2
)−3/2

, (3)

where

Wl(i) =
∑

m1,m2,m3
m1+m2+m3=0

(
l l l

m1 m2 m3

)
Ql,m1(i) Ql,m2(i) Ql,m3(i). (4)

The quantities (
l1 l2 l3
m1 m2 m3

)

are Wigner 3j-symbols [59℄.

Invariants for l ≤ 3 vanish for latti
es with 
ubi
 symmetry, and in pra
ti
e b

, f

 and h
p are

di�erentiated using l = 4 and l = 6. Ea
h atom i is 
lassi�ed as belonging to a parti
ular stru
ture by dire
t


omparison of 
al
ulated invariants Q4(i), Q6(i), Ŵ4(i) and Ŵ6(i) with referen
e values. The values for a

number of ideal stru
tures are given in Table 1.

At non-zero temperatures thermal motions lead to a smearing of the BOP values, and in pra
ti
e 
lassi�-


ation is performed on a two-dimensional plane of parameter values (e.g. Q4(i)−Q6(i) or Q6(i)−Ŵ4(i)), on
whi
h regions 
orresponding to parti
ular pa
kings are de�ned. For examples see e.g. Refs.[7, 15℄. However,

no single, 
onsistent approa
h to the 
lassi�
ation itself has been proposed to date.
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3. A highly-e�
ient approa
h for evaluating BOPs

The four stages of the 
al
ulation of BOPs outlined in Se
. 2 di�er in 
omputational e�ort. For the

identi�
ation of neighbours (stage 1) e�
ient, linear-s
aling algorithms, su
h as the linked-
ell approa
h

[60, 61℄ are typi
ally used, and 
al
ulating bond ve
tors rij and their spheri
al 
oordinates (stage 2) are

very simple operations. The 
omputational e�ort of stages 1 and 2 is thus very small.

3.1. Evaluation of spheri
al harmoni
s by fast simultaneous interpolation

The most 
omputationally demanding (about 60% of total e�ort for a standard implementation) is

stage 3, where a large number of spheri
al harmoni
s (SHs) has to be evaluated, with the e�ort for the

entire system s
aling as O(Nr3



). As an example, let us 
onsider a system of modest size, N = 4000 atoms

arranged in an f

 stru
ture (thus with N
b

= 12 neighbours within r



). Assuming we are interested in

invariants with l = 4 and l = 6, a total of (2× 4 + 1 + 2× 6 + 1)× 4000× 12 = 1.056× 106
SHs need to be

evaluated. In a dire
t approa
h these are 
al
ulated as

Y m
l (θ, φ) = P̃m

l (cos θ)eimφ
(5)

= Km
l Pm

l (cos θ)eimφ

=

√
2l + 1

4π

(l −m)!
(l + m)!

Pm
l (cos θ)

× [cos(mφ) + i sin(mφ)] ,

where Pm
l (x) are asso
iated Legendre polynomials (ALPs) and

P̃m
l (x) = Km

l Pm
l (x) (6)

denote normalised asso
iated Legendre polynomials (NALPs).

Below we propose a highly-e�
ient alternative to dire
t evaluation, based on simultaneous interpolation.

Our approa
h pro
eeds by interpolating both the trigonometri
 fun
tions and the NALPs in (6), exploiting

the fa
t that ea
h interpolation node only has to be 
al
ulated on
e for an entire set of interpolated fun
tions.

In the dis
ussion that follows we assume a typi
al 
ase where invariants with l = 4 and l = 6 are 
al
ulated.

The interpolated fun
tions satisfy the ne
essary requirements for stable interpolation (bounded domain

and 
odomain, 
ontinuity, low variability). We divide the domain of NALPs into p intervals, with a width

of hx = 2/p ea
h, lo
ating the interpolation nodes at xj = −1+ jhx, where j = 0, 1, . . . , p− 1. Similarly, we
divide the domain of the trigonometri
 fun
tions into q intervals, with a width of hφ = 2π/q ea
h, lo
ating

the interpolation nodes at φj = jhφ, where j = 0, 1, . . . , q − 1.
Interpolation tables, 
onstru
ted at the outset of the 
al
ulation, are organised as follows:

1. For NALPs we store P̃m
l (xi) and ∆P̃m

l (xi), where

∆P̃m
l (xi) = [P̃m

l (xi+1)− P̃m
l (xi)]/hx, (7)

for all 12 pairs of indi
es (l, m) = (4, 0), (4, 1), . . . , (4, 4), (6, 0), (6, 1), . . . , (6, 6). We exploit two well-

known properties of SHs:

Y m
l (θ(−rij), φ(−rij)) = (−1)l Y m

l (θ(rij), φ(rij)), (8)

Y −m
l (θ, φ) = (−1)m Y

m

l (θ, φ) (9)

to elide interpolation and storage of values for m < 0. The data stru
ture staggers P̃m
l (xi) and

∆P̃m
l (xi) and uses l as the fast-
hanging index for optimal 
a
he e�
ien
y. The pre
ise ordering of

values for a single interpolation node is shown in Table 2. The size of the data stru
ture is 24p double

pre
ision values.
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2. For interpolating trigonometri
 fun
tions we store sin(mφ), cos(mφ), ∆ sin(mφ), ∆ cos(mφ), where

∆ sin(mφi) = [sin(mφi+1)− sin(mφi)]/hφ,

∆ cos(mφi) = [cos(mφi+1)− cos(mφi)]/hφ,
(10)

ordered as cos(mφ), ∆ cos(mφ), sin(mφ), ∆ sin(mφ), with m = 1, 2, . . . , 6 being the slowly-
hanging

index. The pre
ise ordering of values for a single interpolation node is shown in Table 3. The size of

the data stru
ture is 24q double pre
ision values. Note that in the 
al
ulation of interpolation slopes

in (10) we always divide by hφ, and not by mhφ. This helps in
rease 
omputational e�
ien
y by

allowing us to 
al
ulate ea
h interpolation node only on
e for an entire set of fun
tions.

On
e the interpolation tables are 
onstru
ted, the following steps are performed for every interpolation

node j. The inputs to the interpolation are φ and x = cos θ.

1. Find interpolation node xi, 
ompute ∆x = x− xi.

2. Interpolate P̃m
l (x) for the 12 pairs of (l, m) by linear interpolation:

P̃m
l (x) ≈ P̃m

l (xi) + ∆P̃m
l (xi)×∆x,

3. Find interpolation node φi, 
ompute ∆φ = φ− φi,

4. Interpolate sin(mφ) and cos(mφ), for m ∈ [1, 6] by linear interpolation:

sin(mφ) ≈ sin(mφi) + ∆ sin(mφi)× ∆φ

cos(mφ) ≈ cos(mφi) + ∆ cos(mφi)×∆φ,

5. Evaluate spheri
al harmoni
s Ỹ m
l , for the 12 pairs of (l, m) a

ording to

Ỹ m
l (θ, φ) = P̃m

l (cos θ) [cos(mφ) + i sin(mφ)] , (11)

where the interpolated values are used for the NALPs and the trigonometri
 fun
tions.

The e�
ien
y of this approa
h, to whi
h we will refer as fast simultaneous interpolation (FSI), stems

from a 
ombination of the following:

• Linear interpolation is inherently faster 
ompared to dire
t evaluation of trigonometri
 fun
tions or

NALPs.

• For every bond, all 12 spheri
al harmoni
s are evaluated for the same arguments.

• The interpolation node is shared by an entire ve
tor of 12 NALPs, and by six pairs of trigonometri


fun
tions, and thus needs to be evaluated only on
e.

• A data stru
ture that ensures maximum lo
ality, and thus e�
ient use of CPU 
a
he is employed.

With the proposed approa
h, a 
al
ulation of all 12 SHs involves only 27 additions, 48 multipli
ations, 53

assignments and 2 rounding operations (to �nd the interpolation nodes). Fast simultaneous interpolation


an be easily generalised to utilise higher-order interpolation � this would have the advantage of redu
ing

the memory footprint (as 
oarser grids would provide equivalent a

ura
y) at the 
ost of in
reasing the

number of arithmeti
 operations required. In Se
. 4.1 we show how the memory footprint of our approa
h

is insigni�
ant for grid sizes used in pra
ti
e, whi
h makes linear interpolation entirely satisfa
tory for our

needs.
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3.2. Redu
ing the number of operations needed to 
al
ulate BOPs from SHs

The �nal, fourth stage in the determination of BOPs 
onsists in 
al
ulating the BOPs from the spheri
al

harmoni
s evaluated in stage 3. The dire
t approa
h (i.e. through (1)-(4)) is suboptimal. If we again use

the example of a system with N
b

= 12, the 
omputational e�ort of evaluating Q4, Q6, Ŵ4, Ŵ6 (whi
h is

the typi
al s
enario) is: 1464 additions, 1954 multipli
ations, 3 divisions and 2 square root operations for

a single atom. The above assumes that evaluating a 
omplex modulus involves 2 multipli
ations and one

addition.

Below we outline how this e�ort 
an be redu
ed several-fold. First, we again exploit the properties of SHs

(8), (9) to elide all 
al
ulations where i > j and all 
al
ulations where m < 0, redu
ing the 
omputational

e�ort almost by a fa
tor of 4. Subsequently we introdu
e:

ql,m(i) =
∑

j∈B(i)

Y m
l (θ(rij), φ(rij)), (12)

ql(i) =

(
l∑

m=−l

|ql,m(i)|2
)1/2

, (13)

and

wl(i) =
∑

m1,m2,m3
m1+m2+m3=0

(
l l l

m1 m2 m3

)
ql,m1(i) ql,m2(i) ql,m3(i), (14)

whi
h are analogous to the quantities in eqs. (1), (2), (4), ex
ept for normalisation fa
tors. On
e the above

intermediate quantities are evaluated, BOPs 
an be 
al
ulated as

Ql(i) =
(

4π

2l + 1

)1/2
ql(i)
N
b

(i)
(15)

and

Ŵl(i) =
wl(i)

(ql(i))3
. (16)

By again exploiting a property of SHs (9), we obtain

ql,−m(i) = (−1)m ql,m(i), (17)

whi
h in turn allows to rewrite (13) as

ql(i) =

(
|ql,0(i)|2 + 2

l∑

m=1

|ql,m(i)|2
)1/2

. (18)

Let us now 
onsider the sum (14). In a dire
t approa
h, 61 and 127 non-vanishing terms (those where

m1 + m2 + m3 = 0) need to be evaluated for l = 4 and l = 6, respe
tively, for a total of 188 terms. We now

re
all several well-known properties of the Wigner 3j-symbol:

(
l1 l2 l3
m1 m2 m3

)
=
(

l2 l3 l1
m2 m3 m1

)
=
(

l3 l1 l2
m3 m1 m2

)
, (19)

(
l1 l2 l3
m1 m2 m3

)
= (−1)l1+l2+l3

(
l2 l1 l3
m2 m1 m3

)
= (−1)l1+l2+l3

(
l1 l3 l2
m1 m3 m2

)
, (20)

(
l1 l2 l3

−m1 −m2 −m3

)
= (−1)l1+l2+l3

(
l1 l2 l3
m1 m2 m3

)
. (21)
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By exploiting the above properties along with (15) we 
an redu
e the 
omputational e�ort to merely 9 terms

for l = 4 and 16 terms for l = 6, re
asting w4(i) as

w4(i) = Re (q4,0(i))

[(
4 4 4
0 0 0

)
|q4,0(i)|2 + 6

4∑

m=1

(
4 4 4

−m 0 m

)
|q4,m(i)|2

]

+ 12
(

4 4 4
−4 1 3

)
Re
(
q4,4(i)× q4,1(i)× q4,3(i)

)

− 12
(

4 4 4
−3 1 2

)
Re
(
q4,3(i)× q4,1(i)× q4,2(i)

)

+ 6
(

4 4 4
−4 2 2

)
Re
(
q4,4(i)× q4,2(i)× q4,2(i)

)

+ 6
(

4 4 4
−2 1 1

)
Re
(
q4,2(i)× q4,1(i)× q4,1(i)

)
, (22)

and w6(i) as

w6(i) = Re (q6,0(i))

[(
6 6 6
0 0 0

)
|q6,0(i)|2 + 6

6∑

m=1

(
6 6 6

−m 0 m

)
|q6,m(i)|2

]

+ 12
(

6 6 6
−6 1 5

)
Re
(
q6,6(i)× q6,1(i)× q6,5(i)

)

+ 12
(

6 6 6
−6 2 4

)
Re
(
q6,6(i)× q6,2(i)× q6,4(i)

)

+ 12
(

6 6 6
−4 1 3

)
Re
(
q6,4(i)× q6,1(i)× q6,3(i)

)

− 12
(

6 6 6
−5 1 4

)
Re
(
q6,5(i)× q6,1(i)× q6,4(i)

)

− 12
(

6 6 6
−5 2 3

)
Re
(
q6,5(i)× q6,2(i)× q6,3(i)

)

− 12
(

6 6 6
−3 1 2

)
Re
(
q6,3(i)× q6,1(i)× q6,2(i)

)

+ 6
(

6 6 6
−6 3 3

)
Re
(
q6,6(i)× q6,3(i)× q6,3(i)

)

+ 6
(

6 6 6
−4 2 2

)
Re
(
q6,4(i)× q6,2(i)× q6,2(i)

)

+ 6
(

6 6 6
−2 1 1

)
Re
(
q6,2(i)× q6,1(i)× q6,1(i)

)
. (23)

The above forms, although more verbose, allow for markedly more e�
ient 
omputation � not only is the

number of terms redu
ed (from 188 to 25), but the terms themselves are simpler. The number of operations

ne
essary to 
al
ulate BOPs for a single atom (for the same model 
ase) is redu
ed to 337 additions (from

1464), 176 multipli
ations (from 1954), 2 divisions (from 3). The number of square-root operations remains

at 2.

4. E�
ien
y and a

ura
y of the proposed approa
h

4.1. Fast simultaneous interpolation

Here we demonstrate the e�
ien
y and a

ura
y of the simultaneous interpolation s
heme we proposed

in Se
. 3.1. As an e�
ient and a

urate approa
h to evaluating large numbers of spheri
al harmoni
s 
an
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also �nd use outside the 
ontext of the BOP method, we begin by ben
hmarking the sole 
al
ulation of the

SHs.

Our ben
hmark 
onsisted in 
al
ulating the set of 12 SHs for 1 million randomly [62℄ 
hosen pairs of

(θ, φ). As a referen
e implementation we used the GNU S
ienti�
 Library [63℄ (GSL), whi
h is widely used

in the s
ienti�
 
ommunity. Sin
e GSL does not dire
tly 
al
ulate SHs, but only NALPs, an additional


al
ulation of trigonometri
 fun
tions was needed, this was done through 
alls to native library fun
tions.

The e�
ien
y and a

ura
y of any interpolation s
heme will depend on the size of the interpolation

grid(s) used. Our approa
h uses two grids, with p and q intervals, respe
tively (
f. Se
. 3.1), resulting in

O(p + q) memory 
omplexity. The time 
omplexity of evaluating the SHs is O(1) (independent of the size
of either grid), while the 
omputational e�ort of 
onstru
ting the interpolation grids s
ales as O(p + q). In
pra
ti
al appli
ations the 
omputational e�ort would be dominated by the interpolation itself, with the 
ost

of 
onstru
ting the grids be
oming in
reasingly more insigni�
ant with in
reasing numbers of SHs 
al
ulated.

We begin by reporting (Fig. 1) the mean error in the obtained SHs as a fun
tion of p and q, using the

numeri
ally exa
t GSL values as referen
e. Sin
e the values of SHs 
an be arbitrarily 
lose to 
omplex zero,

we ele
t to report errors de�ned as

E =
∣∣∣Ỹ m

l (θ(rij), φ(rij))− Y m
l (θ(rij), φ(rij))

∣∣∣ , (24)

where Ỹ m
l are the spheri
al harmoni
s evaluated with our approa
h a

ording to (11), and Y m

l are understood

to be the numeri
ally exa
t values obtained with GSL. By mean error, 〈E〉, we shall denote the average

of E over the 12 SHs 
al
ulated for 1 million randomly generated pairs of (θ, φ). We a
knowledge that for

SHs extremely 
lose (or exa
tly equal) to 
omplex zero, the relative error of the approximation 
an be
ome

arbitrarily large. In appli
ations where this would be deemed problemati
 (e.g. where a

urate phases

were vital for arbitrarily small moduli), numeri
ally exa
t 
al
ulations 
ould easily be 
arried out on
e the

value of the modulus was found to lie below a preset threshold. Here we 
hose not employ su
h a fallba
k

me
hanism so as not to introdu
e a dependen
e of results on the value of the threshold.

Fig. 1 makes it apparent that highest a

ura
y, for a given memory footprint (proportional to p + q), is
obtained by using similar grid sizes, i.e. p ≈ q. In order to simplify further analysis, in the text that follows

we assume p = q, and a

ordingly report e�
ien
y and a

ura
y ben
hmarks for the 
ase where the grid

sizes are taken to be identi
al.

We now turn to ben
hmarking the e�
ien
y of the interpolation s
heme for the SHs. We 
arefully ensured

that the 
ontrol logi
 for traversing the pairs was identi
al between the referen
e and proposed approa
hes

and that that only the walltimes of the a
tual SH evaluations were measured. In an e�ort to minimise the

e�e
t of any external fa
tors (
on
urrent pro
esses, paging, 
a
hing, et
.) we performed 10 runs for ea
h

approa
h, presenting averaged results. Sin
e the relative performan
e of any two implementations is likely

to vary depending on the ma
hine of whi
h they are exe
uted, we performed ben
hmarks on three distin
t

ma
hines. Ma
hine A was a high-performan
e workstation, ma
hine B was a typi
al 
omputational node of

a 
omputer 
luster, and ma
hine C was a laptop. The three ma
hines di�ered with respe
t to 
lo
k rates,

CPU types, CPU 
a
he and RAM speeds � the relevant hardware details are given in Table 4.

Fig. 2 shows the speedup of the proposed approa
h 
ompared to the referen
e (GSL) implementation,

demonstrating that simultaneous interpolation is several tens of times faster for ma
hines typi
ally used

in s
ienti�
 
omputations and 21-45 times faster on a laptop 
omputer (ma
hine C), with greatest relative

speedups obtained for the fastest ma
hine (ma
hine A).

We will now demonstrate that the above speedups were obtained for grid sizes that guarantee negligible

loss of a

ura
y. In Fig. 3 we show the mean error 〈E〉 of the 
al
ulated 
omplex spheri
al harmoni
s as a

fun
tion of the interpolation grid sizes p = q. Fast simultaneous interpolation is seen to yield very a

urate

SHs even for modest grid sizes � for the 
oarsest setting (p = q = 600 intervals) the errors were as small

as 〈E〉 = 5.6 × 10−5
. The error and thus the a

ura
y is seen to be 
ontrollable � the mean error is well-

des
ribed with a relation 〈E〉 = Cp−α
(shown as line in the plot). The empiri
ally obtained value of the

exponent α was 1.68, meaning that a fourfold in
rease of the grid size p leads to a 10.3-fold de
rease of 〈E〉.
Fig. 4 shows the distribution of the errors, demonstrating that even for the 
oarsest grids (p = q = 600)
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Figure 1: Errors introdu
ed by the proposed approximation (shown as 
ontour labels to the right of the

plot). Bla
k points represent tested grid size pairs. Grid sizes p and q between 25 and 25 × 211 = 51200
were tested. Contour lines were obtained using biquadrati
 interpolation between the points.
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 600  1200  2400  4800  9600

S
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d
u
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Grid size p

machine A
machine B
machine C

Figure 2: Speedup of the proposed simultaneous interpolation 
ompared to referen
e (GSL) implementation,

for 
al
ulating 1M spheri
al harmoni
s.
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Figure 3: A log-log plot of the error introdu
ed by the approximations of the fast simultaneous interpolation.

The line is a result of �tting Cp−α
to the datapoints.
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Figure 4: Distribution histograms for the error (
al
ulated a

ording to 24) in the 
al
ulated spheri
al

harmoni
s for three representative grid sizes (p).
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they are well-behaved and in
reasing grid sizes qui
kly moderates the error distribution. For the medium-

quality grids (p = q = 2400) we �nd that in > 99.98% 
ases the error E did not ex
eed 10−4
.

We �nish the dis
ussion of fast simultaneous interpolation with a 
omment on memory use. The proposed

approa
h has very modest memory requirements � even the �nest grids used here (p = q = 9600), for whi
h
the approximation errors are extremely small (〈E〉 = 5.3 × 10−7

), ne
essitate storing only (p + q) × 24 =
(9600 + 9600)× 24 = 460800 double pre
ision values, for a total of only 3.7 MB.

4.2. E�
ien
y and a

ura
y of the proposed approa
h to evaluating BOPs

We shall now assess the e�
ien
y and a

ura
y of the approa
h to evaluating BOPs that 
ombines the

fast simultaneous interpolation (FSI) des
ribed in Se
. 3.1 and the sum simpli�
ations dis
ussed in Se
. 3.2.

We 
ompare the implementation of our approa
h against the two widely used implementations � one due

to Le
hner et al. [9℄ and one due to Wang et al. [36℄. Both of these employ the exa
t, dire
t approa
h of

(1)-(4). In order to disentangle the e�e
ts of FSI (whi
h is an approximation) from the e�e
ts of the sum

simpli�
ations (whi
h do not involve approximations), we also performed ben
hmarks for 
al
ulations that

use GSL to evaluate SHs exa
tly.

In order to perform a realisti
 ben
hmark, we prepared thirteen test 
ases representing typi
al systems

whose stru
ture would be analysed using the BOP approa
h. The test 
ases sample a variety of system

sizes and stru
tures (
f. Table 5 for details). We measured the walltime 
orresponding to evaluating all four

BOP values for all atoms in every test 
ase, for 50 di�erent 
on�gurations of positions. The 
on�gurations

were obtained in advan
e from mole
ular dynami
s simulations. We note that Le
hner's implementation

does not 
al
ulate Ŵ4 or Ŵ6, and these two invariants were not in
luded in the datapoints for Le
hner's

implementation. We used the same three representative ma
hines as in Se
. 4.1 and ensured the test


onditions were identi
al for all implementations. Depending on the ma
hine, the size of the test 
ase, and

the implementation we 
al
ulated walltimes as averages over 5-1000 independent runs. We were 
areful to

time only the BOP 
al
ulation itself, ex
luding the time ne
essary to identify nearest neighbours (stage 1).

The fa
t that the laptop ma
hine (C) had very limited RAM (2 GB) prevented us from running the largest,

1M+-atom, systems (1e, 4e, 4f) on this ma
hine. For the same reason, we were not able to ben
hmark the

Le
hner implementation for test
ase 4f (8M+ atoms) on ma
hine B.

Fig. 5 illustrates the speedups obtained for the thirteen test 
ases. Our approa
h is found to be between

11 and 40 times faster 
ompared to the implementation of Le
hner et al., depending on ma
hine and test


ase, and between 14 and 46 times faster 
ompared to that of Wang et al.. We note (
f. the datapoints

labeled �GSL�) that most of the speedup (a fa
tor of 7-24) 
an be attributed to the use of the interpolation

s
heme, while the the rearrangements des
ribed in Se
. 3.2 a

ount for a further improvement in e�
ien
y

by a fa
tor of 1.7-2.1.

As expe
ted, the obtained speedups are seen to depend somewhat on the ma
hine used for ben
hmark-

ing. These di�eren
es result from a 
ombination of hardware fa
tors. We do not set out to identify the

exa
t hardware details responsible for the degree of obtained speedup, rather, we only point out that the

proposed 
omputational approa
h 
onsistently a�ords speedups of over an order of magnitude, regardless of

ar
hite
ture and hardware details.

We now turn to the assessment of errors that the proposed te
hnique introdu
es in the values of the

BOPs Ql(i) and Ŵl(i). We followed a pra
ti
al approa
h, whereby we 
ompared BOP values 
al
ulated

using FSI with numeri
ally exa
t values obtained using GSL for the thirteen test 
ases used earlier in the

text (
f. Table 5 for details). Here we only report on errors measured for test 
ase 3 (liquid AlCu), whi
h

performed the worst in terms of errors. The results that we present were averaged over 10000 snapshots

taken from an MD 
al
ulation in order to ensure good statisti
s. We 
al
ulated mean absolute errors in all

four parameters under 
onsideration: Q4, Q6, Ŵ4, and Ŵ6.

Fig. 6 shows the measured absolute errors in BOPs as a fun
tion of the grid size p. For the 
oarsest

grids (p = q = 600) the mean absolute errors were 5.3 × 10−5
, 1.1 × 10−4

, 1.4 × 10−4
and 5.0 × 10−5

, for

Q4, Q6, Ŵ4, and Ŵ6, respe
tively. Using �ner grids (p = q = 9600) redu
ed the errors by two orders of

magnitude. The above means that the artifa
ts introdu
ed by the interpolation s
heme are well in the realm

of negligibility. In typi
al appli
ations of the BOP method being able to determinie the parameters to the
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Figure 5: Measured speedup of the proposed approa
h over the implementations of Le
hner et al., Wang

et al. and GSL. The three panels 
orrespond to ma
hines (A: top, B: middle, C: bottom). The datapoints


orrespond to grid sizes of p = q = 2400, while the error bars 
orrespond to p = q = 600 (
oarsest grids,

highest speedup) and s = 9600 (�nest grids, lowest speedup). Test 
ases (
f. Table 5) are shown on the X
axis. The timings for the Le
hner approa
h do not in
lude the 
al
ulation of Ŵ4 or Ŵ6 (see text). Speedups

for test 
ases 1e), 4ef) for ma
hine C, and 4f) for ma
hine B were not measured due to RAM limitations of

the test environment (see text).
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Figure 6: Errors introdu
ed by the proposed approa
h for evaluating BOPs, measured for and averaged

over 10000 snapshots of liquid AlCu (test 
ase 3). The log-log plot in the top panel shows the mean absolute

error (squares), with lines denoting results of a �t to the form Cp−α
. To fa
ilitate 
omparison with typi
al

values of the parameters, the bottom panel shows the distributions of the BOPs themselves. Both panels

use the same 
oding: bla
k squares � Q4, red 
ir
les � Q6, blue diamonds � Ŵ4, green triangles � Ŵ6.
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Figure 7: Distribution of absolute errors in BOPs for three grid sizes (
oarsest: p = 600, medium: p = 2400,
�nest: p = 9600). The verti
al line denotes an arbitrarily de�ned a

eptable error level of 10−3

.

absolute a

ura
y of 10−3
is entirely satisfa
tory. Our results show that, in the mean sense, su
h a

ura
y

is obtained even for the 
oarsest grids we tested (p = q = 600).
We appre
iate that knowing the mean absolute a

ura
y may not be su�
ient for some appli
ations of

the BOP method. In Fig. 7 we show how the errors are distributed for three representative grid sizes, for

all BOPs of interest. The same test 
ase was used. We �nd that for grids with p = q = 9600, the prevalen
e
rate of absolute errors larger than the a

eptan
e 
riterion assumed above (10−3

) is as small as 0.0004% (for

Q4), 0.001% (for Q6), 0.06% (for Ŵ4), 0.002% (for Ŵ6). None of the 4× 107
sets of four BOPs 
onstituting

our test 
ase exhibited an absolute error larger than 10−2
, meaning su
h errors are expe
ted to o

ur at

most in 2.5× 10−6% 
ases.

4.3. Comparison of 
omputational e�ort with other methods of stru
ture 
hara
terisation

We demonstrated that the proposed approa
h redu
es the 
omputational e�ort of evaluating bond-

orientational order parameters by more than an order of magnitude. The asso
iated in
rease in 
omputa-

tional e�
ien
y is signi�
ant enough to warrant a 
omparison with other approa
hes to stru
ture 
hara
-

terisation that are generally deemed to be more e�
ient.

A number of stru
ture identi�
ation methods is reviewed in Ref. [47℄, in
luding four widely used ap-

proa
hes � the 
entro-symmetry parameter (CSP), 
ommon neighbour analysis (CNA), the 
ommon neigh-

bourhood parameter (CNP) and Voronoi analysis. Stukowski assigns to ea
h of the reviewed approa
hes a
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unitless 
omputational 
ost fa
tor, whi
h essentially measures the relative slowness of an approa
h 
ompared

to 
al
ulating the 
entro-symmetry parameter (CSP) [51℄, ex
luding the e�ort of neighbour identi�
ation.

The 
omputational 
ost fa
tors given in Ref. [47℄ for CNA, Voronoi and BOP approa
hes are, respe
tively,

3, 50 and 100 (Stukowski did not estimate the 
omputational 
ost fa
tor of the CNP method).

Below we re-evaluate the 
omputational 
ost fa
tor using the approa
h for evaluating BOPs proposed

in this work. For the purposes of this 
omparison, we re-implemented the CSP, CNA, CNP and Voronoi

approa
hes from s
rat
h. The obtained implementations of CSP, CNA and Voronoi analysis mirror those

of Stukowski. In both 
ases Ry
roft's voro++ library [64℄ has been used to e�
iently perform Voronoi

tesselation. Below we outline the operations performed within the framework of ea
h approa
h.

In the CSP approa
h a single, real-valued parameter given by

CSP(i) =
∑

j∈B(i)/2

|rij + rik|2 (25)

needs to be determined for every 
hara
terised 
entral atom i. In the above, rij and rik denote the ve
tors

pointing from atom i to its two opposite neighbours j, k ∈ B(i), and the number of elements in the sum is

equal to half the number of nearest neighbours. The 
al
ulation of CSP(i) ne
essitates identifying N
b

(i)/2
pairs of opposite neighbours, whi
h 
orresponds to 
al
ulating, for every possible pair (j, k) out of the total
of N

b

(i)(N
b

(i)− 1)/2, the value |rij + rik|2 and using the N
b

(i)/2 smallest values in (25). This formulation

of CSP has been proposed by Kel
hner et al. [51℄ and is implemented, e.g. in the LAMMPS pa
kage [55℄.

In the 
ase of CNA, the analysis 
onsists in the determination of three integer numbers n

n

(ij), n
b

(ij),
and n

l
b

(ij) for every bond rij joining the 
entral atom i with its neighbours j ∈ B(i). These are, respe
tively,
the number of neighbour atoms the 
entral atom i and its neighbour j ∈ B(i) have in 
ommon, n


n

(ij); the
total number of bonds between these 
ommon neighbours, n

b

(ij); and the number of bonds in the longest


hain of bonds 
onne
ting the 
ommon neighbours, n
l
b

(ij). Apart from the need to determine N
b

(i) su
h
triples, CNA involves the determination of the number of bonds of di�erent types, whi
h di�er in the values

of n

n

, n
b

, and n
l
b

.

The 
ommon neighbourhood parameter (CNP), proposed by Tsuzuki et al. [57℄, 
ombines the advantages

of CSP and CNA. Here, for every 
entral atom i, a single, real-valued parameter is 
al
ulated a

ording to:

CNP(i) =
1

N
b

(i)

∑

j∈B(i)

∣∣∣∣∣∣
∑

k∈B(i)∩B(j)

(rik + rjk)

∣∣∣∣∣∣

2

. (26)

The values of CNP(i) are 
al
ulated dire
tly, by iterating over the neighbours of atom i in the �rst sum,

and the 
ommon neighbours of atoms i and j in the se
ond sum.

In the 
ase of Voronoi analysis, it be
omes ne
essary to determine, for every atom i in the system, its


orresponding Voronoi polyhedron. The polyhedra are subsequently des
ribed through the use of signatures

(f3, f4, f5, f6, . . .), where the symbol fe denotes the number of fa
es with e edges.

We measured the time needed for performing stru
tural identi�
ation for ea
h of the methods: t
BOP

,

t
CSP

, t
CNA

, t
CNP

, t
Voronoi

. The time required for neighbour identi�
ation and the 
al
ulation of bond

ve
tors was ex
luded. Measurements were performed for all thirteen test 
ases, on all three ma
hines

des
ribed earlier. Results were averaged over 10 independent runs. We appre
iate that the obtained relative

e�
ien
ies of the methods are going to depend on implementation details. The results we show are valid for

our implementations, whi
h we diligently optimised.

The missing points in Fig. 8 
orrespond to s
enarios where RAM limitations prevented us from performing

the ben
hmark for the largest (1M+ atoms) systems. This is mostly seen on ma
hine C (a laptop PC with

merely 2 GB of RAM), or for Voronoi analysis (whi
h has mu
h higher memory requirements 
ompared

to CSP, CNA, CNP or BOP). The above re�e
ts the simpli�ed nature of our test environment, where all


al
ulations have been done in post-pro
essing, in a single-CPU environment. In pra
ti
e stru
tural analysis

of 1M+-atom systems would be done in a distributed memory parallel environment.

The measured relative timings (t
CSP

/t
BOP

, t
CNA

/t
BOP

, t
CNP

/t
BOP

and t
Voronoi

/t
BOP

) shown in Fig. 8

demonstrate that with the approa
h we propose, BOP analysis 
an be 
arried out in less time than Voronoi
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analysis (by at least an order of magnitude), and, 
ru
ially, in less time than CNA analysis. In parti
ular,

depending on the test 
ase and the ma
hine used, we a
hieve a speed-up between 8.1 and 50.1 
ompared to

(our implementation of) Voronoi analysis and between 1.1 and 10.6 
ompared to (our implementation of)

CNA analysis. Cru
ially, our timings also indi
ate that the 
omputational e�ort of the proposed approa
h

for evaluating BOP is 
omparable to that of the CSP method (with ratios t
CSP

/t
BOP

between 0.5 and 2.1),

and the CNP method (with ratios t
CNP

/t
BOP

between 1.0 and 4.4).

We 
an thus 
on
lude that the 
omputational e�ort of our approa
h to stru
ture identi�
ation by BOP

is signi�
antly lower than that of Voronoi analysis and even lower than (or at least 
omparable to) that

of CSP, CNP and CNA methods. We posit that BOP analysis should no longer be regarded as a more


omputationally involved method of stru
ture 
hara
terisation.

5. Con
lusions

We devised an e�
ient te
hnique for evaluating bond-orientational order parameters (BOPs). Our

approa
h 
ombines simultaneous interpolation in the evaluation of spheri
al harmoni
s with rearrangements

in the expressions for obtaining BOPs from spheri
al harmoni
s. Ca
he-friendly data stru
tures are employed

in the interpolation.

The memory 
omplexity of our approa
h is linear in the grid size. The 
omputational 
omplexity of ini-

tialisation (
onstru
ting the interpolation grids) is linear, while the time of a
tual evaluation is independent

of the grid size. For su�
iently large numbers of evaluations and grid sizes used in pra
ti
al 
al
ulations

the latter time dominates.

As one stage of our approa
h relies on interpolation, we 
arefully measured the errors in the approximation

both for the 
al
ulated spheri
al harmoni
s and the resultant BOPs. The errors inherent to our approa
h

are seen to be well-behaved and 
ontrollable, even with linear interpolation, vanishing a

ording to p−1.68

with the grid size p. The errors are found to be negligible already at p = 9600, whi
h 
orresponds to a

memory footprint of only 3.7 MB and an initialisation time below 200 ms.

Ben
hmarks for a number of realisti
 test 
ases performed on three hardware 
on�gurations demonstrate

that our approa
h is between 11 and 46 times faster 
ompared to other widely used approa
hes to evaluating

BOPs, and 
an even outperform other methods of stru
ture identi�
ation that are generally regarded as


omputationally 
heaper.

An implementation of the approa
h has been made available under the GNU GPLv3 li
ense (see Sup-

plementary Materials).
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Figure 8: Computational 
ost fa
tor of CSP, CNA, CNP and Voronoi methods relative to the proposed

approa
h to evaluating BOPs, i.e. the ratio of the time needed to perform CSP, CNA, CNP or Voronoi

analysis to the time needed to perform BOP analysis. The three panels 
orrespond to ma
hines (A: top,

B: middle, C: bottom). The datapoints 
orrespond to grid sizes of p = q = 2400, while the error bars


orrespond to p = q = 600 (
oarsest grids, highest speedup) and s = 9600 (�nest grids, lowest speedup).

Test 
ases (
f. Table 5) are shown on the X axis. Cost fa
tors for the largest systems (1de, 4def) were not


al
ulated on every ma
hine due to RAM limitations of the test environment (see text).
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O�set 0 1 2 3 4 5 6 7

Contents P̃ 0
4 (xi) ∆P̃ 0

4 (xi) P̃ 0
6 (xi) ∆P̃ 0

6 (xi) P̃ 1
4 (xi) ∆P̃ 1

4 (xi) P̃ 1
6 (xi) ∆P̃ 1

6 (xi)

O�set 8 9 10 11 12 13 14 15

Contents P̃ 2
4 (xi) ∆P̃ 2

4 (xi) P̃ 2
6 (xi) ∆P̃ 2

6 (xi) P̃ 3
4 (xi) ∆P̃ 3

4 (xi) P̃ 3
6 (xi) ∆P̃ 3

6 (xi)

O�set 16 17 18 19 20 21 22 23

Contents P̃ 4
4 (xi) ∆P̃ 4

4 (xi) P̃ 4
6 (xi) ∆P̃ 4

6 (xi) P̃ 5
6 (xi) ∆P̃ 5

6 (xi) P̃ 6
6 (xi) ∆P̃ 6

6 (xi)

Table 2: A 
a
he-friendly ordering of values for a single NALP interpolation node.

O�set 0 1 2 3 4 5 6 7

Contents cos(φi) ∆ cos(φi) sin(φi) ∆ sin(φi) cos(2φi) ∆ cos(2φi) sin(2φi) ∆ sin(2φi)

O�set 8 9 10 11 12 13 14 15

Contents cos(3φi) ∆ cos(3φi) sin(3φi) ∆ sin(3φi) cos(4φi) ∆ cos(4φi) sin(4φi) ∆ sin(4φi)

O�set 16 17 18 19 20 21 22 23

Contents cos(5φi) ∆ cos(5φi) sin(5φi) ∆ sin(5φi) cos(6φi) ∆ cos(6φi) sin(6φi) ∆ sin(6φi)

Table 3: A 
a
he-friendly ordering of values for a single trigonometri
 fun
tion interpolation node.

Ma
hine A B C

Pro
essor type Intel i7-3820 Intel Xeon L5640 Intel Atom 330

Clo
k rate 3.60 GHz 2.27 GHz 1.60 GHz

Level 1 
a
he

instru
tion 4 × 32 KB 6 × 32 KB 2 × 32 KB

data 4 × 32 KB 6 × 32 KB 2 × 24 KB

Level 2 
a
he 2 × 256 KB 6 × 256 KB 2 × 512 KB

Level 3 
a
he 10 MB 12 MB �

Memory DDR3, 16 GB �1333MHz DDR3, 16 GB �1333MHz DDR2, 2 GB �667MHz

Table 4: Hardware details of the ma
hines used in ben
hmarks.
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28 
29 
30 
31 
32 
33 
34 
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36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
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57 
58 
59 
60 
61 
62 
63 
64 
65 

Test 
ase System 
hara
teristi
s

Des
ription Size Coordination Cuto� radius

(atoms) number rc (Å)

1a 500

1b 4000

1
 f

 Cu single-
rystal at 300 K 32000 12 3.07

1d 256000

1e 2048000

2 liquid Cu at 1900 K 500 12.16 3.54

3 liquid AlCu alloy at 1300 K 4000 12.73 3.77

4a 250

4b 2000

4
 b

 Mo single-
rystal at 300 K 16000 14 3.5

4d 128000

4e 1024000

4f 8192000

Table 5: Test 
ases used in error analysis and ben
hmarks.
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