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Abstrat

We propose a novel, highly-e�ient approah for the evaluation of bond-orientational order parameters

(BOPs). Our approah exploits the properties of spherial harmonis and Wigner 3j-symbols to redue

the number of terms in the expressions for BOPs, and employs simultaneous interpolation of normalised

assoiated Legendre polynomials and trigonometri funtions to dramatially redue the total number of

arithmeti operations. Using realisti test ases, we show how the above, ombined with a CPU-ahe-

friendly data struture, leads to a 10- to 50-fold performane inrease over approahes urrently in use,

depending on the size of the interpolation grids and the mahine used. As the proposed approah is an

approximation, we demonstrate that the errors it introdues are well-behaved, ontrollable and essentially

negligible for pratial grid sizes. We benhmark our approah against other struture identi�ation methods

(entro-symmetry parameter (CSP), ommon neighbour analysis (CNA), ommon neighbourhood parameter

(CNP) and Voronoi analysis), generally regarded as muh faster than BOPs, and demonstrate that our

formulation is able to outperform them for all studied systems.

Keywords:

struture identi�ation, moleular dynamis, bond-orientational order, spherial harmonis, linear

interpolation

PACS: 61.50.Ah, 02.70.Ns, 02.60.Ed

1. Introdution

Bond-orientational order parameters (BOPs) were proposed by Steinhard et al. in 1981 [1, 2℄ as a

generalisation of the two-dimensional hexati order parameter [3℄. Initially BOPs were applied to the study

of the orientational order in liquids and glasses, later to beome a standard tool in all of solid state physis.

Nowadays BOPs are hie�y used to di�erentiate between rystalline phases, suh as s, b, f or hp [4�11℄.

BOPs have been used to study nuleation and rystal growth [6, 10�17℄, helping to eluidate the struture

of ritial nulei [5℄ and nuleation kinetis [18℄. They also onstitute a standard tool for the study of

melting proesses [19�21℄, where global BOPs are used as a diret indiator of a phase transtion, while

loal BOPs serve as measures for the determination of solid and liquid frations. Studies of underooling

and glassi�ation [10, 17, 22, 23℄ also employ BOPs, as do investigations of loal iosahedral order in liquid

metals [21, 24℄ and in other systems [1, 2, 25, 26℄.

Many model systems have been studied with the aid of BOPs: hard- [6, 16, 27�29℄ and soft-spheres [4℄,

Lennard-Jones systems [5, 9, 13, 14, 18, 20, 30, 31℄ (inluding binary [32℄ and polydisperse [22℄), quantum

Email address: wisnia�kdm.task.gda.pl (Szymon Winzewski)

Preprint submitted to Elsevier September 10, 2015

*Manuscript



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Lennard-Jones solids [19, 33℄ and Gaussian-ore systems [9, 17℄. Systems desribed with more omplex

potentials, suh as Morse [34℄, modi�ed Bukingham [15℄ and many-body potentials (pair funtionals) [7, 8,

35, 36℄ have also been studied using BOPs.

The BOP tehnique is ommonly used in the investigations of nanosale systems, suh as atomi lus-

ters [35�37℄, and gold nanowires [7, 8℄. BOPs have also been used in studies of shear-indued phenom-

ena (e.g. shear-indued ordering [38℄, shear-indued rystallisation [39℄, and shear-indued overaging [40℄),

anomalies in liquids [41, 42℄, the freezing of argon in porous arbon [43℄, quasirystals [26℄, and even plasma

[44℄.

The widespread use of the BOP tehnique spurred a number of extensions or generalisations over the

last deade. A modi�ation, where an additional averaging over nearest neighbours is performed during the

alulation of loal BOPs was proposed by Lehner et al. [9℄ in order to improve identi�ation of a variety of

rystalline strutures. A new formulation, where BOPs are ombined with Voronoi tesselation, was proposed

by Mikel et al. [45℄. This formulation removes the ambiguities introdued by the arbitrariness in the hoie

of a uto� radius, allowing a better haraterisation of the orientational order of disordered systems.

The fat that alulating BOPs involves repeated evaluation of spherial harmonis (SHs) [46℄ means that

it is a omputationally intensive approah. In a benhmark of methods for strutural analysis Stukowski

[47℄ assigns it a omputational ost fator of 100, ompared with 50 for Voronoi analysis [48, 49℄, 3 for

ommon neighbour analysis (CNA) [50℄ and 1 for the entro-symmetry parameter tehnique (CSP) [51℄.

The high omputational e�ort assoiated with BOPs narrows the spetrum of their potential appliations,

and we are not aware of any examples in the literature where they would be used for the analysis of large-

sale simulations � these typially employ omputationally heaper methods, suh as energy �ltering (e.g.

Ref. [52, 53℄), or CSP (e.g. Ref. [54℄). Being able to use a more involved method that BOP onstitutes for

large-sale systems is an entiing prospet. A disussion of auray and limitations inherent in a number

of approahes to strutural analysis is given in Ref. [47℄.

Moreover, the availability of the BOP approah to researhers is limited. To our knowledge, its imple-

mentation is not bundled with any of the well-known moleular dynamis odes or visualisation tools, while

CSP, CNA or Voronoi analysis are o�ered by e.g. LAMMPS [55℄ or OVITO [56℄. The authors are aware of

only two implementations available to the sienti� ommunity: one due to Lehner et al. [9℄, and another

one due to Wang et al. [36℄. Both of these implementations are less omputationally e�ient ompared to

ompeting, simpler approahes.

With the above onsiderations in mind, we feel a highly-e�ient approah for the evaluation of bond-

orientational order parameters has the potential to widen their spetrum of appliation. In this paper we

propose a novel, approximate method for e�ient alulation of BOPs, whih an redue the omputational

e�ort by a fator of up to 50, allowing it to outperform even the four approahes generally regarded as faster,

i.e. CSP, CNA, CNP (ommon neighbourhood parameter) [57℄ and Voronoi analysis.

The paper is organised as follows. In setion 2 we desribe the BOP approah, highlighting the steps

in the alulation that an be optimised. Setion 3 outlines the proposed tehnique for evaluating BOPs.

Setion 4 is devoted to benhmarking the e�ieny and auray of the proposed approah. Setion 5

ontains onlusions.

2. The bond-orientational order parameter (BOP) method

Bond-orientational order parameters [1, 2℄ (BOPs) are used to haraterise short-range order by lassi-

fying eah atom as belonging to one of a number of lose-paked strutures. For every referene atom i, the
lassi�ation is performed in four stages, outlined below.

Stage 1.

The set B(i) of nearest neighbours j of atom i is determined. Nearest neighbours are de�ned as atoms

that are no further away from atom i than a presribed uto� radius r


. The bond vetors rij = rj −ri

joining atom i with the neighbours j are alulated as Cartesian omponents. The number of neigh-

bours of atom i (ardinality of B(i)) will be denoted by N
b

(i).
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Struture Parameter

Q4 Q6 Ŵ4 Ŵ6

s 0.76376 0.35355 0.15932 0.01316

b 0.08202 0.50083 0.15932 0.01316

f 0.19094 0.57452 -0.15932 -0.01315

hp 0.09722 0.48476 0.13410 -0.01244

ios 0 0.66332 0 -0.16975

Table 1: BOP values for typial ideal strutures.

Stage 2.

Eah bond vetor rij is projeted to the unit sphere, and its spherial oordinates θ(rij) and φ(rij)
are alulated.

Stage 3.

A vetor of omplex spherial harmonis (SHs) [46℄ Y m
l (θ(rij), φ(rij)) is evaluated for every bond

vetor rij , for a hosen value of l and m ∈ {−l, . . . , l}.

Stage 4.

A vetor of omplex quantities Ql,m(i), de�ned as

Ql,m(i) =
1

N
b

(i)

∑

j∈B(i)

Y m
l (θ(rij), φ(rij)) (1)

is onstruted. Subsequently so-alled seond-order (Steinhardt) invariants are onstruted, aording

to

Ql(i) =

(
4π

2l + 1

l∑

m=−l

|Ql,m(i)|2
)1/2

. (2)

Third-order invariants [58℄ an also be onstruted:

Ŵl(i) = Wl(i)×
(

l∑

m=−l

|Ql,m(i)|2
)−3/2

, (3)

where

Wl(i) =
∑

m1,m2,m3
m1+m2+m3=0

(
l l l

m1 m2 m3

)
Ql,m1(i) Ql,m2(i) Ql,m3(i). (4)

The quantities (
l1 l2 l3
m1 m2 m3

)

are Wigner 3j-symbols [59℄.

Invariants for l ≤ 3 vanish for latties with ubi symmetry, and in pratie b, f and hp are

di�erentiated using l = 4 and l = 6. Eah atom i is lassi�ed as belonging to a partiular struture by diret

omparison of alulated invariants Q4(i), Q6(i), Ŵ4(i) and Ŵ6(i) with referene values. The values for a

number of ideal strutures are given in Table 1.

At non-zero temperatures thermal motions lead to a smearing of the BOP values, and in pratie lassi�-

ation is performed on a two-dimensional plane of parameter values (e.g. Q4(i)−Q6(i) or Q6(i)−Ŵ4(i)), on
whih regions orresponding to partiular pakings are de�ned. For examples see e.g. Refs.[7, 15℄. However,

no single, onsistent approah to the lassi�ation itself has been proposed to date.
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3. A highly-e�ient approah for evaluating BOPs

The four stages of the alulation of BOPs outlined in Se. 2 di�er in omputational e�ort. For the

identi�ation of neighbours (stage 1) e�ient, linear-saling algorithms, suh as the linked-ell approah

[60, 61℄ are typially used, and alulating bond vetors rij and their spherial oordinates (stage 2) are

very simple operations. The omputational e�ort of stages 1 and 2 is thus very small.

3.1. Evaluation of spherial harmonis by fast simultaneous interpolation

The most omputationally demanding (about 60% of total e�ort for a standard implementation) is

stage 3, where a large number of spherial harmonis (SHs) has to be evaluated, with the e�ort for the

entire system saling as O(Nr3


). As an example, let us onsider a system of modest size, N = 4000 atoms

arranged in an f struture (thus with N
b

= 12 neighbours within r


). Assuming we are interested in

invariants with l = 4 and l = 6, a total of (2× 4 + 1 + 2× 6 + 1)× 4000× 12 = 1.056× 106
SHs need to be

evaluated. In a diret approah these are alulated as

Y m
l (θ, φ) = P̃m

l (cos θ)eimφ
(5)

= Km
l Pm

l (cos θ)eimφ

=

√
2l + 1

4π

(l −m)!
(l + m)!

Pm
l (cos θ)

× [cos(mφ) + i sin(mφ)] ,

where Pm
l (x) are assoiated Legendre polynomials (ALPs) and

P̃m
l (x) = Km

l Pm
l (x) (6)

denote normalised assoiated Legendre polynomials (NALPs).

Below we propose a highly-e�ient alternative to diret evaluation, based on simultaneous interpolation.

Our approah proeeds by interpolating both the trigonometri funtions and the NALPs in (6), exploiting

the fat that eah interpolation node only has to be alulated one for an entire set of interpolated funtions.

In the disussion that follows we assume a typial ase where invariants with l = 4 and l = 6 are alulated.

The interpolated funtions satisfy the neessary requirements for stable interpolation (bounded domain

and odomain, ontinuity, low variability). We divide the domain of NALPs into p intervals, with a width

of hx = 2/p eah, loating the interpolation nodes at xj = −1+ jhx, where j = 0, 1, . . . , p− 1. Similarly, we
divide the domain of the trigonometri funtions into q intervals, with a width of hφ = 2π/q eah, loating

the interpolation nodes at φj = jhφ, where j = 0, 1, . . . , q − 1.
Interpolation tables, onstruted at the outset of the alulation, are organised as follows:

1. For NALPs we store P̃m
l (xi) and ∆P̃m

l (xi), where

∆P̃m
l (xi) = [P̃m

l (xi+1)− P̃m
l (xi)]/hx, (7)

for all 12 pairs of indies (l, m) = (4, 0), (4, 1), . . . , (4, 4), (6, 0), (6, 1), . . . , (6, 6). We exploit two well-

known properties of SHs:

Y m
l (θ(−rij), φ(−rij)) = (−1)l Y m

l (θ(rij), φ(rij)), (8)

Y −m
l (θ, φ) = (−1)m Y

m

l (θ, φ) (9)

to elide interpolation and storage of values for m < 0. The data struture staggers P̃m
l (xi) and

∆P̃m
l (xi) and uses l as the fast-hanging index for optimal ahe e�ieny. The preise ordering of

values for a single interpolation node is shown in Table 2. The size of the data struture is 24p double

preision values.
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2. For interpolating trigonometri funtions we store sin(mφ), cos(mφ), ∆ sin(mφ), ∆ cos(mφ), where

∆ sin(mφi) = [sin(mφi+1)− sin(mφi)]/hφ,

∆ cos(mφi) = [cos(mφi+1)− cos(mφi)]/hφ,
(10)

ordered as cos(mφ), ∆ cos(mφ), sin(mφ), ∆ sin(mφ), with m = 1, 2, . . . , 6 being the slowly-hanging

index. The preise ordering of values for a single interpolation node is shown in Table 3. The size of

the data struture is 24q double preision values. Note that in the alulation of interpolation slopes

in (10) we always divide by hφ, and not by mhφ. This helps inrease omputational e�ieny by

allowing us to alulate eah interpolation node only one for an entire set of funtions.

One the interpolation tables are onstruted, the following steps are performed for every interpolation

node j. The inputs to the interpolation are φ and x = cos θ.

1. Find interpolation node xi, ompute ∆x = x− xi.

2. Interpolate P̃m
l (x) for the 12 pairs of (l, m) by linear interpolation:

P̃m
l (x) ≈ P̃m

l (xi) + ∆P̃m
l (xi)×∆x,

3. Find interpolation node φi, ompute ∆φ = φ− φi,

4. Interpolate sin(mφ) and cos(mφ), for m ∈ [1, 6] by linear interpolation:

sin(mφ) ≈ sin(mφi) + ∆ sin(mφi)× ∆φ

cos(mφ) ≈ cos(mφi) + ∆ cos(mφi)×∆φ,

5. Evaluate spherial harmonis Ỹ m
l , for the 12 pairs of (l, m) aording to

Ỹ m
l (θ, φ) = P̃m

l (cos θ) [cos(mφ) + i sin(mφ)] , (11)

where the interpolated values are used for the NALPs and the trigonometri funtions.

The e�ieny of this approah, to whih we will refer as fast simultaneous interpolation (FSI), stems

from a ombination of the following:

• Linear interpolation is inherently faster ompared to diret evaluation of trigonometri funtions or

NALPs.

• For every bond, all 12 spherial harmonis are evaluated for the same arguments.

• The interpolation node is shared by an entire vetor of 12 NALPs, and by six pairs of trigonometri

funtions, and thus needs to be evaluated only one.

• A data struture that ensures maximum loality, and thus e�ient use of CPU ahe is employed.

With the proposed approah, a alulation of all 12 SHs involves only 27 additions, 48 multipliations, 53

assignments and 2 rounding operations (to �nd the interpolation nodes). Fast simultaneous interpolation

an be easily generalised to utilise higher-order interpolation � this would have the advantage of reduing

the memory footprint (as oarser grids would provide equivalent auray) at the ost of inreasing the

number of arithmeti operations required. In Se. 4.1 we show how the memory footprint of our approah

is insigni�ant for grid sizes used in pratie, whih makes linear interpolation entirely satisfatory for our

needs.
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3.2. Reduing the number of operations needed to alulate BOPs from SHs

The �nal, fourth stage in the determination of BOPs onsists in alulating the BOPs from the spherial

harmonis evaluated in stage 3. The diret approah (i.e. through (1)-(4)) is suboptimal. If we again use

the example of a system with N
b

= 12, the omputational e�ort of evaluating Q4, Q6, Ŵ4, Ŵ6 (whih is

the typial senario) is: 1464 additions, 1954 multipliations, 3 divisions and 2 square root operations for

a single atom. The above assumes that evaluating a omplex modulus involves 2 multipliations and one

addition.

Below we outline how this e�ort an be redued several-fold. First, we again exploit the properties of SHs

(8), (9) to elide all alulations where i > j and all alulations where m < 0, reduing the omputational

e�ort almost by a fator of 4. Subsequently we introdue:

ql,m(i) =
∑

j∈B(i)

Y m
l (θ(rij), φ(rij)), (12)

ql(i) =

(
l∑

m=−l

|ql,m(i)|2
)1/2

, (13)

and

wl(i) =
∑

m1,m2,m3
m1+m2+m3=0

(
l l l

m1 m2 m3

)
ql,m1(i) ql,m2(i) ql,m3(i), (14)

whih are analogous to the quantities in eqs. (1), (2), (4), exept for normalisation fators. One the above

intermediate quantities are evaluated, BOPs an be alulated as

Ql(i) =
(

4π

2l + 1

)1/2
ql(i)
N
b

(i)
(15)

and

Ŵl(i) =
wl(i)

(ql(i))3
. (16)

By again exploiting a property of SHs (9), we obtain

ql,−m(i) = (−1)m ql,m(i), (17)

whih in turn allows to rewrite (13) as

ql(i) =

(
|ql,0(i)|2 + 2

l∑

m=1

|ql,m(i)|2
)1/2

. (18)

Let us now onsider the sum (14). In a diret approah, 61 and 127 non-vanishing terms (those where

m1 + m2 + m3 = 0) need to be evaluated for l = 4 and l = 6, respetively, for a total of 188 terms. We now

reall several well-known properties of the Wigner 3j-symbol:

(
l1 l2 l3
m1 m2 m3

)
=
(

l2 l3 l1
m2 m3 m1

)
=
(

l3 l1 l2
m3 m1 m2

)
, (19)

(
l1 l2 l3
m1 m2 m3

)
= (−1)l1+l2+l3

(
l2 l1 l3
m2 m1 m3

)
= (−1)l1+l2+l3

(
l1 l3 l2
m1 m3 m2

)
, (20)

(
l1 l2 l3

−m1 −m2 −m3

)
= (−1)l1+l2+l3

(
l1 l2 l3
m1 m2 m3

)
. (21)
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By exploiting the above properties along with (15) we an redue the omputational e�ort to merely 9 terms

for l = 4 and 16 terms for l = 6, reasting w4(i) as

w4(i) = Re (q4,0(i))

[(
4 4 4
0 0 0

)
|q4,0(i)|2 + 6

4∑

m=1

(
4 4 4

−m 0 m

)
|q4,m(i)|2

]

+ 12
(

4 4 4
−4 1 3

)
Re
(
q4,4(i)× q4,1(i)× q4,3(i)

)

− 12
(

4 4 4
−3 1 2

)
Re
(
q4,3(i)× q4,1(i)× q4,2(i)

)

+ 6
(

4 4 4
−4 2 2

)
Re
(
q4,4(i)× q4,2(i)× q4,2(i)

)

+ 6
(

4 4 4
−2 1 1

)
Re
(
q4,2(i)× q4,1(i)× q4,1(i)

)
, (22)

and w6(i) as

w6(i) = Re (q6,0(i))

[(
6 6 6
0 0 0

)
|q6,0(i)|2 + 6

6∑

m=1

(
6 6 6

−m 0 m

)
|q6,m(i)|2

]

+ 12
(

6 6 6
−6 1 5

)
Re
(
q6,6(i)× q6,1(i)× q6,5(i)

)

+ 12
(

6 6 6
−6 2 4

)
Re
(
q6,6(i)× q6,2(i)× q6,4(i)

)

+ 12
(

6 6 6
−4 1 3

)
Re
(
q6,4(i)× q6,1(i)× q6,3(i)

)

− 12
(

6 6 6
−5 1 4

)
Re
(
q6,5(i)× q6,1(i)× q6,4(i)

)

− 12
(

6 6 6
−5 2 3

)
Re
(
q6,5(i)× q6,2(i)× q6,3(i)

)

− 12
(

6 6 6
−3 1 2

)
Re
(
q6,3(i)× q6,1(i)× q6,2(i)

)

+ 6
(

6 6 6
−6 3 3

)
Re
(
q6,6(i)× q6,3(i)× q6,3(i)

)

+ 6
(

6 6 6
−4 2 2

)
Re
(
q6,4(i)× q6,2(i)× q6,2(i)

)

+ 6
(

6 6 6
−2 1 1

)
Re
(
q6,2(i)× q6,1(i)× q6,1(i)

)
. (23)

The above forms, although more verbose, allow for markedly more e�ient omputation � not only is the

number of terms redued (from 188 to 25), but the terms themselves are simpler. The number of operations

neessary to alulate BOPs for a single atom (for the same model ase) is redued to 337 additions (from

1464), 176 multipliations (from 1954), 2 divisions (from 3). The number of square-root operations remains

at 2.

4. E�ieny and auray of the proposed approah

4.1. Fast simultaneous interpolation

Here we demonstrate the e�ieny and auray of the simultaneous interpolation sheme we proposed

in Se. 3.1. As an e�ient and aurate approah to evaluating large numbers of spherial harmonis an
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also �nd use outside the ontext of the BOP method, we begin by benhmarking the sole alulation of the

SHs.

Our benhmark onsisted in alulating the set of 12 SHs for 1 million randomly [62℄ hosen pairs of

(θ, φ). As a referene implementation we used the GNU Sienti� Library [63℄ (GSL), whih is widely used

in the sienti� ommunity. Sine GSL does not diretly alulate SHs, but only NALPs, an additional

alulation of trigonometri funtions was needed, this was done through alls to native library funtions.

The e�ieny and auray of any interpolation sheme will depend on the size of the interpolation

grid(s) used. Our approah uses two grids, with p and q intervals, respetively (f. Se. 3.1), resulting in

O(p + q) memory omplexity. The time omplexity of evaluating the SHs is O(1) (independent of the size
of either grid), while the omputational e�ort of onstruting the interpolation grids sales as O(p + q). In
pratial appliations the omputational e�ort would be dominated by the interpolation itself, with the ost

of onstruting the grids beoming inreasingly more insigni�ant with inreasing numbers of SHs alulated.

We begin by reporting (Fig. 1) the mean error in the obtained SHs as a funtion of p and q, using the

numerially exat GSL values as referene. Sine the values of SHs an be arbitrarily lose to omplex zero,

we elet to report errors de�ned as

E =
∣∣∣Ỹ m

l (θ(rij), φ(rij))− Y m
l (θ(rij), φ(rij))

∣∣∣ , (24)

where Ỹ m
l are the spherial harmonis evaluated with our approah aording to (11), and Y m

l are understood

to be the numerially exat values obtained with GSL. By mean error, 〈E〉, we shall denote the average

of E over the 12 SHs alulated for 1 million randomly generated pairs of (θ, φ). We aknowledge that for

SHs extremely lose (or exatly equal) to omplex zero, the relative error of the approximation an beome

arbitrarily large. In appliations where this would be deemed problemati (e.g. where aurate phases

were vital for arbitrarily small moduli), numerially exat alulations ould easily be arried out one the

value of the modulus was found to lie below a preset threshold. Here we hose not employ suh a fallbak

mehanism so as not to introdue a dependene of results on the value of the threshold.

Fig. 1 makes it apparent that highest auray, for a given memory footprint (proportional to p + q), is
obtained by using similar grid sizes, i.e. p ≈ q. In order to simplify further analysis, in the text that follows

we assume p = q, and aordingly report e�ieny and auray benhmarks for the ase where the grid

sizes are taken to be idential.

We now turn to benhmarking the e�ieny of the interpolation sheme for the SHs. We arefully ensured

that the ontrol logi for traversing the pairs was idential between the referene and proposed approahes

and that that only the walltimes of the atual SH evaluations were measured. In an e�ort to minimise the

e�et of any external fators (onurrent proesses, paging, ahing, et.) we performed 10 runs for eah

approah, presenting averaged results. Sine the relative performane of any two implementations is likely

to vary depending on the mahine of whih they are exeuted, we performed benhmarks on three distint

mahines. Mahine A was a high-performane workstation, mahine B was a typial omputational node of

a omputer luster, and mahine C was a laptop. The three mahines di�ered with respet to lok rates,

CPU types, CPU ahe and RAM speeds � the relevant hardware details are given in Table 4.

Fig. 2 shows the speedup of the proposed approah ompared to the referene (GSL) implementation,

demonstrating that simultaneous interpolation is several tens of times faster for mahines typially used

in sienti� omputations and 21-45 times faster on a laptop omputer (mahine C), with greatest relative

speedups obtained for the fastest mahine (mahine A).

We will now demonstrate that the above speedups were obtained for grid sizes that guarantee negligible

loss of auray. In Fig. 3 we show the mean error 〈E〉 of the alulated omplex spherial harmonis as a

funtion of the interpolation grid sizes p = q. Fast simultaneous interpolation is seen to yield very aurate

SHs even for modest grid sizes � for the oarsest setting (p = q = 600 intervals) the errors were as small

as 〈E〉 = 5.6 × 10−5
. The error and thus the auray is seen to be ontrollable � the mean error is well-

desribed with a relation 〈E〉 = Cp−α
(shown as line in the plot). The empirially obtained value of the

exponent α was 1.68, meaning that a fourfold inrease of the grid size p leads to a 10.3-fold derease of 〈E〉.
Fig. 4 shows the distribution of the errors, demonstrating that even for the oarsest grids (p = q = 600)
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Figure 1: Errors introdued by the proposed approximation (shown as ontour labels to the right of the

plot). Blak points represent tested grid size pairs. Grid sizes p and q between 25 and 25 × 211 = 51200
were tested. Contour lines were obtained using biquadrati interpolation between the points.
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Figure 2: Speedup of the proposed simultaneous interpolation ompared to referene (GSL) implementation,

for alulating 1M spherial harmonis.
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Figure 3: A log-log plot of the error introdued by the approximations of the fast simultaneous interpolation.

The line is a result of �tting Cp−α
to the datapoints.
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Figure 4: Distribution histograms for the error (alulated aording to 24) in the alulated spherial

harmonis for three representative grid sizes (p).
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they are well-behaved and inreasing grid sizes quikly moderates the error distribution. For the medium-

quality grids (p = q = 2400) we �nd that in > 99.98% ases the error E did not exeed 10−4
.

We �nish the disussion of fast simultaneous interpolation with a omment on memory use. The proposed

approah has very modest memory requirements � even the �nest grids used here (p = q = 9600), for whih
the approximation errors are extremely small (〈E〉 = 5.3 × 10−7

), neessitate storing only (p + q) × 24 =
(9600 + 9600)× 24 = 460800 double preision values, for a total of only 3.7 MB.

4.2. E�ieny and auray of the proposed approah to evaluating BOPs

We shall now assess the e�ieny and auray of the approah to evaluating BOPs that ombines the

fast simultaneous interpolation (FSI) desribed in Se. 3.1 and the sum simpli�ations disussed in Se. 3.2.

We ompare the implementation of our approah against the two widely used implementations � one due

to Lehner et al. [9℄ and one due to Wang et al. [36℄. Both of these employ the exat, diret approah of

(1)-(4). In order to disentangle the e�ets of FSI (whih is an approximation) from the e�ets of the sum

simpli�ations (whih do not involve approximations), we also performed benhmarks for alulations that

use GSL to evaluate SHs exatly.

In order to perform a realisti benhmark, we prepared thirteen test ases representing typial systems

whose struture would be analysed using the BOP approah. The test ases sample a variety of system

sizes and strutures (f. Table 5 for details). We measured the walltime orresponding to evaluating all four

BOP values for all atoms in every test ase, for 50 di�erent on�gurations of positions. The on�gurations

were obtained in advane from moleular dynamis simulations. We note that Lehner's implementation

does not alulate Ŵ4 or Ŵ6, and these two invariants were not inluded in the datapoints for Lehner's

implementation. We used the same three representative mahines as in Se. 4.1 and ensured the test

onditions were idential for all implementations. Depending on the mahine, the size of the test ase, and

the implementation we alulated walltimes as averages over 5-1000 independent runs. We were areful to

time only the BOP alulation itself, exluding the time neessary to identify nearest neighbours (stage 1).

The fat that the laptop mahine (C) had very limited RAM (2 GB) prevented us from running the largest,

1M+-atom, systems (1e, 4e, 4f) on this mahine. For the same reason, we were not able to benhmark the

Lehner implementation for testase 4f (8M+ atoms) on mahine B.

Fig. 5 illustrates the speedups obtained for the thirteen test ases. Our approah is found to be between

11 and 40 times faster ompared to the implementation of Lehner et al., depending on mahine and test

ase, and between 14 and 46 times faster ompared to that of Wang et al.. We note (f. the datapoints

labeled �GSL�) that most of the speedup (a fator of 7-24) an be attributed to the use of the interpolation

sheme, while the the rearrangements desribed in Se. 3.2 aount for a further improvement in e�ieny

by a fator of 1.7-2.1.

As expeted, the obtained speedups are seen to depend somewhat on the mahine used for benhmark-

ing. These di�erenes result from a ombination of hardware fators. We do not set out to identify the

exat hardware details responsible for the degree of obtained speedup, rather, we only point out that the

proposed omputational approah onsistently a�ords speedups of over an order of magnitude, regardless of

arhiteture and hardware details.

We now turn to the assessment of errors that the proposed tehnique introdues in the values of the

BOPs Ql(i) and Ŵl(i). We followed a pratial approah, whereby we ompared BOP values alulated

using FSI with numerially exat values obtained using GSL for the thirteen test ases used earlier in the

text (f. Table 5 for details). Here we only report on errors measured for test ase 3 (liquid AlCu), whih

performed the worst in terms of errors. The results that we present were averaged over 10000 snapshots

taken from an MD alulation in order to ensure good statistis. We alulated mean absolute errors in all

four parameters under onsideration: Q4, Q6, Ŵ4, and Ŵ6.

Fig. 6 shows the measured absolute errors in BOPs as a funtion of the grid size p. For the oarsest

grids (p = q = 600) the mean absolute errors were 5.3 × 10−5
, 1.1 × 10−4

, 1.4 × 10−4
and 5.0 × 10−5

, for

Q4, Q6, Ŵ4, and Ŵ6, respetively. Using �ner grids (p = q = 9600) redued the errors by two orders of

magnitude. The above means that the artifats introdued by the interpolation sheme are well in the realm

of negligibility. In typial appliations of the BOP method being able to determinie the parameters to the
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Figure 5: Measured speedup of the proposed approah over the implementations of Lehner et al., Wang

et al. and GSL. The three panels orrespond to mahines (A: top, B: middle, C: bottom). The datapoints

orrespond to grid sizes of p = q = 2400, while the error bars orrespond to p = q = 600 (oarsest grids,

highest speedup) and s = 9600 (�nest grids, lowest speedup). Test ases (f. Table 5) are shown on the X
axis. The timings for the Lehner approah do not inlude the alulation of Ŵ4 or Ŵ6 (see text). Speedups

for test ases 1e), 4ef) for mahine C, and 4f) for mahine B were not measured due to RAM limitations of

the test environment (see text).
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Figure 6: Errors introdued by the proposed approah for evaluating BOPs, measured for and averaged

over 10000 snapshots of liquid AlCu (test ase 3). The log-log plot in the top panel shows the mean absolute

error (squares), with lines denoting results of a �t to the form Cp−α
. To failitate omparison with typial

values of the parameters, the bottom panel shows the distributions of the BOPs themselves. Both panels

use the same oding: blak squares � Q4, red irles � Q6, blue diamonds � Ŵ4, green triangles � Ŵ6.
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Figure 7: Distribution of absolute errors in BOPs for three grid sizes (oarsest: p = 600, medium: p = 2400,
�nest: p = 9600). The vertial line denotes an arbitrarily de�ned aeptable error level of 10−3

.

absolute auray of 10−3
is entirely satisfatory. Our results show that, in the mean sense, suh auray

is obtained even for the oarsest grids we tested (p = q = 600).
We appreiate that knowing the mean absolute auray may not be su�ient for some appliations of

the BOP method. In Fig. 7 we show how the errors are distributed for three representative grid sizes, for

all BOPs of interest. The same test ase was used. We �nd that for grids with p = q = 9600, the prevalene
rate of absolute errors larger than the aeptane riterion assumed above (10−3

) is as small as 0.0004% (for

Q4), 0.001% (for Q6), 0.06% (for Ŵ4), 0.002% (for Ŵ6). None of the 4× 107
sets of four BOPs onstituting

our test ase exhibited an absolute error larger than 10−2
, meaning suh errors are expeted to our at

most in 2.5× 10−6% ases.

4.3. Comparison of omputational e�ort with other methods of struture haraterisation

We demonstrated that the proposed approah redues the omputational e�ort of evaluating bond-

orientational order parameters by more than an order of magnitude. The assoiated inrease in omputa-

tional e�ieny is signi�ant enough to warrant a omparison with other approahes to struture hara-

terisation that are generally deemed to be more e�ient.

A number of struture identi�ation methods is reviewed in Ref. [47℄, inluding four widely used ap-

proahes � the entro-symmetry parameter (CSP), ommon neighbour analysis (CNA), the ommon neigh-

bourhood parameter (CNP) and Voronoi analysis. Stukowski assigns to eah of the reviewed approahes a
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unitless omputational ost fator, whih essentially measures the relative slowness of an approah ompared

to alulating the entro-symmetry parameter (CSP) [51℄, exluding the e�ort of neighbour identi�ation.

The omputational ost fators given in Ref. [47℄ for CNA, Voronoi and BOP approahes are, respetively,

3, 50 and 100 (Stukowski did not estimate the omputational ost fator of the CNP method).

Below we re-evaluate the omputational ost fator using the approah for evaluating BOPs proposed

in this work. For the purposes of this omparison, we re-implemented the CSP, CNA, CNP and Voronoi

approahes from srath. The obtained implementations of CSP, CNA and Voronoi analysis mirror those

of Stukowski. In both ases Ryroft's voro++ library [64℄ has been used to e�iently perform Voronoi

tesselation. Below we outline the operations performed within the framework of eah approah.

In the CSP approah a single, real-valued parameter given by

CSP(i) =
∑

j∈B(i)/2

|rij + rik|2 (25)

needs to be determined for every haraterised entral atom i. In the above, rij and rik denote the vetors

pointing from atom i to its two opposite neighbours j, k ∈ B(i), and the number of elements in the sum is

equal to half the number of nearest neighbours. The alulation of CSP(i) neessitates identifying N
b

(i)/2
pairs of opposite neighbours, whih orresponds to alulating, for every possible pair (j, k) out of the total
of N

b

(i)(N
b

(i)− 1)/2, the value |rij + rik|2 and using the N
b

(i)/2 smallest values in (25). This formulation

of CSP has been proposed by Kelhner et al. [51℄ and is implemented, e.g. in the LAMMPS pakage [55℄.

In the ase of CNA, the analysis onsists in the determination of three integer numbers n
n

(ij), n
b

(ij),
and n

lb

(ij) for every bond rij joining the entral atom i with its neighbours j ∈ B(i). These are, respetively,
the number of neighbour atoms the entral atom i and its neighbour j ∈ B(i) have in ommon, n

n

(ij); the
total number of bonds between these ommon neighbours, n

b

(ij); and the number of bonds in the longest

hain of bonds onneting the ommon neighbours, n
lb

(ij). Apart from the need to determine N
b

(i) suh
triples, CNA involves the determination of the number of bonds of di�erent types, whih di�er in the values

of n
n

, n
b

, and n
lb

.

The ommon neighbourhood parameter (CNP), proposed by Tsuzuki et al. [57℄, ombines the advantages

of CSP and CNA. Here, for every entral atom i, a single, real-valued parameter is alulated aording to:

CNP(i) =
1

N
b

(i)

∑

j∈B(i)

∣∣∣∣∣∣
∑

k∈B(i)∩B(j)

(rik + rjk)

∣∣∣∣∣∣

2

. (26)

The values of CNP(i) are alulated diretly, by iterating over the neighbours of atom i in the �rst sum,

and the ommon neighbours of atoms i and j in the seond sum.

In the ase of Voronoi analysis, it beomes neessary to determine, for every atom i in the system, its

orresponding Voronoi polyhedron. The polyhedra are subsequently desribed through the use of signatures

(f3, f4, f5, f6, . . .), where the symbol fe denotes the number of faes with e edges.

We measured the time needed for performing strutural identi�ation for eah of the methods: t
BOP

,

t
CSP

, t
CNA

, t
CNP

, t
Voronoi

. The time required for neighbour identi�ation and the alulation of bond

vetors was exluded. Measurements were performed for all thirteen test ases, on all three mahines

desribed earlier. Results were averaged over 10 independent runs. We appreiate that the obtained relative

e�ienies of the methods are going to depend on implementation details. The results we show are valid for

our implementations, whih we diligently optimised.

The missing points in Fig. 8 orrespond to senarios where RAM limitations prevented us from performing

the benhmark for the largest (1M+ atoms) systems. This is mostly seen on mahine C (a laptop PC with

merely 2 GB of RAM), or for Voronoi analysis (whih has muh higher memory requirements ompared

to CSP, CNA, CNP or BOP). The above re�ets the simpli�ed nature of our test environment, where all

alulations have been done in post-proessing, in a single-CPU environment. In pratie strutural analysis

of 1M+-atom systems would be done in a distributed memory parallel environment.

The measured relative timings (t
CSP

/t
BOP

, t
CNA

/t
BOP

, t
CNP

/t
BOP

and t
Voronoi

/t
BOP

) shown in Fig. 8

demonstrate that with the approah we propose, BOP analysis an be arried out in less time than Voronoi
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analysis (by at least an order of magnitude), and, ruially, in less time than CNA analysis. In partiular,

depending on the test ase and the mahine used, we ahieve a speed-up between 8.1 and 50.1 ompared to

(our implementation of) Voronoi analysis and between 1.1 and 10.6 ompared to (our implementation of)

CNA analysis. Cruially, our timings also indiate that the omputational e�ort of the proposed approah

for evaluating BOP is omparable to that of the CSP method (with ratios t
CSP

/t
BOP

between 0.5 and 2.1),

and the CNP method (with ratios t
CNP

/t
BOP

between 1.0 and 4.4).

We an thus onlude that the omputational e�ort of our approah to struture identi�ation by BOP

is signi�antly lower than that of Voronoi analysis and even lower than (or at least omparable to) that

of CSP, CNP and CNA methods. We posit that BOP analysis should no longer be regarded as a more

omputationally involved method of struture haraterisation.

5. Conlusions

We devised an e�ient tehnique for evaluating bond-orientational order parameters (BOPs). Our

approah ombines simultaneous interpolation in the evaluation of spherial harmonis with rearrangements

in the expressions for obtaining BOPs from spherial harmonis. Cahe-friendly data strutures are employed

in the interpolation.

The memory omplexity of our approah is linear in the grid size. The omputational omplexity of ini-

tialisation (onstruting the interpolation grids) is linear, while the time of atual evaluation is independent

of the grid size. For su�iently large numbers of evaluations and grid sizes used in pratial alulations

the latter time dominates.

As one stage of our approah relies on interpolation, we arefully measured the errors in the approximation

both for the alulated spherial harmonis and the resultant BOPs. The errors inherent to our approah

are seen to be well-behaved and ontrollable, even with linear interpolation, vanishing aording to p−1.68

with the grid size p. The errors are found to be negligible already at p = 9600, whih orresponds to a

memory footprint of only 3.7 MB and an initialisation time below 200 ms.

Benhmarks for a number of realisti test ases performed on three hardware on�gurations demonstrate

that our approah is between 11 and 46 times faster ompared to other widely used approahes to evaluating

BOPs, and an even outperform other methods of struture identi�ation that are generally regarded as

omputationally heaper.

An implementation of the approah has been made available under the GNU GPLv3 liense (see Sup-

plementary Materials).
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Figure 8: Computational ost fator of CSP, CNA, CNP and Voronoi methods relative to the proposed

approah to evaluating BOPs, i.e. the ratio of the time needed to perform CSP, CNA, CNP or Voronoi

analysis to the time needed to perform BOP analysis. The three panels orrespond to mahines (A: top,

B: middle, C: bottom). The datapoints orrespond to grid sizes of p = q = 2400, while the error bars

orrespond to p = q = 600 (oarsest grids, highest speedup) and s = 9600 (�nest grids, lowest speedup).

Test ases (f. Table 5) are shown on the X axis. Cost fators for the largest systems (1de, 4def) were not

alulated on every mahine due to RAM limitations of the test environment (see text).
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O�set 0 1 2 3 4 5 6 7

Contents P̃ 0
4 (xi) ∆P̃ 0

4 (xi) P̃ 0
6 (xi) ∆P̃ 0

6 (xi) P̃ 1
4 (xi) ∆P̃ 1

4 (xi) P̃ 1
6 (xi) ∆P̃ 1

6 (xi)

O�set 8 9 10 11 12 13 14 15

Contents P̃ 2
4 (xi) ∆P̃ 2

4 (xi) P̃ 2
6 (xi) ∆P̃ 2

6 (xi) P̃ 3
4 (xi) ∆P̃ 3

4 (xi) P̃ 3
6 (xi) ∆P̃ 3

6 (xi)

O�set 16 17 18 19 20 21 22 23

Contents P̃ 4
4 (xi) ∆P̃ 4

4 (xi) P̃ 4
6 (xi) ∆P̃ 4

6 (xi) P̃ 5
6 (xi) ∆P̃ 5

6 (xi) P̃ 6
6 (xi) ∆P̃ 6

6 (xi)

Table 2: A ahe-friendly ordering of values for a single NALP interpolation node.

O�set 0 1 2 3 4 5 6 7

Contents cos(φi) ∆ cos(φi) sin(φi) ∆ sin(φi) cos(2φi) ∆ cos(2φi) sin(2φi) ∆ sin(2φi)

O�set 8 9 10 11 12 13 14 15

Contents cos(3φi) ∆ cos(3φi) sin(3φi) ∆ sin(3φi) cos(4φi) ∆ cos(4φi) sin(4φi) ∆ sin(4φi)

O�set 16 17 18 19 20 21 22 23

Contents cos(5φi) ∆ cos(5φi) sin(5φi) ∆ sin(5φi) cos(6φi) ∆ cos(6φi) sin(6φi) ∆ sin(6φi)

Table 3: A ahe-friendly ordering of values for a single trigonometri funtion interpolation node.

Mahine A B C

Proessor type Intel i7-3820 Intel Xeon L5640 Intel Atom 330

Clok rate 3.60 GHz 2.27 GHz 1.60 GHz

Level 1 ahe

instrution 4 × 32 KB 6 × 32 KB 2 × 32 KB

data 4 × 32 KB 6 × 32 KB 2 × 24 KB

Level 2 ahe 2 × 256 KB 6 × 256 KB 2 × 512 KB

Level 3 ahe 10 MB 12 MB �

Memory DDR3, 16 GB �1333MHz DDR3, 16 GB �1333MHz DDR2, 2 GB �667MHz

Table 4: Hardware details of the mahines used in benhmarks.
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Test ase System harateristis

Desription Size Coordination Cuto� radius

(atoms) number rc (Å)

1a 500

1b 4000

1 f Cu single-rystal at 300 K 32000 12 3.07

1d 256000

1e 2048000

2 liquid Cu at 1900 K 500 12.16 3.54

3 liquid AlCu alloy at 1300 K 4000 12.73 3.77

4a 250

4b 2000

4 b Mo single-rystal at 300 K 16000 14 3.5

4d 128000

4e 1024000

4f 8192000

Table 5: Test ases used in error analysis and benhmarks.
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