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Abstract

The paper presents a new, two-stage approach to identification of linear time-varying stochastic systems, based on the
concepts of preestimation and postfiltering. The proposed preestimated parameter trajectories are unbiased but have large
variability. Hence, to obtain reliable estimates of system parameters, the preestimated trajectories must be further filtered
(postfiltered). It is shown how one can design and optimize such postfilters using the basis function framework. The proposed
solution to adaptive tuning of postfilter settings is based on parallel estimation and cross-validatory analysis. When compared
with the classical solutions to the problem of parameter tracking, the new approach offers, without compromising good tracking
performance, significant computational savings, higher numerical robustness and greater flexibility.
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1 Introduction

Finite memory estimators, used to identify linear time-
varying (LTV) stochastic systems, can be designed in sev-
eral ways. First, if system parameters vary sufficiently
slowly, their estimation can be carried out using local-
ized versions of classical identification methods, such as
weighted least squares (WLS). Secondly, one can adopt
an explicit model (“hypermodel”) of parameter variation,
either deterministic or stochastic. In the first case, sys-
tem parameters can be modeled as linear combinations
of known functions of time, called basis functions (BF)
(Rao, 1970), (Mendel, 1973), (Liporace, 1975), (Grenier,
1981), (Hall & Oppenheim, 1983), (Niedźwiecki, 1988b),
(Mrad et al., 1998), (Zou et al., 2003), (Poulimenos &
Fassois, 2006). In the second case the problem of param-
eter tracking is formulated as a problem of statistical fil-
tering in the state space (Norton, 1975), (Young, 1984),
(Kitagawa & Gersch, 1985), (Niedźwiecki, 2012).

The approach described in this paper differs from the ones
mentioned above. It is based on two concepts: preestima-
tion and postfiltering. Preestimates are raw, very noisy
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but unbiased (approximately) estimates of parameter tra-
jectories. Due to the second property they can be also
called, using the term coined by (Bellegarda & Farden,
1988), the maximum bandwidth estimators of system pa-
rameters. Preestimators are “unprejudiced”, in the sense
that their unbiasedness property holds no matter how sys-
tem parameters change over time. Therefore, using prees-
timators, one can “X-ray” the structure of system param-
eter variation without making any assumptions about its
functional form, degree of smoothness etc.

The second step of the proposed identification procedure,
called postfiltering, consists in denoising the preestimated
parameter trajectories. We will show how one can design
postfilters which yield approximately the same parameter
tracking results as the state-of-the-art (computationally
much more demanding) local basis function (LBF) algo-
rithms proposed recently by (Niedźwiecki & Cio lek, 2019).
We will also show how design parameters of such postfil-
ters can be adaptively adjusted to the rate and form of
system nonstationarity. The proposed adjustment mecha-
nism is based on parallel estimation and cross-validation.

The two-stage, preestimate/postfilter approach has sev-
eral advantages over the classical identification proce-
dures. It offers, without compromising good tracking per-
formance, significant computational savings (both prees-
timators and postfilters are computationally cheap and
can be made recursively computable), higher numerical
robustness and greater flexibility. The proposed approach
generalizes, to the noncausal estimation case, some ear-
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lier results and concepts developed for causal estimators
(Niedźwiecki, 1990), (Niedźwiecki & K laput, 2002). It
should be also stressed that it bears no resemblance to
the multi-step least squares methods developed recently
for the purpose of identification of time-invariant systems
(Galrinho et al., 2014).

2 Two-stage identification procedure

Consider a nonstationary linear system governed by

y(t) = ϕT(t)θ(t) + e(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes discrete (normalized)
time, θ(t) = [θ1(t), . . . , θn(t)]T denotes the vector of time-
varying system coefficients,ϕ(t) = [u(t−1), . . . , u(t−n)]T

denotes regression vector made up of past values of the
input signal u(t), and {e(t)} denotes measurement noise.
Furthermore, assume that:

(A1) {u(t)} is a zero-mean wide sense stationary Gaussian
sequence with an exponentially decaying autocorrela-
tion function ru(i) = E[u(t)u(t−i)]: ∃ 0 < α <∞, 0 <
γ < 1 : |ru(i)| ≤ αγ|i|, ∀i.

(A2) {e(t)}, independent of {u(t)}, is a sequence of zero-
mean independent and identically distributed random
variables with variance σ2

e .
(A3) {θ(t)} is a uniformly bounded sequence, independent

of {u(t)} and {e(t)}.

2.1 Preestimation

To arrive at the concept of preestimation we will refer
to some known properties of exponentially weighted least
squares (EWLS) estimators defined as

θ̂EWLS(t) = arg min
θ

t−1∑
i=0

λi0[y(t− i)−ϕT(t− i)θ]2

= R−1(t)r(t) (2)

where R(t) =
∑t−1
i=0 λ

i
0ϕ(t − i)ϕT(t − i), r(t) =∑t−1

i=0 λ
i
0ϕ(t− i)y(t− i), and λ0, 0 < λ0 < 1, denotes the

so-called forgetting constant. The EWLS estimates can
be computed recursively using the well-known recursive
least squares algorithm (Söderström & Stoica, 1988).

According to (Niedźwiecki, 1988a), under assumptions
(A1)–(A3) it holds that

θ̂EWLS(t) ∼=
1

Lt
Φ−10

t−1∑
i=0

λi0ϕ(t− i)y(t− i) (3)

where Lt =
∑t−1
i=0 λ

i
0 = λ0Lt−1 + 1 denotes the ef-

fective width of the exponential window and Φ0 =
E[ϕ(t)ϕT(t)] > 0. Using (3), one arrives at

Ltθ̂
EWLS(t) ∼= λ0Lt−1θ̂

EWLS(t− 1) + Φ−10 ϕ(t)y(t) (4)

which allows one to define the preestimate θ∗(t) of θ(t) in
the form

θ∗(t) = Ltθ̂
EWLS(t)− λ0Lt−1θ̂EWLS(t− 1)

∼= Φ−10 ϕ(t)y(t) = θ†(t). (5)

For large values of t the effective window width reaches its
steady state value equal to L∞ = 1/(1− λ0). In this case
the preestimate (5) can be evaluated using the following
simplified (steady state) formula

θ∗(t) =
1

1− λ0
[θ̂EWLS(t)− λ0θ̂EWLS(t− 1)]. (6)

Note that

E[θ∗(t)] ∼= E[θ†(t)] =E[Φ−10 ϕ(t)ϕT(t)]θ(t)

+ E[Φ−10 ϕ(t)e(t)].

where, here and later, the expectation is over Ωk(t) =
{ϕ(t+i), e(t+i), i ∈ Ik}. Hence, under assumptions (A1)–
(A3), it holds that E[θ∗(t)] ∼= θ(t), meaning that θ∗(t) is
an (approximately) unbiased, i.e., maximum bandwidth,
estimator of θ(t), which can be written down as

θ∗(t) = θ(t) + z∗(t) (7)

where z∗(t) is a zero-mean noise. The unbiasedness prop-
erty comes at the cost of a large variability. In the case of
the oracle preestimate θ†(t), which requires prior knowl-
edge of the covariance matrix Φ0, it holds that

z†(t) = θ†(t)− θ(t) = Φ−10 ϕ(t)e(t)

+ [Φ−10 ϕ(t)ϕT(t)− In]θ(t).
(8)

Under Gaussian assumptions [cf. (A1)], one obtains

E{z†(t)[z†(t)]T} = cov[θ†(t)] = σ2
eΦ
−1
0

+ θT(t)Φ0θ(t)Φ−10 + θ(t)θT(t). (9)

Note that the covariance matrix of z†(t) depends on time-
varying parameters of the identified system. The situ-
ation does not change if the covariance matrix Φ0 in
(5) is replaced with its exponentially weighted estimate

Φ̂0(t) = R(t)/Lt, i.e., if the preestimate is defined in the
following “direct” form

θ̃(t) = Φ̂−10 (t)ϕ(t)e(t) (10)

leading to

z̃(t) = θ̃(t)− θ(t) = Φ̂−10 (t)ϕ(t)e(t)

+ [Φ̂−10 (t)ϕ(t)ϕT(t)− In]θ(t).
(11)
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However, in the case of the proposed “indirect” preesti-
mate θ∗(t), obtained by inverse filtering of the EWLS es-
timate of θ(t), the situation is different. It can be easily

checked that θ̂EWLS(t) = θ̂EWLS(t− 1) + R−1(t)ϕ(t)ε(t),

where ε(t) = y(t) − ϕT(t)θ̂EWLS(t − 1) denotes the one-
step-ahead prediction error. Consequently

θ∗(t) = θ̂EWLS(t− 1) + Φ̂−10 (t)ϕ(t)ε(t). (12)

Combining (12) with (1), one arrives at

z∗(t) = θ∗(t)− θ(t) = Φ̂−10 (t)ϕ(t)e(t)

+ [Φ̂−10 (t)ϕ(t)ϕT(t)− In][θ(t)− θ̂EWLS(t− 1)].
(13)

It is instructive to compare the estimation error expres-
sions derived for the direct and indirect preestimates (note
that both expressions are exact, not approximate). While
the second term on the right hand side of (11) depends
on θ(t), the analogous term in (13) depends on θ(t) −
θ̂EWLS(t − 1). Since typically ||θ(t) − θ̂EWLS(t − 1)|| �
||θ(t)||, one can expect variability of indirect preestimates
to be much smaller and less dependent on θ(t) than vari-
ability of direct preestimates. Simulation results fully sup-
port this claim.

It was observed that the best preestimation results can
be obtained for small values of L∞, such as L∞ = 10
(λ0 = 0.9) – even if the number of estimated coefficients

is large. It is not difficult to explain this. Since θ̂EWLS(t)
is a causal estimator, incorporating only past data sam-
ples {y(i), u(i), i ≤ t}, when L∞ is increased, the mean

square deviation of θ̂EWLS(t) from θ(t) becomes quickly
dominated by the bias error caused mainly by the fact
that the estimated parameter trajectory lags behind the
true trajectory. Hence, to achieve a good bias-variance
trade-off, the value of L∞ should be relatively small. For
small values of L∞ the preestimation noise is dominated
by the first term on the right hand side of (13), equal to

z0(t) = Φ̂−10 (t)ϕ(t)e(t) ∼= Φ−10 ϕ(t)e(t), which can be rec-
ognized as white noise with covariance matrix Φ−10 σ2

e .

The preestimation technique will be illustrated with the
results obtained for a nonstationary two-tap FIR system
governed by

y(t) = θ1(t)u(t− 1) + θ2(t)u(t− 2) + e(t). (14)

The applied stationary input signal was autoregressive
Gaussian: u(t) = 0.8u(t − 1) + v(t), var[v(t)] = 1, where
{v(t)} denotes white noise independent of {e(t)}. System
parameter θ1(t) was modeled as a sinusoidal linear chirp,
and parameter θ2(t) – as an inverted triangular linear
chirp (see Fig. 1). The variance of the measurement noise
was set to σ2

e = 0.01, which corresponds to the average
signal-to-noise ratio SNR=25 dB

SNR =
1

Ts

Ts∑
i=1

E{[ϕT(i)θ(i)]2}
σ2
e

=
1

Ts

Ts∑
i=1

θT (i)Φ0θ(i)

σ2
e

Fig. 1. Preestimated parameter trajectories of a nonstationary
two-tap finite impulse response system (SNR=25 dB). Prees-
timates (black lines) are superimposed on true parameter tra-
jectories (red lines).

where Ts denotes the length of the simulation interval.

The preestimates obtained via inverse filtering of EWLS
estimates (λ0 = 0.9) are shown in Fig. 1. Note that prees-
timates provide interesting insights into the structure of
parameter variation, and they do so without making any
assumptions about the speed and mode of parameter vari-
ation. Additionally, such a “prescreening” is provided sep-
arately for each system coefficient, which allows one to
individually adjust the post-processing scheme (as differ-
ent components of the parameter vector may require using
different algorithm settings).

2.2 Postfiltering

Consider the j-th component of θ(t). According to (7),
the preestimated trajectory {θ∗j (t)} can be regarded as a
noisy version of the true trajectory {θj(t)}

θ∗j (t) = θj(t) + z∗j (t)

where z∗j (t) is a zero-mean noise – the j-th component
of z∗(t). Denoising of {θ∗j (t)} will be carried out using
the local basis function (LBF) approach (Niedźwiecki &
Cio lek, 2019). In this approach each parameter trajectory
{θj(t)} is modeled, in the local analysis interval Tk(t) =
[t − k, t + k] centered at t, as a linear combination of
known, linearly independent functions of time Fm|k =
{f1|k(i), . . . , fm|k(i), i ∈ Ik = [−k, k]}, further referred to
as basis functions, i.e., it is assumed that

θj(t+ i) = fTm|k(i)βj;m|k, i ∈ Ik
j = 1, . . . , n.

(15)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


where fm|k(i) = [f1|k(i), . . . , fm|k(i)]T.

The most frequently used basis functions are powers of
time (polynomial basis), sine and cosine functions (Fourier
basis), Slepian (prolate spheroidal) functions and Walsh
functions (Grenier, 1981), (Zou et al., 2003). The subspace
spanned by basis functions will be denoted by Fm|k.

Denote by {wk(i), i ∈ Ik}, wk(0) = 1, a nonnegative,
symmetric bell-shaped window of width 2k+ 1 which will
be used to put more emphasis on data gathered at instants
close to t. Without any loss of generality we will assume
that basis functions form a w-orthonormal basis of Fm|k
obeying the condition

k∑
i=−k

wk(i)fm|k(i)fTm|k(i) = Im. (16)

Furthermore, to allow for asymptotic reasoning, we will
assume that the basis set Fm|k is a result of orthonormal-
ization (carried out using, for example, the Gram-Schmidt
procedure) of the set Gm|k = {g1|k(i), . . . , gm|k(i), i ∈ Ik}
obtained by sampling the continuous-time basis gener-
ating functions g0l (s), s ∈ [−1, 1]: gl|k(i) = g0l (i/k), l =

1, . . . ,m, i ∈ Ik. When g0l (s) = sl−1, one arrives at the
frequently used polynomial basis

Gm|k =
{

1, i/k, . . . , (i/k)m−1, i ∈ Ik
}
. (17)

Note that in this case the model (15) can be regarded
as a local Taylor series approximation of the parameter
trajectory {θj(t)}. Finally, we will assume that wk(i) =
w0(i/k), where w0(s), s ∈ [−1, 1] denotes the continuous-
time window generating function.

The local estimate of βj;m|k can be obtained using the
method of weighted least squares, leading to

θ̂j;m|k(t) = fTm|k(0)β̂j;m|k(t) (18)

β̂j;m|k(t)

= arg min
βj;m|k

k∑
i=−k

wk(i)[θ∗j (t+ i)− fTm|k(i)βj;m|k]2

= Q−1m|kqj;m|k(t) (19)

where Qm|k =
∑k
i=−k wk(i)fm|k(i)fTm|k(i) = Im and

qj;m|k(t) =

k∑
i=−k

wk(i)fm|k(i)θ∗j (t+ i). (20)

Combining (18), (19) and (20), one arrives at the solution
which – for the reasons explained in the next section – will

be further referred to as fast local basis function (fLBF)
estimator

θ̂fLBF
m|k (t) = [θ̂1;m|k(t), . . . , θ̂n;m|k(t)]T

=

k∑
i=−k

hm|k(i)θ∗(t+ i). (21)

where

hm|k(i) = wk(i)fTm|k(0)fm|k(i), i ∈ Ik. (22)

It can be easily shown that if a constant function f(i) =
c,∀i ∈ Ik, belongs to the subspace Fm|k, as in the case of
the basis (17), it holds that

k∑
i=−k

hm|k(i) = 1 (23)

which means that hm|k(i) is an impulse response of a low-
pass FIR filter. For the polynomial basis (17) and cosinu-
soidal window wk(i) = cos πi2k the corresponding impulse
responses are shown in Fig. 2.

2.3 Bias and variance

Combining (21) with (1) and (5), one arrives under (A1)–
(A3) at

θ̄fLBF
m|k (t) = E[θ̂fLBF

m|k (t)]

∼=
k∑

i=−k

hm|k(i)Φ−10 E[ϕ(t+ i)ϕT(t+ i)]θ(t+ i)

+

k∑
i=−k

hm|k(i)Φ−10 E[ϕ(t+ i)e(t+ i)]

=

k∑
i=−k

hm|k(i)θ(t+ i) (24)

which means that the mean path of fLBF estimates can be
approximately viewed as an output of a linear noncausal
filter with impulse response {hm|k(i)}, excited by the pro-
cess {θ(t)}. This relationship, which holds for any param-
eter trajectory, has a straightforward geometric interpre-
tation: the right hand side of (24) is a result of orthogonal
projection, evaluated at the instant t, of {θ(t+ i), i ∈ Ik}
on the subspace Fm|k. It can be used to quantify bias er-
rors.

When system parameters can be exactly modeled as lin-
ear combinations of basis functions, i.e., when system co-
efficients obey (15), one obtains [cf. (16)]

θ̄j;m|k(t) = fTm|k(0)

[
k∑

i=−k

wk(i)fm|k(i)fTm|k(i)

]
βj;m|k

= fTm|k(0)βj;m|k = θj(t)
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Fig. 2. Impulse responses hm|k(i) associated with fLBF estimators of different orders (polynomial basis, cosinusoidal window,
k = 50).

and consequently

θ̄fLBF
m|k (t) = θ(t) (25)

which means that the fLBF estimator is unbiased.

The variance errors can be quantified as follows (see Ap-
pendix)

cov[θ̂fLBF
m|k (t)] ∼=

σ2
eΦ
−1
0

Nm|k
+ O

(
1

k

)
(26)

where

Nm|k =

[
k∑

i=−k

h2m|k(i)

]−1
(27)

is the quantity which will be further referred to as equiv-
alent estimation memory of the fLBF estimator.

3 Relation to the original local basis function ap-
proach

In the original (direct) LBF approach, proposed recently
in (Niedźwiecki & Cio lek, 2019), the estimate of θ(t) is
obtained by minimizing the local sum of squared output
modeling errors

θ̂m|k(·) = arg min
θ(·)

k∑
i=−k

[y(t+ i)−ϕT(t+ i)θ(t+ i)]2

(28)

under the constraints (15). The resulting point estimate
has the form

θ̂LBF
m|k (t) = [In ⊗ fTm|k(0)]P−1m|k(t)pm|k(t) (29)

where Pm|k(t) =
∑k
i=−k wk(i)ψm|k(t, i)ψT

m|k(t, i) and

pm|k(t) =
∑k
i=−k wk(i)y(t + i)ψm|k(t, i) (provided that

the matrix Pm|k(t) is nonsingular). The symbol⊗ denotes
Kronecker product of the respective matrices/vectors and
ψm|k(t, i) = ϕ(t + i) ⊗ fm|k(i) denotes the generalized
regression vector. The estimation formula (29) can be
regarded as a generalization, to the system identification
case, of the classical signal smoothing formula known as
Savitzky-Golay filter (Schafer, 2011).

One can show – under assumptions (A1)–(A2) – that
for growing k the regression matrix Pm|k(t) converges

in the mean squared sense to a constant matrix P̄m =
E[Pm|k(t)] = Φ0 ⊗ Im (Niedźwiecki, 1988b). This justi-
fies the following approximation valid for sufficiently large
values of k:

θ̂LBF
m|k (t) ∼= [In ⊗ fTm|k(0)]P̄−1m pm|k(t)

= [In ⊗ fTm|k(0)][Φ−10 ⊗ Im]×

×
k∑

i=−k

wk(i)y(t+ i)[ϕ(t+ i)⊗ fm|k(i)]

= Φ−10

k∑
i=−k

hm|k(i)y(t+ i)ϕ(t+ i) ∼= θ̂fLBF
m|k (t) (30)

The last transition in (30) stems from the identity (A ⊗
B)(C⊗D) = AC⊗BD which holds for Kronecker prod-
ucts. In the light of this approximate equivalence relation-
ship it is not surprising that the bias and variance formu-
las derived in Section 2 for fLBF estimators are approx-
imately the same as those established in (Niedźwiecki &
Cio lek, 2019) for LBF estimators.

Fig. 3 shows the results of postfiltering of the preestimated
trajectories depicted in Fig. 1 (m = 5, k = 100, cosinu-
soidal window). Note that the fLBF estimates obtained
in this way are hardly distinguishable from the LBF es-

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Fig. 3. Comparison of LBF estimates (two upper plots) and
fLBF estimates (two lower plots) for k = 100 and m = 5.
Estimated trajectories (black lines) are superimposed on true
trajectories (red lines).

timates (more simulation results confirming this observa-
tion can be found in (Supplement, 2019)). This is quite
remarkable considering the fact that LBF estimators are
computationally much more demanding. Actually, com-
putation of the LBF estimate (29) requires inversion, at
each time instant t, of the mn×mn-dimensional general-
ized regression matrix Pm|k(t). In contrast with this, the
computational load of the fLBF estimator (21) is very low.
First, the matrix R(t) in (2) has much smaller dimensions
(n× n) and can be inverted in a recursive way. Secondly,
for the polynomial basis (17) and cosinusoidal window
wk(i) = cos πi2k , Hann window wk(i) = 0.5

[
1 + cos πik

]
, or

rectangular window, the fLBF estimates can be computed
in a recursive way, cf. (Niedźwiecki & Cio lek, 2019).

Finally, we note that when the number of estimated coef-
ficients n is large and the width of the local analysis inter-
val 2k+1 is small, the matrix Pm|k(t) is often poorly con-
ditioned, which may result in some sort of bursting phe-
nomena. Unlike the LBF algorithm, the fLBF algorithm
is free of this negative effect, i.e., it is numerically robust
– see (Supplement, 2019).

4 Adaptive selection of the number of basis func-
tions and the window size

As shown in (Niedźwiecki & Cio lek, 2019), when the num-
ber of basis functions m is fixed and the window size k is
increased, the variance component of the mean squared
parameter estimation error (MSE) decreases and the bias
component increases. Similarly, for a fixed window size,
increasing the number of basis functions results in reduc-
tion of the bias component but, at the same time, in in-
crease of the variance component. Since MSE is the sum
of its bias and variance contributions, it is clear that to
guarantee good tracking performance, the values ofm and
k should be chosen so as to trade-off both error compo-
nents. Moreover, depending on the way system parame-
ters change with time, the bias/variance compromise may
require choosing different values of m and k in different
time intervals. In this section we will propose the method
that allows for adaptive scheduling of m and k.

4.1 Parallel estimation scheme

The proposed solution is based on parallel estimation.
We will consider MK fLBF algorithms, equipped with
different settings m ∈ M = {m1, . . . ,mM}, k ∈ K =
{k1, . . . , kK}. These algorithms are run simultaneously
and at each time instant only one of the competing esti-
mates is selected, i.e., the estimated parameter trajectory
has the form

θ̂(t) = θ̂fLBF

m̂(t)|̂k(t)
(t)

where

{m̂(t), k̂(t)} = arg min
m∈M
k∈K

Jm|k(t) (31)

and Jm|k(t) denotes the local decision statistic. We will
consider decision strategy which is based on the leave-one-
out cross-validation technique (Allen, 1974), namely we
will set

Jm|k(t) =

L∑
i=−L

[ε◦m|k(t+ i)]2 (32)

where L decides upon the size of the local decision window
of width 2L + 1, and ε◦m|k(t) denotes the leave-one-out

interpolation error of the system output (deleted residual)

ε◦m|k(t) = y(t)−ϕT(t)[θ̂fLBF
m|k (t)]◦ (33)
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evaluated in terms of the holey fLBF estimator of θ(t),
i.e., the one that eliminates from the estimation process
the measurement y(t) collected at the instant t

[θ̂fLBF
m|k (t)]◦ = [θ̂◦1;m|k(t), . . . , θ̂◦n;m|k(t)]T

θ̂◦j;m|k(t) = fTm|k(0)β̂◦j;m|k(t), j = 1, . . . , n

where

β̂◦j;m|k(t) = arg min
βj;m|k

k∑
i=−k
i 6=0

[θ∗j (t+ i)− fTm|k(i)βj;m|k]2

= [Q◦m|k]−1q◦j;m|k(t) (34)

and (note that wk(0) = 1)

Q◦m|k =

k∑
i=−k
i 6=0

wk(i)fm|k(i)fTm|k(i) = Im − fm|k(0)fTm|k(0)

q◦j;m|k(t) =

k∑
i=−k
i 6=0

wk(i)fm|k(i)θ∗j (t+ i)

= β̂j;m|k(t)− fm|k(0)θ∗j (t).

Using the matrix inversion lemma (Söderström & Stoica,
1988), one obtains

[θ̂fLBF
m|k (t)]◦ = fTm|k(0)

[
Im +

fm|k(0)fTm|k(0)

1− fTm|k(0)fm|k(0)

]
×

× [β̂j;m|k(t)− fm|k(0)θ∗j (t)]

which, after straightforward calculations, leads to

[θ̂fLBF
m|k (t)]◦ =

1

1− cm|k

[
θ̂m|k(t)− cm|kθ∗(t)

]
ε◦m|k(t) =

1

1− cm|k
[εm|k(t)− cm|kε∗(t)]

(35)

where εm|k(t) = y(t) − ϕT(t)θ̂m|k(t), ε∗(t) = y(t) −
ϕT(t)θ∗(t) and cm|k = fTm|k(0)fm|k(0). According to (35),

the cross-validation statistic can be evaluated without
actually implementing the holey estimation scheme. It
should be stressed that the cross-validation based deci-
sion rule described above differs from the one derived in
(Niedźwiecki & Cio lek, 2019) for LBF estimators.

Note that while denoising of preestimates is carried out
using classical signal processing tools, selection of the best
smoothing variant relies on comparison of local system
modeling errors (33), i.e., it is based on system identifica-
tion inference.

4.2 Selection of design parameters

The problem of selection of the analysis window sizes
k1, . . . , kK for a bank of competing algorithms was stud-

Table 1
Parameter settings corresponding to three speeds of parameter
variation (SoV)

SoV slow medium fast

Ts 40000 20000 10000

ω1|Ts 0.015 0.03 0.06

ω2|Ts 0.02 0.04 0.08

ied analytically in (Niedźwiecki et al., 2017b). As shown
there, to maximize robustness of the parallel estimation
scheme, the adopted values of k should form a geometric
progression: ki = αki−1, i = 2, . . . , α > 1. The recom-
mended values of α range between 1.57 (for smooth pa-
rameter trajectories) and 2.43 (for random walk type tra-
jectories). If nothing is known a priori about the way sig-
nal parameters change, one can adopt a compromise value
α = 2.

If needed, the order n of the FIR model can be selected
adaptively at the preestimation stage using the modified
(localized) version of the Akaike’s final prediction error
(FPE) criterion (Niedźwiecki & Cio lek, 2017a).

5 Simulation results

In our simulation experiment the two-tap FIR system
(14) was analyzed, with parameters modeled as sinusoidal
chirps with linearly increasing instantaneous frequencies
(see Fig. 4). The shape of parameter trajectories within
the simulation interval [1, Ts] was fixed, i.e., different vari-
ants of discrete-time trajectories were generated by “sam-
pling” the prototype analog trajectories at different sam-
pling rates:

θi(t) = 0.5 cos[φi(t)]

φi(t) =

t∑
s=1

ωi(s), ωi(s) =
s

Ts
ωi|Ts

i = 1, 2, t = 1, . . . , Ts

(36)

– all further details are summarized in Table 1. To test
identification algorithms under different speeds of param-
eter variation (SoV), three values of Ts were considered:
Ts = 40000 (slow variations), Ts = 20000 (medium-speed
variations) and Ts = 10000 (fast variations). Addition-
ally, two average signal-to-noise ratios were applied: 15 dB
(σ2
e = 1.25 · 10−2) and 25 dB (σ2

e = 1.25 · 10−3).

Table 2 shows the mean squared parameter estimation
errors obtained for 9 LBF/fLBF estimators corresponding
to different choices of design parameters k (50, 100, 200,
α = 2) and m (1, 3, 5), and for the adaptive parallel
estimation schemes with model selection based on cross-
validation. The averages were computed for 100 process
realizations, 3 speeds of parameter variation (SoV) and
2 average signal-to-noise ratios. The value of L was set
to 30 and the preestimation parametr λ0 was set to 0.9.
Since kmax + L + n = 232, evaluation of the compared
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Fig. 4. True parameter trajectories.

algorithms was started at the instant t = 233 and ended
at the instant t = Ts − 233 so that, irrespective of the
value of k, all competitors could be checked on the same
data set.

A careful examination of the results shown in Table 2 leads
to the following conclusions

(1) For all choices of m, k and SoV, the fLBF algorithms
yield results that only marginally differ (either up or
down) from those provided by their, computationally
much more demanding, LBF “prototypes”.

(2) In all cases considered, the parallel estimation
schemes yield results that are better or only slightly
worse than those provided by the best LBF/fLBF
algorithms with fixed settings.

Simulation experiments were next repeated for a differ-
ent pattern of window sizes (60, 90, 135, 200, α = 1.5),
different sets of basis functions (harmonic, Slepian), and
different shapes of the weighting sequence (rectangular,
Hann). The obtained results, not shown here because of
the lack of space, were very similar to those summarized
in Table 2, which confirms that all design choices men-
tioned above are by no means critical, i.e., the proposed
parallel estimation scheme is robust.

6 The bigger picture - implicit filtering versus ex-
plicit filtering

On the qualitative level, the current paper extends and
further explores intriguing dualities between identifica-
tion of nonstationary stochastic systems and signal pro-
cessing, originally pointed out in (Niedźwiecki, 1990) and
(Niedźwiecki & K laput, 2002). We have shown that im-
plicit filtering, imposed by the LBF scheme, is to some ex-
tent interchangeable with explicit filtering (postfiltering)

of parameter preestimates. This observation has several
interesting implications. First of all, it allows one to design
fast versions of LBF algorithms, with the same parameter
tracking capabilities but significantly lower computational
complexity and higher numerical robustness. Second, it
can be easily extended to multivariate systems. Third, it
offers increased estimation flexibility, since optimization
of the fLBF algorithm (the choice of design parameters
m and k) can be carried out independently for each sys-
tem coefficient. Last but not least, the proposed approach
opens up several new opportunities for parameter track-
ing, such as wavelet-based denoising of preestimated tra-
jectories, postfiltering using a bank of arbitrary lowpass
filters, nonlinear (e.g. median) postfiltering, or postfil-
tering using various data-adaptive algorithms developed
for the purpose of signal processing (Orfanidis, 2010),
(Fitzgerald et al., 2000).

7 Conclusion

A new estimation paradigm for identification of linear
time-varying FIR systems, based on the concepts of prees-
timation and postfiltering, was proposed. The resulting
two-stage identification algorithm compares favorably
with the existing solutions to the problem of parameter
tracking as it offers – without compromising good track-
ing performance – greater flexibility, higher numerical
robustness and significantly lower computational com-
plexity than the classical estimation schemes.
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Appendix [derivation of (26)]

Combining (1), (5), (21) and (24), one arrives at

∆θ̂fLBF
m|k (t) = θ̂fLBF

m|k (t)− θ̄fLBF
m|k (t) = ∆1(t) + ∆2(t)

where

∆1(t) =

k∑
i=−k

hm|k(i)Φ−10 ϕ(t+ i)e(t+ i)

∆2(t) =

=

k∑
i=−k

hm|k(i)[Φ−10 ϕ(t+ i)ϕT(t+ i)− In]θ(t+ i).

Since {e(t)} is zero-mean and independent of {ϕ(t)}, it
holds that E[∆1(t)∆T

2 (t)] = E[∆2(t)∆T
1 (t)] = 0 and

cov[θ̂fLBF
m|k (t)] = E{∆θ̂fLBF

m|k (t)[∆θ̂fLBF
m|k (t)]T}

= E[∆1(t)∆T
1 (t)] + E[∆2(t)∆T

2 (t)]

Note that

E[∆1(t)∆T
1 (t)] = E

[ k∑
i=−k

k∑
j=−k

hm|k(i)hm|k(j)×

× e(t+ i)e(t+ j)Φ−10 ϕ(t+ i)ϕT(t+ j)Φ−10

]
=

k∑
i=−k

h2m|k(i)E[e2(t+ i)]Φ−10 E[ϕ(t+ i)ϕT(t+ i)]Φ−10

=
σ2
eΦ
−1
0

Nm|k
.

The second component of the covariance matrix has the
form

E[∆2(t)∆T
2 (t)] =

k∑
i=−k

k∑
j=−k

hm|k(i)hm|k(j)E[Σ(i, j)] ≥ 0

where

Σ(i, j) = Φ−10 ϕ(t+ i)ϕT(t+ i)θ(t+ i)θT(t+ j)×
×ϕ(t+ j)ϕT(t+ j)Φ−10

−Φ−10 ϕ(t+ i)ϕT(t+ i)θ(t+ i)θT(t+ j)

− θ(t+ i)θT(t+ j)ϕ(t+ j)ϕT(t+ j)Φ−10

+ θ(t+ i)θT(t+ j).

Using the well-known properties of higher order moments
of Gaussian variables (Isserilis, 1918), one can easily derive
the following formula which holds for zero-mean jointly

normally distributed n×1 random vectors x, y, w, v and
a n× n matrix A

E[xyTAwvT] = E[xyT]AE[wvT] + E[xwT]ATE[yvT]

+ E[xvT]E[yTAw].

Using this formula, after elementary calculations, one ob-
tains

E[Σ(i, j)] = Φ−10 Φi−jθ(t+ j)θT(t+ i)Φi−jΦ
−1
0

+ Φ−10 Φi−jθ
T(t+ i)Φi−jθ(t+ j)Φ−10

where Φi−j = E[ϕ(t+ i)ϕT(t+ j)] = ΦT
j−i.

One can show that

fm|k(i)
−→
k→∞

1√
k

f0m

(
i

k

)
where f0m(s) = [f01 (s), . . . , f0m(s)]T is the vector of w-
orthonormal continuous-time basis generating functions

obeying
∫ 1

−1 w
0(s)f0m(s)[f0m(s)]Tds = Im. Actually, note

that after replacing fm|k(i) and wk(i) with (1/
√
k)f0m(i/k)

and w0(i/k), respectively, one obtains

1

k

k∑
i=−k

w0

(
i

k

)
f0m

(
i

k

)[
f0m

(
i

k

)]T
∼=

1

k

∫ k

−k
w0
(τ
k

)
f0m

(τ
k

) [
f0m

(τ
k

)]T
dτ

=

∫ 1

−1
w0(s)f0m(s)[f0m(s)]Tds = Im .

This means that |fj|k(t)| = O(1/
√
k), ∀t, 1 ≤ j ≤ m, and

hence hm|k(i) = O(1/k),∀i. Denote by δ any element of

the matrix E[∆2(t)∆T
2 (t)]. When parameter trajectory is

uniformly bounded, it holds that

|δ| ≤ c

k2

k∑
i=−k

k∑
j=−k

γ2|i−j| = O(1/k)

where c is a constant that does not depend on k and t, and
γ is the rate of decay of the autocorrelation function of
u(t) postulated in (A1). This completes derivation of (26).
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