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Faculty of Electronics, Telecommunications and Informatics, Department of Automatic Control
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Abstract—The paper shows that the problem of noncausal
identification of a time-varying FIR (finite impulse response) sys-
tem can be reformulated, and solved, as a problem of smoothing
of the preestimated parameter trajectories. Characteristics of the
smoothing filter should be chosen so as to provide the best trade-
off between the bias and variance of the resulting estimates. It
is shown that optimization of the smoothing operation can be
performed adaptively using the parallel estimation technique.

I. INTRODUCTION

The paper deals with the problem of noncausal identification
of a nonstationary FIR system. Noncausality means that the
estimates of the time-varying system parameters are functions
of both past and “future” (prerecorded) input/output measure-
ments. Models obtained in this way cannot be incorporated
in real-time applications (such as prediction or control) but
may prove useful in almost real-time ones (such as channel
equalization [1]), where the model-based decisions can be
made with some delay, and in off-line applications (such as
channel simulation).

When system parameters vary sufficiently slowly, they can
be tracked using the time-localized versions of the classical
estimation algorithms, such as least squares or maximum
likelihood [2]– [4]. The more advanced solutions, capable of
tracking fast parameter changes, are based on explicit models
(hypermodels) of parameter time-variation, either deterministic
or stochastic. In the first case system parameters are modeled
as linear combinations of known functions of time, called
basis functions (BF), and their estimation can be carried out
using standard methods such as weighted least squares [5]–
[20]. In the second case, the adopted model is stochastic,
e.g. parameter changes are modeled as a first-order or higher-
order (integrated) random walk process. The problem of
parameter estimation can be then stated as a problem of
filtering/smoothing in an appropriately defined state space, and
its solution can be obtained using the algorithms known as
Kalman filters/smoothers [21]– [27].

The approach proposed in this paper is different from all
methods mentioned above. It is based on the concept of
preestimation. Preestimates are rough estimates of system
parameters – unbiased but very noisy. They can be obtained
by inverse filtering of exponentially weighted least squares
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estimates. To get reliable identification results, the preesti-
mated parameter trajectories must be postfiltered – this allows
one to trade-off the bias and variance components of the
mean squared parameter tracking error. It will be shown that
characteristics of such postfilters can be adaptively adjusted to
the unknown, and possibly time-varying, functional form and
speed of parameter variation. The proposed solution is based
on parallel estimation and cross-validation.

II. SYSTEM

Consider the problem of identification, based on the avail-
able input-output data, of a nonstationary stochastic process
governed by

y(t) = ϕT(t)θ(t) + e(t) (1)

where t = . . . ,−1, 0, 1, . . . denotes discrete (normalized)
time, ϕ(t) = [u(t− 1), . . . , u(t− n)]T denotes the regression
vector made up of the previous samples of the observable
input signal u(t), θ(t) = [θ1(t), . . . , θn(t)]T is the vector of
unknown time-varying process parameters, and e(t) denotes
white measurement noise.

Linear time-varying FIR models are used, among others, to
describe rapidly fading mobile communication channels. The
FIR structure describes well the so-called multi-path effect:
due to scattering the transmitted signal reaches the receiver
along different paths, i.e., with different time delays; the values
of FIR coefficients depend on the strength of “natural reflec-
tors” and their time variation is caused by the receiver motion
[1]. Noncausal identification of time-varying parameters of
(1), i.e., their estimation based on the prerecorded data set
Ω(N) = {y(1),ϕ(1), . . . , y(N),ϕ(N)} can be used eg. for
channel simulation purposes.

We will assume that

(A1) {u(t)} is a zero-mean wide sense stationary Gaussian
sequence, persistently exciting of order at least n, with
an exponentially decaying autocorrelation function.

(A2) {e(t)}, independent of {u(t)}, is a sequence of zero-
mean independent and identically distributed random
variables.

(A3) {θ(t)} is a uniformly bounded sequence, independent of
{u(t)} and {e(t)}.
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III. PRELIMINARIES

The preestimation technique proposed in [14] was based on
inverse filtering of causal (forward-time) short memory expo-
nentially weighted least squares (EWLS) estimates. We will
show that the estimation results can be further improved if the
preestimated parameter trajectories are obtained by combining
the forward-time preestimates, based on the estimates yielded
by the causal EWLS algorithm, with the analogous backward-
time preestimates, obtained by means of inverse filtering of
the estimates provided by the anticausal EWLS algorithm. The
forward-time EWLS estimator is given by

θ̂−(t) = arg min
θ

t−1∑
i=0

λi[y(t− i)−ϕT(t− i)θ]2

= R−1− (t)r−(t)

(2)

where λ, 0 < λ < 1, denotes the so-called forgetting
constant, R−(t) =

∑t−1
i=0 λ

iϕ(t − i)ϕT(t − i) and r−(t) =∑t−1
i=0 λ

iy(t − i)ϕ(t − i). The effective memory of this esti-
mator can be obtained from

L−(t) =

t−1∑
i=0

λi = λL−(t− 1) + 1 (3)

The analogous expressions for the backward-time (anticausal)
estimator are

θ̂+(t) = arg min
θ

N−t∑
i=0

λi[y(t+ i)−ϕT(t+ i)θ]2

= R−1+ (t)r+(t)

(4)

where R+(t) =
∑N−t
i=0 λiϕ(t + i)ϕT(t + i), r+(t) =∑N−t

i=0 λiy(t+ i)ϕ(t+ i) and

L+(t) =

N−t∑
i=0

λi = λL+(t+ 1) + 1. (5)

Both estimates can be computed recursively using the formula

θ̂±(t) = θ̂±(t± 1) + R−1± (t)ϕ(t)ε±(t) (6)

where ε±(t) = y(t) − ϕT(t)θ̂±(t ± 1) denotes the for-
ward/backward output prediction error. Finally, we note that
inverses of both regression matrices R−(t) and R+(t) can be
computed recursively [3].

IV. UNIDIRECTIONAL PREESTIMATES AND THEIR
PROPERTIES

The forward/backward preestimates will be defined in the
following form

θ∗±(t) = L±(t)θ̂±(t)− λL±(t± 1)θ̂±(t± 1)

= [L±(t)− λL±(t± 1)]θ̂±(t± 1) + Φ̂−1± (t)ϕ(t)ε±(t) (7)

where the quantity

Φ̂±(t) =
R±(t)

L±(t)
(8)

can be recognized as local exponentially weighted estimate of
the covariance matrix Φ = E[ϕ(t)ϕT(t)] > 0.

It can be shown that, under assumption (A1), it holds that
limλ→1 Φ̂±(t) = Φ and limλ→1 Φ̂−1± (t) = Φ−1, where
convergence takes place in the mean squared sense [2]. This
justifies the following approximation

Φ̂−1± (t) ∼= Φ−1 (9)

which will be further used to study parameter tracking prop-
erties of preestimates. Applying (9) and noting that L±(t) −
λL±(t± 1) = 1, one can rewrite (7) in the form

θ∗±(t) ∼= Φ−1ϕ(t)ϕT(t)θ(t)

+[In −Φ−1ϕ(t)ϕT(t)]θ̂±(t± 1) + Φ−1ϕ(t)e(t).
(10)

Since E[ϕ(t)ϕT(t)] = Φ, E[ϕ(t)e(t)] = 0 and ϕ(t) is
asymptotically independent of θ̂±(t ± 1), for λ sufficiently
close to 1 and under (A1)-(A3), one obtains

E[θ∗±(t)] ∼= θ(t) (11)

which means that the forward/backward preestimates are ap-
proximately unbiased. Furthermore, based on (10), one arrives
at the following error equation

∆θ∗±(t) = θ∗±(t)− θ(t)

∼= [Φ−1ϕ(t)ϕT(t)− In][θ(t)− θ̂±(t± 1)] + Φ−1ϕ(t)e(t)
(12)

which will be used for comparative purposes.

V. BIDIRECTIONAL PREESTIMATES

According to (12), the variability of forward/backward
preestimates depends on estimation errors θ(t) − θ̂±(t ± 1)
yielded by the corresponding EWLS algorithms. Assesment
of the local estimation capabilities of both algorithms can be
based on comparison of their predictive abilities. As a local
estimate of the variance of the forward/backward prediction
error, one can use the quantity

P±(t) =
E±(t)

L0
±(t)

(13)

E−(t) =

t−1∑
i=0

λi0ε
2
−(t− i) = λ0E−(t− 1) + ε2−(t)

E+(t) =

N−t∑
i=0

λi0ε
2
+(t+ i) = λ0E+(t+ 1) + ε2+(t)

where λ0 ≤ λ is another forgetting constant and L0
±(t) is

defined in the analogous way as L±(t): L0
±(t) = L±(t)|λ=λ0

.
Denote by d(t) the local decision statistic

d(t) =

{
1 if P−(t) ≤ P+(t)
0 if P−(t) > P+(t)

. (14)

Bidirectional preestimate θ∗(t) can be defined as follows

θ∗(t) = d(t)θ∗−(t) + [1− d(t)]θ∗+(t). (15)
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Similar to unidirectional preestimates, the bidirectional prees-
timate is approximately unbiased: E[θ∗(t)] ∼= θ(t). The
associated error equation has the form

∆θ∗(t) = θ∗(t)− θ(t)

∼= d(t)[Φ−1ϕ(t)ϕT(t)− In][θ(t)− θ̂−(t− 1)]

+[1− d(t)][Φ−1ϕ(t)ϕT(t)− In][θ(t)− θ̂+(t+ 1)]

+ Φ−1ϕ(t)e(t).

(16)

Fig. 1 shows the preestimated parameter trajectories obtained
for a nonstationary two-tap FIR system governed by

y(t) = θ1(t)u(t− 1) + θ2(t)u(t− 2) + e(t) (17)

excited by a zero-mean stationary autoregressive Gaussian pro-
cess with autocorrelation function E[u(t)u(t−i)] = (0.8)i, and
corrupted by white Gaussian noise with variance σ2

e = 0.0025
(SNR=25 dB). Parameter θ1(t) was changing in a chirp-like
way, and parameter θ2(t) was piecewise constant – see Fig.
1. The forgetting constants were set to λ = λ0 = 0.9.

As expected, the bidirectional preestimates have smaller
variability than the one-sided ones. The improvement is par-
ticularly evident in the vicinity of parameter jumps. Note that
the forward parameter estimates θ̂−(t) are more accurate than
backward estimates θ̂+(t) just before the jump, which results
in P−(t) < P+(t), and the converse is true just after the
jump. As a result, the combined estimate (15) is free of the
jump-related artifacts.

VI. COMPETITIVE SMOOTHING

Even though the preestimates θ∗(t) are approximately unbi-
ased, they have a very large variability and hence they should
be smoothed to become practically useful. In this paper we
will use for this purpose a parallel filtering scheme combining
FIR smoothers of the form

θ̂α|k(t) =

k∑
i=−k

hα|k(i)θ∗(t+ i) (18)

where hα|k(i) denotes impulse response of a lowpass filter
obeying

∑k
i=−k hα|k(i) = 1, and α denotes parameter, or a

set of parameters, used to shape characteristics of the filter.
Consider a number of such algorithms running simultaneously,
each one equipped with different filter settings: α ∈ A =
{α1, . . . , αM} and k ∈ K = {k1, . . . , kK}. At each time
instant the estimated parameter vector will have the form
θ̂α̂(t)|k̂(t)(t) where

{α̂(t), k̂(t)} = arg min
α∈A
k∈K

Jα|k(t) (19)

and Jα|k(t) denotes the local decision statistic.
The proposed selection criterion is based on the cross-

validation approach. Denote by θ̂◦α|k(t) the holey estimator of
θ(t), i.e., the one that eliminates from the estimation process
the central measurement y(t), and by

ε◦α|k(t) = y(t)−ϕT(t)θ̂◦α|k(t) (20)
Figure 1: Preestimated parameter trajectories of a nonsta-
tionary two-tap FIR system: forward-time preestimates [−],
backward-time preestimates [+], and bidirectional preesti-
mates [±]. Preestimates (black lines) are superimposed on true
parameter trajectories (red lines).
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the corresponding leave-one-out interpolation error (deleted
residual). For (18) the holey estimator can be built as follows

θ̂◦α|k(t) =

∑k
i=−k
i 6=0

hα|k(i)θ∗(t+ i)

1− hα|k(0)
(21)

where the normalizing factor 1 − hα|k(0) =
∑k
i=−k
i 6=0

hα|k(i)

is applied to retain the unity DC gain of the filter. Simple
calculations lead to

θ̂◦α|k(t) =
θ̂α|k(t)− hα|k(0)θ∗(t)

1− hα|k(0)
. (22)

When several algorithms are run in parallel, the best-local
values of α and k can be chosen using the decision rule (19)
with

Jα|k(t) =

D∑
i=−D

[ε◦α|k(t+ i)]2 (23)

where D determines the size of the local decision window.
Note that while denoising of preestimates is carried out using
classical signal processing tools, selection of the best smooth-
ing variant relies on comparison of local system modeling
errors (20), i.e., it is based on system identification inference.

Note also that the selection criterion described above can
be easily extended to the case where different preestimates
are denoised using different smoothers. Such a decentralized
strategy may prove useful when system parameters vary at
different rates.

VII. COMPUTER SIMULATIONS

Simulations were carried out for a two-tap FIR system (17).
Discrete-time parameter trajectories were generated by sam-
pling the continuous-time prototypes. To check the compared
algorithms under different operating conditions, in addition to
the medium speed parameter variation scenario, depicted in
Fig. 1, the two times faster and two times slower variations
were considered. In the first case the sampling rate was
decreased, and in the second case – increased by a factor
of 2. As a result, the length of the simulation interval Ts
was equal to 1000, 2000 and 4000 for fast, medium speed
and slow changes, respectively. For each speed of parameter
variation, data generation was started 1000 instants prior to
t = 1 and was continued for 1000 instants after t = Ts,
so that, no matter what k and D, the estimation process and
evaluation of its results could be, for all algorithms, started at
the instant 1 and ended at the instant Ts. For t < 1 and t > Ts
system parameters were constant and equal to θ(1) and θ(Ts),
respectively. To check behavior of the compared algorithms
under different noise conditions, two average signal-to-noise
ratios were considered: 25 dB (σ2

e = 0.0025) and 15 dB
(σ2
e = 0.025).
The competitive FIR smoother was made up of 3 lowpass

filters designed, for k = 100 and 3 different cutoff frequencies
ωc, using the well-known window method [28]

hωc|k(i) =

{
µωc|kvk(i)hidωc

(i) for |i| ≤ k
0 for |i| > k

,

Figure 2: Estimated parameter trajectories of a two-tap FIR
system. Smoothed bidirectional preestimates (black lines) are
superimposed on true parameter trajectories (red lines).

where vk(i) denotes the Blackman window, µωc|k =

[
∑k
i=−k vk(i)hidωc

(i)]−1 is the scaling coefficient, and hidωc
(i)

denotes impulse response of the ideal lowpass filter:

hidωc
(i) =

{
ωc

π for i = 0
sinωci
πi for i 6= 0 .

The cutoff frequencies were set to ω1
c = 0.05, ω2

c = 0.1 and
ω3
c = 0.2, respectively.
Table I compares results – separately for θ1(t) and θ2(t)

– obtained using adaptive FIR smoothing of forward prees-
timates (S−), backward preestimates (S+) and bidirectional
preestimates (S±), respectively, with the analogous results
yielded by the state-of-the-art local basis function (LBF)
approach described in [20] and the multi-resolution wavelet
(MW) approach described in [13], [17]. The competitive LBF
smoother was made up of 9 LBF estimators corresponding to
different choices of design parameters k (25, 50, 100) and m
(1, 3, 5), where m denotes the number of basis functions (pow-
ers of time). The multi-resolution wavelet scheme was used
in the configuration recommended in [17] (cardinal B-splines,
resolution level 3, analysis interval of length 501, overlap-add
synthesis with Hann window and 50% overlap). All scores
were obtained by means of combined time averaging (over
the simulation interval) and ensemble averaging (over 100
independent realizations of {e(t)} and {u(t)}). The width of
the decision window was set to 2D + 1 = 61 (D = 30).

According to the simulation evidence summarized in Table
I, the proposed approach yields results that are better or
comparable with those provided by the computationally much
more involved LBF and MW approaches (note that FIR
smoothing can be efficiently realized in the frequency domain
using the FFT-based routine).
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Table I: Comparison of tracking results obtained – for different
values of SNR and different speeds of parameter variation
(SoV) – using adaptive FIR smoothing of forward preestimates
(S−), backward preestimates (S+) and bidirectional preesti-
mates (S±), with the analogous results yielded by the local
basis function (LBF) approach and multi-resolution wavelet
(MW) approach. In each case the best result is shown in
boldface.

θ1(t)

SoV
Fast Medium Slow

SNR Method

15 dB

S− 1.66E-03 1.07E-03 7.31E-04
S+ 1.63E-03 1.04E-03 7.30E-04
S± 1.52E-03 9.82E-04 7.25E-04
LBF 1.54E-03 1.08E-03 7.71E-04
MW 1.29E-03 8.01-04 7.35E-04

25 dB

S− 8.61E-04 2.73E-04 1.79E-04
S+ 8.48E-04 2.77E-04 1.91E-04
S± 5.88E-04 1.88E-04 1.03E-04
LBF 4.09E-04 2.05E-04 1.58E-04
MW 3.39E-04 1.79E-04 1.36E-04

θ2(t)

SoV
Fast Medium Slow

SNR Method

15 dB

S− 3.21E-03 1.89E-03 1.19E-03
S+ 3.35E-03 1.91E-03 1.18E-03
S± 3.01E-03 1.70E-03 1.09E-03
LBF 3.06E-03 1.86E-03 1.19E-03
MW 3.74E-03 2.28E-03 1.47E-03

25 dB

S− 2.50E-03 1.11E-03 6.13E-04
S+ 2.54E-03 1.15E-03 6.07E-04
S± 2.08E-03 9.31E-04 4.63E-04
LBF 1.91E-03 9.14E-04 5.14E-04
MW 1.94E-03 1.14E-03 5.99E-04

VIII. CONCLUSION

The paper describes a new method of identification of time-
varying FIR systems subject to (locally) stationary excitation.
The proposed approach is based on smoothing of preestimated
parameter trajectories obtained by inverse filtering of short-
memory EWLS parameter estimates, and yields results that
are better, or at least comparable with those provided by the
more sophisticated and computationally much more demand-
ing methods based on local basis function approximation and
multi-resolution wavelet approximation. It was shown that
optimization of the smoothing operation can be carried out
adaptively using the parallel estimation technique and cross-
validation based variant selection strategy.
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