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We show that a stochastic (Markov) operator S acting on a Schatten class C1 satisfies 
the Noether condition (i.e. S′(A) = A and S′(A2) = A2, where A ∈ C∞ is a 
Hermitian and bounded operator on a fixed separable and complex Hilbert space 
(H, 〈·, ·〉)), if and only if S(EA(G)XEA(G)) = EA(G)S(X)EA(G) for any state 
X ∈ C1 and all Borel sets G ⊆ R, where EA(G) denotes the orthogonal projection 
coming from the spectral resolution A =

∫
σ(A) zE

A(dz). Similar results are obtained 
for stochastic one-parameter continuous semigroups.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Noether’s famous theorem linking symmetries of a physical system to its conserved quantities has been 
attracting the interest of theoretical physicists for a long time. Discussions on it extend from scientific 
journals to Internet forums (see e.g. [6,11,13]). In a classical setting it is defined in terms of Lagrangian 
(differential) dynamical systems. Contemporary discussions initiated by this theorem sometimes concern 
deep philosophical aspects of modern quantum physics (see e.g. [6,8,15]). Baez and Fong have recently 
proposed in [8] to replace the classical Poisson brackets with commutators. Such an idea turned out to be 
very fruitful and finally resulted in Markovian models. Namely, it has been proved in [8] (see also [7]) that 
given a σ-finite measure space (X, F , μ) and a stochastic operator S : L1(μ) �→ L1(μ), a function h ∈ L∞(μ)
will satisfy S(fh) = S(f)h for all f ∈ L1(μ) if and only if S′(h) = h and S′(h2) = h2 (i.e. h and h2 are both 
S′ invariant, where S′ : L∞(μ) �→ L∞(μ) denotes the dual operator to S). The second part of the condition, 
S′(h2) = h2, unlike in Noether’s original theoretical mechanics theorem case, appears to be necessary. Baez 
and Fong [8] discuss at length a related commutator’s equation:

S(·h) − S(·)h = [S,Mh] = 0, (BF0)
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where Mh stands for a multiplication operator by a function h, i.e. Mh(f) = f · h. An analogous equation 
[St, H] = 0 for one parameter continuous Markovian semigroups is worked through in [8]. In a very recent 
paper [15] results from [8] and [7] have been extended to a fully quantum setting of quantum Markov 
dynamics with a strictly positive stationary density matrix. However in [15] the authors frequently exploit 
the complete positivity assumption.

In this paper we go in the same direction but we look on this problem from a purely mathematical 
perspective. In particular, we do not discuss physical paradigms at full length (see [3,7,8,15,18]). We focus 
only on the mathematical model of quantum measurement.

However, we drop the complete positivity and strict stationarity assumptions. Let us stress that there 
do exist positive but not completely positive linear operators; even finite dimensional (see [1], page 154, 
Example 8.4). Therefore, we can formulate our results for general Markovian (stochastic) dynamics. The 
main question we address is: when does a given stochastic (Markov) operator S on a Schatten class C1
commute with quantum measurement operations MA,Δ(X) = EA(Δ)XEA(Δ)? In the case of Δ ⊆ R being 
Borel, we obtain corresponding results to those of [8] and [7]. As in the commutative case, we characterize 
Hermitian bounded operators A ∈ C∞ satisfying S′(A) = A and S′(A2) = A2. In the main result of the 
paper, Theorem 5.9, we provide several equivalent conditions which may be expressed in a compact form as 
[S, MA,Δ] = 0 for all Borel sets Δ. Finally we arrive to continuous time models and obtain a characterization 
of Noether strongly continuous Markovian semigroups.

2. Basics on Markov operators

In this section we remain in a commutative case but switch to Markov operators on C(K). This leads to 
new simplified proofs.

Let us start with the notion of abstract Markov operators.

Definition 2.1. Let K be a topological compact Hausdorff space and C(K) denote the Banach lattice of real 
valued continuous functions on K endowed with the sup norm ‖f‖sup = sup{|f(κ)| : κ ∈ K}. Let 1 denote 
the constant function equal to 1 on the whole space K. A linear operator T : C(K) → C(K) is called 
Markov (Markovian) if

T1 = 1, (M1)

Tf ≥ 0 if f ≥ 0. (M2)

Following standard notation of the Banach lattices theory we may say that Markov operators are positive 
(we simply write T ≥ 0) and preserve the order unit 1. It follows that the operator norm ‖T‖ = 1. It is well 
known that any Markov operator defined on C(K) may be canonically extended to the Banach lattice of 
Borel bounded functions. Indeed, given a Borel function g we set

Tg(κ) =
∫

g(u)dT ′δκ(u) , (M3)

where T ′ : M(K) �→ M(K) is the dual operator acting on the Banach lattice M(K) of all Radon bounded 
(signed) measures with the variation norm, where δκ stands for the Dirac measure at κ. In particular, if 
Δ ⊆ K is a Borel set, then for its indicator function 1Δ the function T1Δ(κ) = T ′δκ(Δ) is well defined and 
Borel.

It can be easily proved, that the family of probability measures {T ′δκ : κ ∈ K} forms the so-called 
transition probability function. Namely, K � κ �→ T ′δκ(D) ∈ [0, 1] is Borel measurable for every fixed Borel 
set D ⊆ K. Moreover, this transition probability function is Feller as 〈g, T ′δκ〉 = Tg(κ). Hence T ′δκα

→ T ′δκ
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in the weak* topology, whenever κα → κ in K. In the theory of Markov operators {T ′δκ : κ ∈ K} is 
traditionally denoted as {P (κ, D) : κ ∈ K, D Borel}. In order to define a Markov operator (acting on C(K)) 
it is sufficient to describe its transition function, which is Feller. In other words, T is well defined if defined 
are T ′δκ for all κ ∈ K. In fact,

T ′μ =
∫

T ′δκdμ(κ) (M4)

for all Radon (finite) measures μ on K.
Functional analysis language is an alternative to the classical probabilistic approach and importantly 

Markov operators completely describe the category of stochastic Markov processes. To keep the paper 
compact we do not further develop this topic, and refer the reader to a recent monograph [28] if necessary. 
Let us only add that it would be difficult to introduce Markov processes to theoretical quantum physics if 
we solely used probabilistic notions. An interesting point of view on Markovian dynamics, invertibility and 
determinism in the context of open systems is presented in [5].

3. Preparatory results

We remark, that from the lattice theory point of view L∞(μ) may be identified with C(K), for some 
compact, Hausdorff space K (see [24], page 106, Example 4(5) or [2], page 201, Theorem 4.29). Given a 
stochastic operator S : L1(μ) �→ L1(μ) (i.e. Sf ≥ 0 and 

∫
Sfdμ =

∫
fdμ for all nonnegative f ∈ L1(μ)) 

and assuming that the base measure space is σ-finite, then the dual operator T = S′ : L∞(μ) = C(K) →
L∞(μ) = C(K) satisfies S′ ≥ 0 and S′1 = 1. Hence, we can interpret every stochastic operator S as a 
predual operator to some Markov operator T : C(K) �→ C(K), for some compact Hausdorff space K. The 
relevant compact topology and identification of the space K are commonly known as Stonian (see [24], 
page 106). Our tactic to switch from stochastic operators to more general Markovian models will bring a 
two-folded improvement. We will generalize and simplify some proofs originally coming from [8]. Then, we 
use this approach with appropriate modifications in a noncommutative situation.

Proposition 3.1. Let C(K) be the (real) Banach lattice of real continuous functions on a Hausdorff compact 
space K, endowed with the supremum norm ‖ · ‖sup. If T : C(K) �→ C(K) is a Markov operator and 
a ∈ C(K) satisfies Ta = a and Ta2 = a2, then for every r ∈ R

T1Δr
= 1Δr

, where Δr = a−1({r}) is the level set. (M5)

Moreover, for each Borel bounded function g : K �→ R we have

T (1Δr
g) = 1Δr

T (g) and T (ag) = aT (g). (M6)

Proof. Let us fix κ ∈ K. We have

T (a− a(κ))2 = T (a2 − 2a(κ)a + a(κ)2) = a2 − 2a(κ)a + a(κ)2.

Evaluating it at κ we get∫
K

(a(u) − a(κ))2dT ′δκ(u) = 〈T ((a− a(κ))2), δκ〉

= 〈(a− a(κ))2, T ′δκ〉 = T [(a− a(κ))2](κ) = 0.

It follows that a(u) − a(κ) = 0 for T ′δκ almost all u ∈ K, or equivalently we may write

http://mostwiedzy.pl
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supp(T ′δκ) ⊆ {v ∈ K : a(v) = a(κ)} = Δa(κ). (Δ7)

Hence, T ′δκ(Δr) = 0 or 1 for every r ∈ R. From the above we easily get

T1a−1(G)(κ) = 1a−1(G)(κ)

for every Borel set G ∈ BR and all κ ∈ K. Indeed, if T1a−1(G)(κ) = 1 then the measure T ′δκ must be 
concentrated on the set a−1(G). It has been already proved in (Δ7) that T ′δκ is concentrated on the 
fiber {k ∈ K : a(k) = a(κ)} = a−1(a(κ)). Hence κ ∈ a−1(a(κ)) ⊆ a−1(G) as a−1(G) is a union of 
full level sets. For the reverse suppose that T1a−1(G)(κ) = 0. Then T1a−1(R\G)(κ) = 1. It follows that 
κ ∈ a−1(R \G) = K \ a−1(G).

Now let g be any bounded Borel function on K. We get

T (1Δr
g)(κ) = 〈T (1Δr

g), δκ〉 = 〈1Δr
g, T ′δκ〉 = 0 = 1Δr

(κ)Tg(κ)

if a(κ) �= r and

T (1Δr
g)(κ) = 〈1Δr

g, T ′δκ〉 = 〈g, T ′δκ〉 = Tg(κ) = 1Δr
(κ)Tg(κ)

if a(κ) = r. Now the statement T (ag) = aT (g) is obvious. Indeed, a = limn→∞ an (the convergence is 
uniform on K), where

an =
Jn∑

j=−Jn

j
n1Δn

j
,

for Δn
j = a−1([ jn , 

j+1
n )) and Jn = n‖a‖sup. Now

T (ag) = T ( lim
n→∞

ang) = lim
n→∞

T (ang) = lim
n→∞

T ((
Jn∑

j=−Jn

j
n1Δn

j
)g)

= lim
n→∞

Jn∑
j=−Jn

j
nT ((1Δn

j
g) = lim

n→∞

Jn∑
j=−Jn

j
n1Δn

j
T (g) = aT (g). �

Due to positivity and linearity, Markov operators act “independently” on real and imaginary parts of 
complex functions. Therefore, results like the above can be extended “for free” to complex Banach lattices 
(see [24], page 137 for the so-called complexification of Banach lattices). Modifying the last proposition, 
without essential changes in its proof, we have:

Proposition 3.2. Let C(K) be the complex Banach lattice of complex continuous functions on a Hausdorff 
compact space K, endowed with the supremum norm ‖ · ‖sup. If T : C(K) �→ C(K) is a Markov operator 
and a real valued function a ∈ C(K) satisfies Ta = a and Ta2 = a2, then for each complex valued Borel 
bounded function g : K �→ C we have T (ag) = aT (g).

Now, let us introduce

Definition 3.3. A Markov operator T : C(K) → C(K) is called Noether with respect to a continuous function 
a ∈ C(K) if

T (a) = a and T (a2) = a2. (N8)

http://mostwiedzy.pl
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The following theorem fully characterizes Noether’s Markov operators acting on C(K). It refines and 
generalizes some parts of [7,8,15].

Theorem 3.4. Let T be a Markov operator on (real or complex Banach space) C(K), where K is compact 
Hausdorff space and a ∈ C(K) a fixed real valued continuous function. Then the following conditions are 
equivalent:

(1) T (a) = a and T (a2) = a2,
(2) T (an) = an for all n ≥ 0,
(3) T (ag) = aT (g) for all continuous g ∈ C(K),
(4) T (af) = aT (f) for all Borel bounded functions on K,
(5) T ′(aμ) = aT ′(μ) for all μ ∈ M(K).

Proof. Applying our Proposition 3.1 we may easily deduce the equivalences (1) ⇔ (2) ⇔ (3) ⇔ (4). Next 
(3) ⇔ (5) follows from the Riesz–Markov characterization C(K)′ = M(K). Indeed, if T (ag) = aT (g) then 
for all g ∈ C(K) and μ ∈ M(K) we have

〈g, T ′(aμ)〉 = 〈aT (g), μ〉 = 〈T (ag), μ〉 = 〈ag, T ′(μ)〉 = 〈g, aT ′(μ)〉.

It follows that T ′(aμ) = aT ′(μ). Hence (3) ⇒ (5). The reverse implication may be proved similarly. In fact, 
for all g ∈ C(K) and μ ∈ C ′(K) we have

〈T (ag), μ〉 = 〈ag, T ′(μ)〉 =
∫
K

gadT ′(μ) =
∫
K

gd(aT ′(μ))

= 〈g, T ′(aμ)〉 = 〈T (g), aμ〉 = 〈aT (g), μ〉 . �
4. Stochastic operators on C1

We begin this section by introducing the notion of Markov (stochastic) operators on the von Neumann 
algebra of all bounded operators on a separable complex Hilbert space. Our notation and approach is similar 
to [9,10,17]. For the convenience of the reader and the completeness of the paper we repeat necessary 
definitions and notation.

Let (H, 〈·, ·〉) be a separable (finite or infinite dimensional) complex Hilbert space. As usual the norm is 
denoted by ‖ ·‖ and the Banach algebra of linear and bounded operators on (H, ‖ ·‖) is denoted by L(H) = C∞
(without confusion the operator norm in L(H) will be denoted by ‖ · ‖ too). The paper is concerned with 
positive linear operators acting on an ordered Banach space of trace-class operators on H. For necessary 
theoretical background the reader is referred to any standard book on operators on Hilbert spaces (e.g. 
[12,21–23,25–27,29]). The (Hilbert) adjoint operator to A is denoted by A∗. An operator A ∈ L(H) is 
called Hermitian if A = A∗ i.e. 〈Ax, y〉 = 〈x, Ay〉 holds for all x, y ∈ H. Equivalently, an operator A
is Hermitian if 〈Ax, x〉 ∈ R for any x ∈ H (see [29], page 57). Moreover, if A is a Hermitian operator 
and 〈Ax, x〉 ∈ [0, ∞) holds for all x ∈ H, then we say that A is positive. Clearly, positive operators on 
H form a cone in L(H), denoted by L(H)+. Each Hermitian operator A may be uniquely decomposed as 
A = A+ − A− (with A+A− = A−A+ = 0), where A+ and A− are called respectively the positive and 
negative part of A. By |A| we mean A+ + A−. Obviously |A| ∈ L(H)+ and it is called the modulus of A. 
The modulus may be equivalently introduced as |A| =

√
A∗A (see [12], page 42 or [29], page 63). Having 

the cone we introduce in L(H) the following partial order: A ≤ B if and only if B − A ∈ L(H)+. It is well 
known that L(H) endowed with this order is not a (vector) lattice and it does not satisfy the so-called Riesz 
decomposition property (see [27], page 29 or [25], page 1). A general bounded operator A may be written 

http://mostwiedzy.pl
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as A = B + iC = (B+ −B−) + i(C+ −C−), where B+, B−, C+, C− are positive. Compact operators play an 
important role in Hilbert space theory. Let us recall that A is compact if A(xn) has a (norm) convergent 
subsequence for each bounded sequence xn ∈ H (or equivalently (see [20], page 207 or [21], page 222) when 
A is a limit of finite dimensional operators). They form a (closed) ideal in L(H) which is denoted in our 
paper by C0. We say that an operator X ∈ L(H) is trace-class if for each (some; see [21], page 230, [23], 
page 82 or [25], pages 37, 44 for all details) orthonormal base e1, e2, · · · ∈ H the series 

∑
j=1

〈|X|ej , ej〉 < ∞. 

The trace is defined as 
∑
j=1

〈Xej , ej〉 and it is denoted by tr(X). Then the functional

X → tr(|X|) = ‖X‖1 (T9)

defines (see [21], page 233, [22], page 97, [23], page 93 or [25], page 37) a complete norm (stronger than the 
operator norm). The trace-class operators form a two sided ideal in L(H), which is called the Schatten class 1 
(see [21], page 231 or [23], page 83) and it is denoted by C1. It may be easily verified that whenever H is not 
finite dimensional then C1 is not closed in the operator norm in L(H). It is well known (see [21], page 236 or 
[23], page 99) that through the dual operation 〈B, X〉 = tr(XB), where B ∈ C0 and X ∈ C1, the dual space 
to (C0, ‖ · ‖) may be identified with (C1, ‖ · ‖1). Further, the dual space to (C1, ‖ · ‖1) is (L(H), ‖ · ‖) with dual 
operation 〈X, B〉 = tr(BX), where B ∈ C∞ and X ∈ C1. In order to be consistent with generally accepted 
notation we shall denote L(H) as C∞. In particular, C1 is not reflexive (unless H is finite dimensional). The 
space C1 is commonly recognized as the noncommutative counterpart of the �1 space. Since the operators of 
finite rank are norm dense in C1 (see [21], page 233 or [23], page 93), and the Hilbert space H is separable 
(by our assumption), thus (C1, ‖ · ‖1) is separable too. The following additivity property (sometimes called 
(AL) condition when we deal with Banach lattices) of the norm ‖ · ‖1 is preserved:

∀X1,X2∈C1 ( X1, X2 ≥ 0 ⇒ ‖X1 + X2‖1 = ‖X1‖1 + ‖X2‖1). (T10)

The cone of all positive trace operators is denoted by C1+ Therefore (C, ‖ · ‖1, C1+) becomes an ordered 
Banach space, even though, it is not a Riesz space (see [25], page 1).

Definition 4.1. A positive operator X from C1 is called a state if tr(X) = 1. The set of all states is denoted 
by D (analog of probability distributions in statistical physics).

It is easy to verify that D is a convex and closed subset of C1, for the weak topology (hence for both 
operator and trace norms). By a direct inspection it can be shown that it is not closed for the weak* topology 
(if dim H = ∞).

By Proj(H) we denote the family of all orthogonal (self-adjoint) projections in H. An operator valued 
mapping

E : BR �→ Proj(H)

defined on the σ-algebra BR (in general spectral measures are defined on Borel subsets of the complex 
plain C) of all Borel subsets of R is called a spectral measure if

• E(∅) = 0,
• E(R) = Id,
• E(

⋃∞
j=1 Fj) = s.o.t.

∑∞
j=1 E(Fj) for any sequence of Borel and pairwise disjoint sets Fj ∈ BR, where 

s.o.t. means the convergence in the strong operator topology,
• E(F ∩G) = E(F )E(G) = E(G)E(F )

http://mostwiedzy.pl
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(see [20], page 273 or [29], page 118). When we fix vectors g, h ∈ H then BR � F �→ 〈E(F )g, h〉 = Eg,h(F )
becomes a complex valued σ-additive measure. It is well known (Spectral Theorem, see [21], pages 247, 250 
or [29], pages 60, 120) that each Hermitian operator A ∈ L(H)H is uniquely determined by its spectral 
measure EA. Actually we have

A =
+∞∫

−∞

tEA(dt) , or equivalently ∀g,h∈H 〈Ag, h〉 =
+∞∫

−∞

tEA
g,h(dt) . (S11)

Moreover, we may confine the integration to the spectrum, i.e. the set σ(A) = {λ ∈ C : (λI − A)
is not invertible}, which is included in R whenever A is Hermitian. The reader is referred to the already 
cited monographs for other facts on the spectral theory of Hermitian (normal) operators. Here let us only 
mention (see [29], page 62) that A2 =

∫ +∞
−∞ t2EA(dt).

Definition 4.2. A bounded linear operator S : C1 → C1 is said to be positive if S(C1+) ⊆ C1+. A positive 
operator S is called stochastic if for every X ∈ C1+ we have ‖S(X)‖1 = ‖X‖1 (equivalently we may say 
that S(D) ⊆ D). The adjoint operator S′ acting on C∞ will be called Markov (Markovian). The set of all 
stochastic operators on C1 is denoted by S.

The notion of quantum stochastic operators is at the core of many monographs (e.g. [1,4,12,26]). The 
reader is advised to consult them if necessary. Most physical papers concerning noncommutative stochastic 
dynamics assume a stronger condition on positivity, i.e. complete positivity (see [1,26] for a definition if 
necessary). We on the other hand do not consider any specific quantum model and hence may consider 
positivity in a weaker and therefore more general form. The reader is referred to [3,7,11,13,16,18] for the 
physical background of the problem. A Markov operator S′ preserves the (ordered) Banach space L(H)H
of Hermitian operators, which generate the whole space L(H). Thus instead of studying the evolution 
{S′ n : n ≥ 0} on the whole domain it suffices to focus on the restriction to the Hermitian part. In other 
words, we shall study S′ n : L(H)H → L(H)H for n ≥ 0.

We omit the obvious proof of the following result.

Lemma 4.3. The set S of all stochastic operators on C1 is convex and a w.o.t. closed subsemigroup of 
L(C1, C1). However it is not closed for the w*.o.t. in the infinite dimensional case.

Now we give a few examples of stochastic operators.

Example 4.4. Let U be a unitary operator on H. Clearly the operator S(X) = U∗XU is stochastic. Moreover, 
it is an invertible isometry of C1.

Example 4.5. Let V be a linear operator on H such that V ∗ is isometric. Similarly as above we define 
R(X) = V ∗XV . It is easy to check that R is a stochastic (non-invertible in general) operator on C1.

5. Noether stochastic operators on C1

Definition 5.1. Let A be a bounded Hermitian operator on H. A stochastic operator S : C1 �→ C1 is called 
Noether with respect to an operator A ∈ C∞ if

S′(A) = A and S′(A2) = A2. (N12)

The dual operator S′ of a Noether stochastic operator S will be called Noether Markov operator (with 
respect to A).

http://mostwiedzy.pl
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Given a stochastic operator S : C1 → C1 its second dual S′′ : C′
∞ → C′

∞ preserves the positive cone 
C′
∞,+ which consists of all continuous linear functionals ξ on C∞ satisfying ξ(A) = 〈A, ξ〉 ≥ 0 for all 

positive A ∈ C∞. Clearly the cone C′
∞,+ is weak* (hence) norm closed and nontrivial. Moreover C′

∞,+ =
{λX : λ ≥ 0, X ∈ S}w∗

(by Goldstein’s theorem, see [2], page 158).
We begin the main part of the paper with lemma below.

Lemma 5.2. Let S : C1 → C1 be a Noether stochastic operator with respect to a Hermitian bounded operator 
A ∈ C∞. Then for every continuous function Ψ : R → C we have S′Ψ(A) = Ψ(A).

Proof. Denote by C∗(A) the smallest C∗-subalgebra of C∞, generated by {1, A}, where 1 = Id stands for 
the identity operator. Clearly C∗(A) is commutative with {

∑n
j=0 tjA

j : tj ∈ C, n ∈ N0} being a dense 
subalgebra. By the Gelfand–Naimark theorem C∗(A) = C(KA) for some compact (Hausdorff) topological 
space KA (with a little abuse of the notation we will denote the function corresponding to an element 
D ∈ C∗(A) by the same letter D; clearly this function is the Gelfand transform Γ(D)). Let us recall (see [29], 
pages 27, 32, 35, 56) that the topology on KA is the weak* topology coming from its predual space C∗(A). 
If ξ ∈ C′

∞,+ satisfies ξ(1) = 〈1, ξ〉 = 1 then its restriction ξ|C∗(A) may be viewed as a Radon probability 
measure μξ on KA. For general ξ ∈ C′

∞ the measure μξ is complex valued. We identify ξ|C∗(A) = μξ.
A local linear functional ξμ defined on C∗(A), considered over real scalars, and such that 〈1, ξμ〉 = 1

with the norm ‖ξμ‖ = 1 (on C∗(A)) is represented (the Riesz–Markov theorem) by a unique probability 
(Radon) measure μ on KA such that 〈D, ξμ〉 =

∫
KA

D(κ)dμ(κ) and by the Hahn–Banach theorem ξμ may 
be extended on the whole C∞ to some norm 1 linear functional ξ (i.e. ξ|C∗(A) = ξμ).

Given a norm 1 linear functional ξ, which restricted to C∗(A) represents a probability measure on KA, 
we want to look at its image S′′(ξ). Because we do not control ξ outside C∗(A), the behavior of S′′(ξ) (or 
its positivity) is not clear at this stage. Let us consider the real part ReS′′(ξ) instead. We notice

〈1,ReS′′(ξ)〉 = Re〈1, S′′(ξ)〉 = Re〈S′(1), ξ〉 = Re〈1, ξ〉 = 1 ,

and

‖ReS′′(ξ)|C∗(A)‖ ≤ ‖S′′(ξ)‖ ≤ ‖ξ‖ = 1.

Hence ReS′′(ξ)|C∗(A) is represented by a unique probability (Radon) measure on KA.
If ξ|C∗(A) is multiplicative on C∗(A) then μξ = δκξ

for some κξ ∈ KA (see [29], page 35), where δκξ

stands for the Dirac delta measure at κξ. We denote P (κξ, ·) to be the probability measure on KA defined 
by ReS′′(ξ)|C∗(A).

We shall show that P (κξ, ·), κξ ∈ KA are well defined. For this let us suppose that ξ|C∗(A) = ζ|C∗(A) are 
multiplicative on C∗(A), where ξ, ζ ∈ C′

∞ are norm 1 (then κξ = κζ). We have to prove ReS′′(ξ)|C∗(A) =
ReS′′(ζ)|C∗(A) (it is well known that if real parts of linear functionals coincide then functionals coincide; 
hence we will prove that S′′(ξ)|C∗(A) = S′′(ζ)|C∗(A)). Let us note S′((A − ξ(A)1)2 = (A − ξ(A)1)2 and

〈(A− ξ(A)1)2, ξ〉 = 〈A2 − 2ξ(A)A + ξ(A)2, ξ〉 = 0 = ξ(A2) − 2ξ(A)ξ(A) + ξ(A)2 .

Thus ∫
KA

(A− ξ(A)1)2(κ)dμReS′′(ξ)(κ) = Re〈(A− ξ(A)1)2, S′′(ξ)〉

= Re〈S′((A− ξ(A)1)2), ξ〉 =
∫

(A− ξ(A)1)2(κ)dμξ(κ) = 0 .
KA
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The measure ReS′′(ξ)|C∗(A) is concentrated on the zero level set

Zξ = {κ ∈ KA : (A− ξ(A)1)2(κ) = 0} = {κ ∈ KA : A(κ) = ξ(A)} .

We get ∫
KA

An(τ)dμReS′′(ξ)|C∗(A)(τ) =
∫
KA

ξ(A)ndμReS′′(ξ)|C∗(A)(τ) = ξ(A)n

for all n ∈ N0, as ξ is multiplicative on C∗(A). Since ζ and ξ coincide on C∗(A) thus
∫
KA

An(τ)dμReS′′(ξ)|C∗(A)(τ) = ξ(A)n = ζ(A)n =
∫
KA

An(τ)dμReS′′(ζ)|C∗(A)(τ) .

The functions An, n ≥ 0 are linearly dense in C(KA), hence ReS′′(ξ) = ReS′′(ζ) on C∗(A) and as already 
mentioned S′′(ξ) = S′′(ζ) on C∗(A). It follows that P (κξ, ·) = P (κζ , ·).

The weak*–weak* continuity of C′
∞ � ξ → S′′(ξ) ∈ C′

∞ is obvious. So is the general remark that κξα → κξ

in the topological space KA if and only if D(ξα) → D(κξ) for all D ∈ C∗(A) = C(KA). Now, let κξα → κξ

in KA, where ξα, ξ ∈ C∞ are multiplicative on C∗(A). Choosing a subnet (if necessary) we may guarantee 
that ξα → ξ̃ in C′

∞ in the weak* topology. Clearly

〈D, ξ̃〉 = lim
α
〈D, ξα〉 = lim

α
D(κξα) = D(κξ) = 〈D, ξ〉

for all D ∈ C∗(A). Hence κξ̃ = κξ. In other words we may assume that κξα → κξ in KA and ξα → ξ in C′
∞

in the weak* topology. Now if D ∈ C(KA) is real valued (D ∈ C∗(A) is Hermitian) then

〈D,P (κξα , ·)〉 = Re〈D,S′′(ξα)〉 = Re〈S′(D), ξα〉 → Re〈S′(D), ξ〉

= Re〈D,S′′(ξ))〉 = 〈D,P (κξ, ·)〉 .

Thus the Feller transition probability function {P (κ, ·) : κ ∈ KA} properly defines a Markov operator T
on C(KA) = C∗(A). Clearly T ′δκ = P (κ, ·) = ReS′′(ξκ) for some ξκ ∈ C′

∞. It follows from our construction 
that T (A) = A and T (A2) = A2. Indeed, for every Hermitian D ∈ C∗(A) = C(KA) and all κ ∈ KA we 
have

T (D)(κ) =
∫
KA

D(τ)P (κ, dτ) =
∫
KA

D(τ)dμReS′′(ξκ)(τ) = Re〈D,S′′(ξκ)〉

= Re〈S′(D), ξκ〉.

Substituting D = A and then D = A2, for all κ ∈ KA we get

T (A)(κ) = Re〈S′(A), ξκ〉 = Re〈A, ξκ〉 = A(κ),

and

T (A2)(κ) = Re〈S′(A2), ξκ〉 = Re〈A2, ξκ〉 = A2(κ).

By Theorem 3.4 we obtain T = Id on C∗(A). It follows that T ′δκ = δκ for all κ ∈ KA or equivalently 
S′′(ξ)|C∗(A) = ξ|C∗(A) as long as ξ ∈ C′

∞ is multiplicative on C∗(A). Thus D(κ) = 〈D, ξκ〉 = 〈S′(D), ξκ〉 for 
all D ∈ C∗(A).
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It remains to prove that S′ : C∗(A) → C∗(A) and S′ = Id on C∗(A). Let us introduce a relation between 
ξ, η ∈ C′

∞ writing ξ ∼A η if and only 〈D, ξ〉 = 〈D, η〉 for all D ∈ C∗(A). We have already proved that if 
ξ ∈ C′

∞ is multiplicative on C∗(A) then ξ ∼A S′′(ξ). Define FixA = {ξ ∈ C′
∞ : S′′(ξ) ∼A ξ}. Clearly FixA is 

a weak* closed linear subspace of C′
∞ as

FixA =
⋂

D∈C∗(A)

{ξ ∈ C′
∞ : 〈D, ξ〉 = 〈S′(D), ξ〉} ,

and KA ⊆ FixA. Let ξ ∈ FixA and μξ be a (complex) σ-additive (Radon) measure on KA representing ξ
on C∗(A) = C(KA). Namely, 

∫
KA

D(κ)dμξ(κ) = 〈D, ξ〉. By the Hahn–Banach theorem every σ-additive 
(complex) finite measure μ on KA is of the form μξ for some ξ ∈ C′

∞. We have
∫
KA

D(κ)dμξ(κ) = 〈D, ξ〉 = 〈S′(D), ξ〉 = 〈D,S′′(ξ)〉

=
∫
KA

D(κ)dμS′′(ξ)

for all D ∈ C∗(A). We can state this property as ξ ∈ FixA if and only if μξ = μS′′(ξ). Since δκ, κ ∈ KA

are linearly dense (in the weak* topology) in the set of finite σ-additive measures, thus μξ = μS′′(ξ) for all 
ξ ∈ C′

∞. In particular if ξ ∈ C′
∞ satisfies ξ|C∗(A) = 0 then S′′(ξ)|C∗(A) = 0. Hence S′(C∗(A)) ⊆ C∗(A).

We find S′ : C(KA) = C∗(A) → C∗(A) = C(KA) being a Markov operator satisfying S′(A) = A and 
S′(A2) = A2. Applying Theorem 3.4 we get S′(D) = D for all D ∈ C∗(A).

By the functional calculus theorem (see [29], page 62) we obtain S′(Ψ(A)) = T (Ψ(A)) = Ψ(A) for all 
continuous functions Ψ : R → R. Applying the same arguments as we used in Proposition 3.2 we have 
T (Ψ(A)) = Ψ(A) for all continuous complex valued functions Ψ : R �→ C. �

The proof of the next lemma could be shortened if we directly apply the Borel functional calculus theorem 
(see [21], page 288 or [29], page 119). For the sake of the completeness of the paper we have decided for its 
full presentation.

Lemma 5.3. Let S : C1 → C1 be a Noether stochastic operator with respect to a Hermitian operator A ∈ C∞. 
Then S′(EA(α, β]) = EA(α, β] for all α < β, where A =

∫
σ(A) tE

A(dt) is the spectral resolution representa-
tion. Moreover, S′(A+) = A+, S′(A−) = A−, and S′(|A|) = |A|.

Proof. Clearly A+ = Ψ+(A), A− = Ψ−(A) and |A| = Ψ|(A), where Ψ+(t) = max{0, t}, Ψ−(t) = − min{0, t}
and Ψ|(t) = |t|. The S′-invariance of A+, A− and |A| follow from Lemma 5.2.

Now define

Ψα,β,n(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 : t ≤ α + 1/n
n(t− α− 1/n) : α + 1/n < t ≤ α + 2/n
1 : α + 2/n ≤ t < β

n(β + 1/n− t) : β ≤ t < β + 1/n
0 : t ≥ β + 1/n,

where n ∈ N. Clearly Ψα,β,n are continuous and converge pointwise to 1(α,β]. By Lemma 5.2 we have 
S′(Ψα,β,n(A)) = Ψα,β,n(A). Hence for any trace operator X ∈ C1 we have

〈S(X),Ψα,β,n(A)〉 = 〈X,S′Ψα,β,n(A)〉 = 〈X,Ψα,β,n(A)〉 .
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Applying the spectral theorem for any orthonormal base e1, e2, ... in H we have

〈S(X),Ψα,β,n(A)〉 =
∑
j=1

〈Ψα,β,n(A)S(X)ej , ej〉

=
∑
j=1

∫
σ(A)

Ψα,β,n(t)〈EA(dt)S(X)ej , ej〉

→
∑
j=1

∫
σ(A)

1(α,β](t)〈EA(dt)S(X)ej , ej〉

=
∑
j=1

〈1(α,β](A)S(X)ej , ej〉 = 〈S(X),1(α,β](A)〉 = 〈X,S′(1(α,β](A))〉 .

Similarly we obtain 〈X, Ψα,β,n(A)〉 → 〈X, 1(α,β](A)〉. Hence 〈X, S′(1(α,β](A))〉 = 〈X, 1(α,β](A)〉 for all 
X ∈ C1. It follows that S′(1(α,β](A)) = 1(α,β](A)〉. Clearly 1(α,β](A) =

∫
σ(A) 1(α,β](t)EA(dt) = EA((α, β]). 

Finally we get S′(EA((α, β])) = EA((α, β]). �
Before formulating further properties of Noether stochastic operators we first show the below.

Remark 5.4. If

‖EXE‖1 = ‖X‖1, (T13)

where E is an orthogonal projection and X ∈ C1 is positive, then EXE = X. In fact, let X(·) =∑
j=1 λj〈·, ej〉ej ≥ 0, for λj ≥ 0 and e1, e2, ... being eigenvectors of X. Then EXE(·) =

∑
j=1 λj〈·, Eej〉Eej

and for any orthonormal basis ξ1, ξ2, ... in H we have

‖X‖1 = ‖EXE‖1 =
∑
k=1

〈
∑
j=1

λj〈ξk, Eej〉Eej , ξk〉

=
∑
j=1

λj

∑
k=1

|〈ξk, Eej〉|2 ≤
∑
j=1

λj = ‖X‖1 .

Hence 
∑

k=1 |〈ξk, Eej〉|2 = 1 for every j = 1, 2, .... It follows that ‖Eej‖ = 1 if λj > 0, and finally EXE = X.
In particular, if S : C1 �→ C1 is a stochastic operator and

‖ES(EXE)E‖1 = ‖S(EXE)‖1 (T14)

holds for some state X and an orthogonal projection E, then ES(EXE)E = S(EXE). Moreover, denoting 
E⊥ = Id − E we also have E⊥S(EXE)E⊥ = 0.

We notice also that (T14) holds whenever S′(E) = E. Indeed, for every X ∈ C1,+ then we have

‖ES(EXE)E‖1 = tr(ES(EXE)E) = tr(ES(EXE)) = 〈S(EXE), E〉 = 〈EXE,S′(E)〉

= 〈EXE,E〉 = tr(EXE) = ‖EXE‖1 .

We are in a position to present other preparatory facts.

Corollary 5.5. If for a fixed orthogonal projection E a stochastic operator S on C1 has the property that 
‖ES(EXE)E‖1 = ‖S(EXE)‖1 holds for all states X, then

range S(EY E) ⊆ EH (R15)
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and

ker S(EY E) ⊇ (EH)⊥, (K16)

for all Y ∈ C1.

Proof. By the last remark, the inclusion (R15) is obvious for Y being positive. In general (R15) holds by 
linearity and positivity of S, and a representation Y = (X1−X2) +i(X3−X4), where X1, X2, X3, X4 ∈ C1,+.

In order to prove (K16) let us assume that Y is positive. Then S(EY E) is positive too and therefore it 
is Hermitian. It follows from (R15) that

kerS(EY E) = kerS(EY E)∗ = (rangeS(EY E))⊥ ⊇ (EH)⊥ = E⊥H.

For a general trace class operator Y we once again use the linearity of S and the previously mentioned 
representation for Y . �

In the same spirit we obtain

Corollary 5.6. If E is an orthogonal projection, such that S′(E) = E, then for every B ∈ C∞ we have

range S′(EBE) ⊆ EH (R17)

and

kerS′(EBE) ⊇ (EH)⊥. (K18)

Proof. Assume first that B ∈ C∞,+. Clearly there exists and a positive scalar r > 0 such that 0 ≤ B ≤ rId, 
so 0 ≤ EBE ≤ rE. It follows that S′(EBE) ≤ rE. If h ∈ (EH)⊥ then

0 ≤ 〈S′(EBE)h, h〉 ≤ 〈rEh, h〉 = 0 .

By positivity of S′(EBE) we obtain S′(EBE)h = 0 and kerS′(EBE) ⊇ (EH)⊥ follows (the property (K18) 
is proved). As S′(EBE) is positive (so Hermitian) it follows that rangeS′(EBE) ⊆ EH. In order to get 
(R17) and (K18) for general B ∈ C∞ we proceed as before, representing B = (B1, −B2) + i(B3 −B4), where 
B1, B2, B3, B4 ∈ C∞,+. �

Now we are in a position to prove the main lemma. For the sake of the completeness of the paper and 
the convenience of the reader we include a full proof. Alternatively the reader is directed to Lemma 2 in 
[19] for its origins.

Lemma 5.7. Let S : C1 → C1 be a stochastic operator such that S′(E) = E for some orthogonal projection E. 
Then

S(EXE) = ES(X)E (N19)

and

S′(EBE) = ES′(B)E (N20)

for all X ∈ C1 and B ∈ C∞.
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Proof. Without loss of generality we may assume that both X, B are positive. The operator S(EXE) −
ES(X)E is Hermitian. In order to prove (N19) we notice

‖(ES(X)E − S(EXE))2‖1 = tr(ES(X)E − S(EXE))2 =

= tr(ES(X)E)2 − trES(X)ES(EXE) + tr(S(EXE))2−

trS(EXE)ES(X)E = 0

as

trES(X)ES(EXE) = 〈S(EXE), ES(X)E〉 = 〈EXE,S′(ES(X)E)〉

= 〈X,S′(ES(X)E)〉 = 〈S(X), ES(X)E〉 = trES(X)ES(X)E = tr(ES(X)E)2 ,

and

trS(EXE)ES(X)E = 〈S(X), ES(EXE)E〉 = 〈X,S′(ES(EXE)E)〉

= 〈EXE,S′(ES(EXE)E)〉 = 〈S(EXE), ES(EXE)E〉

= 〈S(EXE), S(EXE)〉 = trS(EXE)2 .

Now identity (N20), S′(EBE) = ES′(B)E, easily follows from the dual operation. In fact, for any X ∈ C1
we have

〈X,S′(EBE)〉 = 〈ES(X)E,B〉 = 〈S(EXE), B〉 = 〈X,ES′(B)E〉. �
Remark 5.8. Let S be a stochastic operator on C1 and E1, E2 be orthogonal projections on H such that 
E1E2 = E2E1 = 0. If S′(E1) = E1 and S′(E2) = E2 then for every X ∈ C1 and B ∈ C∞ we have

S(E1XE2 + E2XE1) = E1S(X)E2 + E2S(X)E1

and

S′(E1BE2 + E2BE1) = E1S
′(B)E2 + E2S

′(B)E1 .

In fact, E = E1 +E2 is an S′ invariant projection. By the previous lemma S(EXE) = ES(X)E. It follows 
from linearity that

S(E1XE1) + S(E2XE2) + S(E1XE2 + E2XE1)

= E1S(X)E1 + E2S(X)E2 + E1S(X)E2 + E2S(X)E1 .

Then S(E1XE2 + E2XE1) = E1S(X)E2 + E2S(X)E1. The second identity is an easy consequence of the 
dual argument.

Now we formulate the main result of the paper.

Theorem 5.9. Let S be a stochastic operator on C1 and A ∈ C∞ be a positive bounded operator (observable). 
Then the following conditions are equivalent:

(1) S(A1/2XA1/2) = A1/2S(X)A1/2 for all X ∈ C1,
(2) S′(A1/2BA1/2) = A1/2S′(B)A1/2 for all operators B ∈ C∞,
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(3) S′(Am) = Am for all positive integers m,
(4) S′(A) = A and S′(A2) = A2,
(5) S(EA(G)XEA(G)) = EA(G)S(X)EA(G) for all X ∈ C1 and any Borel G ⊆ R,
(6) S′(EA(G)BEA(G)) = EA(G)S′(B)EA(G) for all B ∈ C∞ and any Borel set G ⊆ R,
(7) S(Ψ(A)XΨ(A)) = Ψ(A)S(X)Ψ(A) for all X ∈ C1 and any continuous function Ψ : R → R.

Proof. (1) ⇔ (2) Easily follows from the dual operation.
(2) ⇒ (3) Let B = Id. Then

S′(A) = S′(A1/2IdA1/2) = A1/2S′(Id)A1/2 = A .

By induction, for m ≥ 1, we have

S′(Am) = S′(A1/2Am−1A1/2) = A1/2S′(Am−1)A1/2 = A1/2Am−1A1/2 = Am .

(3) ⇒ (4) is obvious.
(4) ⇒ (5) Let

G = {G ∈ BR : S′(EA(G)) = EA(G)}.

For every pair of real numbers α < β, by our Lemma 5.3, the interval (α, β] ∈ G. Similarly as in the proof 
of Lemma 5.3 we infer that G is a monotone class. Obviously, by the additivity of the spectral measure, 
the finite unions (forming an algebra of sets) 

⋃M
m=1(αm, βm] ∈ G. It follows from basic measure theory that 

G = BR. Now (5) follows from Lemma 5.7 (N19).
(5) ⇔ (6) directly follows from properties of the dual operation.
(5) ⇒ (7) Let X ∈ D be a fixed state. Let us choose a sequence of partitions α[n]

1 < α
[n]
2 < · · · < α

[n]
mn

satisfying α[n]
1 ≤ inf σ(A) and α[n]

mn ≥ supσ(A) and

lim
n→∞

sup
1≤k<mn

|α[n]
k+1 − α

[n]
k | = 0 .

By linearity we have

S((
mn−1∑
j=1

Ψ(α[n]
j )EA((α[n]

j , α
[n]
j+1]))X(

mn−1∑
k=1

Ψ(α[n]
k )EA((α[n]

k , α
[n]
k+1])))

= S(
mn−1∑
j,k=1

Ψ(α[n]
j )Ψ(α[n]

k )EA((α[n]
j , α

[n]
j+1])XEA((α[n]

k , α
[n]
k+1]))

=
mn−1∑
j=1

S(Ψ2(α[n]
j )EA((α[n]

j , α
[n]
j+1])XEA((α[n]

j , α
[n]
j+1]))

+ S(
∑

1≤j<k≤mn−1

Ψ(α[n]
j )Ψ(α[n]

k )(EA((α[n]
j , α

[n]
j+1])XEA((α[n]

k , α
[n]
k+1])))

+ EA((α[n]
k , α

[n]
k+1])XEA((α[n]

j , α
[n]
j+1]))

=
mn−1∑
j=1

Ψ2(α[n]
j )EA((α[n]

j , α
[n]
j+1])S(X)EA((α[n]

j , α
[n]
j+1])

+
∑

Ψ(α[n]
j )Ψ(α[n]

k )(EA((α[n]
j , α

[n]
j+1])S(X)EA((α[n]

k , α
[n]
k+1])
1≤j<k≤mn−1
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+ EA((α[n]
k , α

[n]
k+1])S(X)EA((α[n]

j , α
[n]
j+1]))

= (
mn−1∑
j=1

Ψ(α[n]
j )EA((α[n]

j , α
[n]
j+1]))S(X)(

mn−1∑
k=1

Ψ(α[n]
k )EA((α[n]

k , α
[n]
k+1])).

By the Spectral Theorem the Riemann sums converge

lim
n→∞

mn−1∑
j=1

Ψ(α[n]
j )EA((α[n]

j , α
[n]
j+1]) = Ψ(A)

and the convergence is in the sup norm. By the Borel functional calculus theorem

B(σ(A)) � f �→
∫

fdEA ∈ C∞

is a C∗-homomorphism (see [21], page 288 or [29], page 119).

Let us abbreviate 
mn−1∑
j=1

Ψ(α[n]
j )EA((α[n]

j , α[n]
j+1]) = Bn. Applying the basic inequality ‖D1Y D2‖1 ≤

‖D1‖‖Y ‖1‖D2‖, where Y ∈ C1 and D1, D2 ∈ C∞ (see [23], page 98) we have

‖BnY Bn −Ψ(A)Y Ψ(A)‖1 ≤ ‖BnXBn − Ψ(A)Y Bn‖1 + ‖Ψ(A)Y Bn − Ψ(A)Y Ψ(A)‖1

≤ ‖Bn − Ψ(A)‖‖Y ‖1‖Bn‖ + ‖Ψ(A)‖‖Y ‖1‖Bn − Ψ(A)‖ → 0

as n → ∞. The operator S is continuous for the trace norm ‖ · ‖1. Thus

S(Ψ(A)XΨ(A)) = lim
n→∞

S(BnXBn) = lim
n→∞

BnS(X)Bn = Ψ(A)S(X)Ψ(A).

(7) ⇒ (1) Substitute Ψ(t) =
√
t for nonnegative t. �

Remark 5.10. If a positive operator A is identified with a measurement operator C1 � X �→ AXA =
MA(X) ∈ C1, then the condition (1) in our Theorem 5.9 may be reformulated as

[S,MA1/2 ] = 0,

which directly corresponds to its commutative counterpart [BF0]. Let us finally add that directly from 
trace properties we have trMA1/2(X) = tr(A1/2XA1/2) = tr(XA). Therefore our restriction to a positive 
observable A does not essentially harm generality. In fact, if A is Hermitian and bounded then there exists 
a positive α such that αId + A ≥ 0. Clearly S′(αId + A) = αId + A and S′(αId + A)2 = (αId + A)2 if 
and only if S is Noether with respect to A. Moreover trXA = tr(X(αId + A)) − α for all states X. Hence 
positive observables suffice.

6. Noether one-parameter stochastic semigroups on C1

Definition 6.1. A stochastic one-parameter semigroup S on C1 is a family of stochastic operators S = {St :
t ≥ 0} ⊆ S satisfying

(i) StSs = St+s for all t, s ≥ 0,
(ii) S0 = I,
(iii) [0, ∞) � t �→ St(X) ∈ C1 is continuous for each X ∈ C1.
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The (infinitesimal) generator s of S is defined by the formula

s(X) = lim
t→0+

St(X) −X

t
= d

dt
St(X)|t=0,

where the domain of s, D(s), is the set of all X ∈ C1 for which the limit defined above exists (in the ‖ · ‖1
norm). Clearly St restricted to the Hermitian part of C1 are positive linear contractions. It follows that on 
the whole Schatten class C1 the semigroup is norm bounded. Hence the Hille–Yoshida Theorem (see [14], 
pages 14–18) is applicable and s is densely defined, and closed (i.e. if (Xn, s(Xn)) → (X, Y ) in the product 
topology, where Xn ∈ D(s), then X ∈ D(s) and s(X) = Y ).

Definition 6.2. Let A be a bounded Hermitian operator on H. A stochastic one-parameter semigroup S =
{St : t ≥ 0}, on a Schatten class C1, is called Noether with respect to an operator A ∈ C∞ if

S′
t(A) = A and S′

t(A2) = A2 for all t ≥ 0. (N21)

The final theorem of our paper characterizes Noether stochastic semigroups.

Theorem 6.3. Let {St : t ≥ 0} be a strongly continuous semigroup of stochastic operators on a Schatten 
class C1 and s be its (infinitesimal) generator with domain D(s). If A ∈ C∞ is a positive operator then the 
following conditions are equivalent:

(1) {St : t ≥ 0} is a Noether semigroup with respect to an operator A ∈ C∞,
(2) d

dt 〈St(X), A〉 = d
dt 〈St(X), A2〉 = 0 for every X ∈ D,

(3) d
dt 〈St(X), f(A)〉 = 0 for every X ∈ D and all polynomials f : R �→ R,

(4) St(A1/2XA1/2) = A1/2St(X)A1/2 for every X ∈ C1 and all t ≥ 0,
(5) S′

t(A1/2BA1/2) = A1/2S′
t(B)A1/2 for every operator B ∈ C∞ and all t ≥ 0,

(6) for every G ∈ BR and all X ∈ D(s) we have EA(G)XEA(G) ∈ D(s) and s(EA(G)XEA(G)) =
EA(G)s(X)EA(G), i.e. [s, MEA(G)] = 0,

(7) for all X ∈ D(s) we have A1/2XA1/2 ∈ D(s) and s(A1/2XA1/2) = A1/2s(X)A1/2, i.e. [s, MA1/2 ] = 0.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (1) follow directly from Theorem 5.9 and general 
properties of the dual operation.

(1) ⇒ (6) It follows from Theorem 5.9 that

St(EA(G)XEA(G)) = EA(G)St(X)EA(G)

holds true for all Borel G ∈ BR, all X ∈ C1, and all t ≥ 0. Let X ∈ D(s). We have

lim
t→0+

St(EA(G)XEA(G)) −EA(G)XEA(G)
t

= lim
t→0+

EA(G)St(X)EA(G) −EA(G)XEA(G)
t

= lim
t→0+

EA(G)
(
St(X) −X

t

)
EA(G) = EA(G)s(X)EA(G).

It follows that EA(G)XEA(G) ∈ D(s) and s(EA(G)XEA(G)) = EA(G)s(X)EA(G), or simply

[s,MEA(G)] = 0.
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Let us notice that, by the same arguments as before (see Remark 5.8), for disjoint Borel sets G1, G2 ⊆ R, 
we can prove

s(EA(G1)XEA(G2) + EA(G2)XEA(G1))

= EA(G1)s(X)EA(G2) + EA(G2)s(X)EA(G1) .

(6) ⇒ (7) Let X ∈ D(s) be fixed. Repeating the methods from the proof of Theorem 5.9 let us choose a 
relevant sequence of partitions α[n]

1 < α
[n]
2 < · · · < α

[n]
mn satisfying

lim
n→∞

sup
1≤k<mn

|α[n]
k+1 − α

[n]
k | = 0 .

By linearity we have

s((
mn−1∑
j=1

√
α

[n]
j EA((α[n]

j , α
[n]
j+1]))X(

mn−1∑
k=1

√
α

[n]
k EA((α[n]

k , α
[n]
k+1])))

=
mn−1∑
j,k=1

√
α

[n]
j

√
α

[n]
k s(EA((α[n]

j , α
[n]
j+1])XEA((α[n]

k , α
[n]
k+1]))

= (
mn−1∑
j=1

√
α

[n]
j EA((α[n]

j , α
[n]
j+1]))s(X)(

mn−1∑
k=1

√
α

[n]
k EA((α[n]

k , α
[n]
k+1]))

→ A1/2s(X)A1/2.

It follows from closedness (see [14], pages 13–18) of s that A1/2XA1/2 ∈ D(s) and s(A1/2XA1/2) =
A1/2s(X)A1/2.

(7) ⇒ (4) Applying the Hille–Yoshida theorem (see [14], page 18) for each t ≥ 0 and every X ∈ C1 we 
have

St(X) = lim
λ→∞

exp(t(λ2(λ− s)−1 − λId))(X)

= lim
λ→∞

exp(−λt)
∞∑

n=0

(tλ2(λ− s)−1)n(X)
n! .

Now let us suppose that Y ∈ D(s). Then by (7) we get (λ − s)(A1/2Y A1/2) = A1/2((λ − s)(Y ))A1/2. 
Substituting Y = (λ − s)−1(X) we obtain

(λ− s)(A1/2(λ− s)−1(X)A1/2) = A1/2((λ− s)(λ− s)−1(X))A1/2 = A1/2XA1/2.

Hence

A1/2((λ− s)−1(X))A1/2 = (λ− s)−1(A1/2XA1/2).

Iterating the above property for every natural n we have

A1/2[tλ2(λ− s)−1]n(X)A1/2 = [tλ2(λ− s)−1]n(A1/2XA1/2).

It follows that,
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St(A1/2XA1/2) = lim
λ→∞

exp(t(λ2(λ− s)−1 − λId))(A1/2XA1/2)

= lim
λ→∞

exp(−λt)
∞∑
k=0

(tλ2(λ− s)−1)n(A1/2XA1/2)
n!

= A1/2 lim
λ→∞

exp(−λt)
∞∑
k=0

(tλ2(λ− s)−1)n(X)
n! A1/2

= A1/2St(X)A1/2. �
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