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Abstract

The paper presents a FE-analysis of shear localisation in granular bodies by a finite
element method based on a hypoplastic constitutive law. The law can reproduce es-
sential features of granular bodies depending on the void ratio, pressure level and
deformation direction. To realistically simulate the formation of a spontaneous shear
zone inside cohesionless sand during plane strain compression, a hypoplastic con-
stitutive law was extended by non-local terms. The effects of initial void ratio, pres-
sure level and a characteristic length on the thickness of an interior shear zone were
shown. The numerical results were compared with corresponding laboratory tests.

Key words: characteristic length, finite element method, non-local model, plane
strain compression, shear localisation

1. Introduction

Localisation of deformation in the form of narrow zones of intense shearing is a
fundamental phenomenon in granular materials. It can develop in granular bodies
during processes of flow or shift of objects with sharp edges against granular
materials (Vardoulakis 1980, Yoshida et al 1994, Tatsuoka et al 1991, 1994, Desrues
et al 1996, Yagi et al 1997). It can occur spontaneously inside granular materials
or can be induced along walls of stiff structures at granular bodies (Uesugi et al
1988, Tejchman 1989, Hassan 1995). An understanding of the mechanism of the
formation of shear zones is important since they act as a precursor to ultimate
soil failure.

Classical FE-analyses of shear zones are not able to describe properly both
the thickness of localisation zones and distances between them, since they suf-
fer from a spurious mesh sensitivity (its size and alignment). The rate boundary
value problem becomes ill-posed, i.e. the governing differential equations of mo-
tion change the type by losing ellipticity for static and hiperbolicity for dynamic
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problems (Benallal et al 1987, de Borst et al 1992). Thus, the localisation is re-
duced to zero-volume zones. To overcome this drawback, classical constitutive
models require an extension in the form of a characteristic length to regularise
the rate boundary value problem and to take into account microscopic inhomo-
geneities triggering shear localisation (e.g. size and spacing of microdefects, grain
size, fiber spacing). Different strategies can be used to include a characteristic
length and to capture properly the post-failure regime (in quasi-static problems):
polar models (Miihlhaus 1990, Sluys 1992, Tejchman and Wu 1993, Tejchman et al
1999, Tejchman 2002), non-local models (Eringen 1981, Bazant et al 1987, Bazant
and Lin 1988, Brinkgreve 1994), strain gradient models (Zbib and Aifantis 1988,
Sluys 1992, Chambon et al 2001), and models with an artificial viscosity (Neddle-
man 1988, Sluys 1992, Needleman and Tvergaard 1992, Belytschko et al 1994,
Ehlers and Volk 1998).

In this paper, a spontaneous shear localisation in granular bodies was in-
vestigated with a finite element method based on a hypoplastic constitutive law
extended by non-local terms. The FE-analysis was performed with enhanced hy-
poplastic models for a specimen of dry sand subject to plane strain compression
under constant lateral pressure.

2. Hypoplasticity

Hypoplastic constitutive laws (Gudehus 1996, Bauer 1996, von WolfTersdorft 1996,
Tejchman 1997) are an alternative to elasto-plastic formulations for continuum
modelling of granular materials. They describe the evolution of effective stress
components with the evolution of strain components by a differential equation
including isotropic linear and non-linear tensorial functions according to the rep-
resentation theorem by Wang (1970). In contrast to elasto-plastic models, the
decomposition of deformation components into elastic and plastic parts, yield
surface, plastic potential, flow rule and hardening rule are not needed. The hy-
poplastic models describe the behaviour of so-called simple grain skeletons which
are characterised by the following properties (Gudehus 1996):

e the state is fully defined through the skeleton pressure and the void ratio
(inherent anisotropy of contact forces between grains is not considered and
vanishing principal stresses are not allowed),

o deformation of the skeleton is due to grain rearrangements (e.g. small de-
formations < 10~ due to the elastic behaviour of grain contacts are negli-
gible),

e grains are permanent (abrasion and crushing are excluded in order to keep
the granulometric properties unchanged),

e three various void ratios decreasing exponentially with pressure are distin-
guished (minimum, maximum and critical),
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e the material manifests an asymptotic behaviour for monotonous and cyclic
shearing or SOM-states for proportional compression,

o rate effects are negligible,

e physico-chemical effects (capillary and osmotic pressure) and cementation
of grain contacts are not taken into account.

The hypoplastic constitutive laws are of the rate type. Due to the incremental
non-linearity with the deformation rate, they are able describe both non-linear
stress-strain and volumetric behaviour of granular bodies during shearing up to
and after the peak with a single tensorial equation. They include also: barotropy
(dependence on pressure level), pycnotropy (dependence on density), dependence
on the direction of deformation rate, dilatancy and contractancy during shearing
with constant pressure, increase and release of pressure during shearing with con-
stant volume, and material softening during shearing of a dense material. They
are apt to describe stationary states, i.e. states in which a grain aggregate can be
continuously deformed at constant stress and constant volume under a certain
rate of deformation. Although the hypoplastic models are developed without re-
course to concepts of the theory of plasticity, failure surface, flow rule and plastic
potential are obtained as natural outcomes (Wu and Niemunis 1996). The feature
of the model is a simple formulation and procedure for determination of material
parameters with standard laboratory experiments. The parameters are related to
granulometric properties encompassing grain size distribution curve, shape, angu-
larity and hardness of grains (Herle and Gudehus 1999). Owing to this, one set
of material parameters is valid within a large range of pressures and densities.

Stress changes due to the deformation of a granular body can generally be
expressed by

0ij = F(e, ou, du), (1)

wherein the Jaumann stress rate tensor (objective stress rate tensor) is defined by

o .
0ij = Oij — WikOkj + Oik Wk}, (2
F in Eq. 1 represents an isotropic tensor-valued function of its arguments, oj;
is the Cauchy skeleton (effective) stress tensor, e the void ratio and dj the rate of
deformations tensor (stretching tensor). If the volume of grains remains constant

(i.e. incompressible grains), the rate of the void ratio can be expressed by the
evolution equation:

e = (1 +e)du. (3)

The rate of deformation tensor d;; and the spin tensor wj; are related to the
material velocity v as follows:
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dl'j = (Uf,j + Uj'j)/z, wij = (Uj,j - Uj'j)/z, ().i = a()/axt (4)

The condition of the incremental non-linearity (Bauer 1996) requires that
the tensorial function F in Eq. 1 is not differentiable only for d;; = 0. Such
requirement results in the following equation, where the function F is decomposed
into two parts

dij = Ale, o, dir) + Ble, ;)| ldull. (5)

The function A is linear in dj, while the function B is non-linear in dy. ||dy||
denotes the Euclidian norm /dydy. Both functions are positively homogeneous
to the first degree in dy, i.e. oy (Ady) = Aowdy for any scalar A > 0. In this way,
Eq. 5 becomes rate-independent. Because oy (+di) # oy (—du), the hypoplastic
constitutive equation is incrementally non-linear, which allows for description of
the inelastic behaviour. Limit states are characterised by vanishing stress rates.
Thus, the limit state and the flow rule can be calculated from Eq. 5 and there is
no need to introduce different functions for loading and unloading. As a limit case
during monotonous shearing, the critical state concept is also taken into account
for both simultaneously vanishing stress rates and volumetric deformation rate,
and a constant void ratio (a?j =0,di =0, ¢ =0).

The following representation of the general constitutive equation (Eq. 6) is
used (Gudehus 1996, Bauer 1996):

Go'ij =fs [Lij (gklsdkz) + faNij (gij) \/dlddld]' (6)

where the normalised stress tensor é;’j is defined by

N i
0jj = —~. (7)

Okk
The scalar factors f; = f;(e, o) and f; = fi(e, oxk) take into account the
influence of the density and pressure level on the stress. The stiffness factor f;

is proportional to the granulate hardness 4, and depends on the mean stress and

void ratio:
he (1+e¢ Ol J~n
= — —_— 8
f; nh; ( € ) ( hs ) ( )

1 1 eio—eqn\” 1
R ) ©)
" 0 —ea0/ c1/3

with
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The granulate hardness represents h; a density-independent reference pres-
sure and is related to the entire skeleton (not to single grains). The density factor
fy resembles a pressure-dependent relative density index and is represented by

fd=(e“e")“. (10)

eC _ed

Here e is the current void ratio, e, is the critical void ratio, e; denotes the void
ratio at maximum densification (due to cyclic shearing), e; is the maximum void
ratio, o denotes the pycnotropy coefficient, and # is the compression coefficient.
The void ratio e is thus limited by e¢; and e;. The values of ¢;,e; and e, are
assumed to decrease with the pressure —oy according to the equations:

ei = €0 exp [—(—ow/hs)"], (11)
ed = eqoexp [—(—ou/hs)"], (12)
€c = €c0 exp[_(_akk/hs)n]a (13)

wherein e;g, eqo and e.o are the values of ¢;,e;s and e, for oy = 0, respectively.
For the tensorial functions L;; and N;;, the following representatives are used
(Gudehus 1996, Bauer 1996, Tejchman 1997):

2 AN A A*
Lr'j =a1dij + Uijgkidkh ]V,'J.' =a) (Uij +0','j) s (14)
where
1 AA
a; =c1+c oy oji[1 4+ cos(36)], (15)
6 AA A
COS(39) = '—-""—\/——15 (0'/:10']:.,0}:1() ’ (16)
A A 2
4]
3 (3 —sing,) 3 (3 +sin¢)
P i sl L == 17
‘1 \/; sing, 2= 8 sin & 17

. is the critical angle of internal friction during stationary flow. 6 denote the Lode
angle; the angle on the deviatoric plane o1 + 03 4+ 03 = 0 between the stress vector
and the axis o3 (o; is the principle stress vector), and o;; denote the deviatoric
part of o;; In case of sand, the hypoplastic constitutive relation is approximately
valid in the pressure range 1 kPa < —og /3 < 1000 kPa. Below this, additional
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capillary forces due to the air humidity and van der Waals forces may become
important, and above it, grain crushing.

The constitutive relationship requires 7 material constants: e;q, €40, €c0, ¢c, s,
n and «. The FE-analyses were carried out with the following material constants
(for so-called Karlsruhe sand): e;p = 1.3, ego = 0.51, eco = 0.82, ¢, = 30°, hy =
190 MPa, n = 0.5 and o = 0.3 (Bauer 1996). The parameters ks and n are estim-
ated from a single oedometric compression test with an initially loose specimen
(hs reflects the slope of the curve in a semilogarithmic representation, and n its
curvature). The constant « is found from a triaxial test with a dense specimen (it
reflects the height and position of the peak value of the stress-strain curve). The
angle ¢. is determined from the angle of repose or measured in a triaxial test
with a loose specimen. The values of ejo, €40, €co are obtained with conventional
index tests (€c0 X €max, €40 = €min» €i0~(1.1 — 1.5)¢max). The mean grain diameter
of sand is dsgp = 0.5 mm.

A hypoplastic constitutive law cannot describe realistically shear localisation
since it does not include a characteristic length. A characteristic length was taken
into account by means of a non-local theory.

3. Non-Local Hypoplasticity

A non-local approach has been proposed for concrete (Bazant et al 1987, Bazant
and Lin 1988, Pijaudier-Cabot 1995, Chen 1999, Akkermann 2000, Bobinski and
Tejchman 2002, 2003) and for soils (Brinkgreve 1994, Schanz 1998, Marcher and
Vermeer 2001, Maier 2002) to regularise a boundary value problem and to calcu-
late localisation of deformation in the form of shear zones and cracks. It is based
on spatial averaging of tensor or scalar state variables in a certain neighbourhood
of a given point (Eringen 1981), i.e. material response at a point depends on the
both state of its neighbourhood and on the state in the point itself. Thus, a charac-
teristic length can be incorporated and softening can spread over material points.
In contrast, in classical continuum mechanics, the principle of local action holds
(ie. the dependent variables in each material point depend only upon the values
of the independent variables at the same point). To obtain a full regularisation
effect according to both the mesh size and mesh inclination, it is sufficient to treat
non-locally only one internal constitutive variable, e.g. equivalent plastic strain in
an elasto-plastic formulation (Bazant and Lin 1988, Marcher and Vermeer 2001,
Bobifiski and Tejchman 2003) or modulus of the deformation rate in a hypoplastic
approach (Maier 2002) whereas the other variables retain their local definitions.

The advantages of a non-local approach are: it is suitable for both shear and
tension (decohesion) dominated applications and is easy to implement. The dis-
advantages are: long a computation time and a characteristic length is not directly
related to the micro-structure of materials.
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The presented hypoplastic FE-calculations were carried out separately with:
a) a non-local modulus of the deformation rate d*, b) non-local density factor ff
and c) non-local stiffness factor f* (stresses, strains and other variables remained
local). These three parameters are always positive and are affected by softening
to different extent (Fig. 2).

0.1% wmnaz
1.83% wmax
37% Wpax

| | ] ™,
' '

Wiz
37% Wmar
'''' 1.83% wmar
---------- 0.1% wyazx

Fig. 1. Distribution of the weighting function w
In the first case, the modulus of the deformation rate (Eq. 6) expressed by

d = Iy (18)

was treated non-locally:

d*(x) = %f wr)dx +r)dV, (19)

where r is the distance from the material point considered to other integra-
tion points of the entire material body, w is the weighting function and A is
the weighted body volume. During a FE-analysis, all integrals were replaced by
summation operators. Thus, Eq. 16 became: '

np
Y w (i —x;])d (x;) 4
a4 () =" : (20)
2w (pi —xi) 4
'r=

where np is the number of all integration points in the whole body, x; stands
for co-ordinates of the integration point and 4; is the actual element area. The
error density function (normal Gaussian distribution function) was chosen as a
weighting function w (Brinkgreve 1994, Maier 2002):

w(r) = I\/i;e-(z’r)z. (21)
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The parameter / denotes a characteristic length (it determines the size of the
neighbourhood influencing the state at a given point) and the parameter a is a
weighting parameter. At the distance of a few times the length /, the function w
is equal to zero (Fig. 1). Generally, the characteristic length / in Eq. 21 is not
directly related to dimensions of the material microstructure, since it depends on
the constitutive model and the weighting function.

In the second and third cases, the FE-calculations were carried out with a
non-local density factor f and a non-local stiffness factor ¥, respectively, which
were calculated with the aid of the local density factor f; (Eq. 10) and the local
stiffness factor f; (Eq. 8) using Eqgs. 19-21 (with a = 1).

4. FE-Implementation

FE-calculations of plane strain compression tests were performed with a sand
specimen which was h, = 10 cm high and b = 2 cm wide. Only quadrilateral finite
clements composed of four diagonally crossed triangles were applied to avoid
volumetric locking. In all, 320 quadrilateral elements (0.25 x 0.25 cm) divided
into 1280 triangular elements with linear shape functions for displacements were
used. The dimensions of finite elements were 5 x dso to obtain the thickness of
shear zones irrespective of the mesh size (Tejchman et al 1999, Maier 2002). The
integration was performed with one sampling point placed in the middle of each
element. The calculations were carried out with slight deformations.

As the initial stress state, a Kp-state with o33 = o, + ydx; and o113 =0 +
Koyydx, was assumed in the sand specimen where o denotes the confining pres-
sure, x, is the vertical coordinate measured from the top of the specimen, yd
denotes the initial density and Ky = 0.45 is the earth pressure coefficient at rest
(011 — horizontal normal stress, 022 — vertical normal stress).

A quasi-static deformation in sand was initiated through a constant vertical
displacement increment prescribed at nodes along the upper edge of the specimen.
The boundary conditions of the sand specimen were no shear stress at the top
and bottom. To preserve the stability of the specimen against sliding along the
bottom boundary, the node in the middle of the bottom was kept fixed. To obtain
a shear zone inside the specimen (in the central part), a weaker element with a
high initial void ratio, ep = 0.90, was inserted in the middle of the left side of the
specimen.

For the solution of a non-linear system, a modified Newton-Raphson scheme
with line search was used with a global stiffness matrix calculated with only the
first term of the constitutive equations (linear in dy). The stiffness matrix was
updated every 100 steps. To accelerate the calculations in the softening regime,
the initial increments of displacements in each calculation step were assumed to
be equal to the final increments in the previous step. The iteration steps were
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performed using translational convergence criteria. For the time integration of
stresses in finite elements, a one-step Euler forward scheme was applied.
The local model was implemented in the author’s finite element code.

5. FE-Results
5.1. Local Continuum

Figures 2 and 3 present the results of plane strain compression with dense sand
(eo = 0.60) within a conventional (local) continuum (Egs. 1-17) under confining
pressure o, = 0.2 MPa. The normalized load-displacement curve is depicted in
Fig. 2a. Figure 2b shows the deformed FE-mesh with the distribution of void ratio.
The darker the regin, the higher the void ratio. The evolution of the void ratio e,
density factor f; (Eq. 10), stiffness factor f; (Eq. 8), modulus of the deformation
rate d (Egs. 6) and Lode angle 6 (Eq. 16) at two different locations: inside the
shear zone and far beyond it are demonstrated in Fig. 3.

The resultant vertical force on the specimen top P increases first, shows a
pronounced peak, drops later and reaches a residual state (Fig. 2a). The overall
angle of internal friction for the sand specimen, calculated from Mohr’s formula

o] — 0y
o1+ 02
is equal to ¢, = 42.9° at peak (u/hg = 2.4%). At residual state, it is equal to
der = 32.2° (u/hy = 4%) and different from the assumed critical angle of internal
friction, ¢, =30° (Eq. 17). In Eq. 22, 01 = P/(bl) denotes the vertical principle
stress (03 = o, is the horizontal principal stress, b = 0.02 m is the specimen width,
I = 1.0 m and u denotes the vertical displacement of the top).

At the beginning of the compression process, two shear zones are created
expanding outward from the weakest element. Afterwards, and up to the end, only
one shear zone dominates. The complete shear zone is already noticeable shortly
after the peak. It is characterised by both a concentration of shear deformations,
and a significant increase of the void ratio and modulus of the deformation rate.
The calculated thickness of the shear zone is equal to the width of finite elements
and its inclination is equal to the mesh orientation.

The void ratio e at the beginning decreases (up to u/hg = 1%) and after-
wards increases in the whole specimen (Fig. 3a). In the shear zone, it reaches a
pressure-dependent critical value at residual state (e = e, = 0.745, Eq. 13). Bey-
ond the shear zone, the void ratio reaches the initial value. The thickness of the
shear zone on the basis of an increase of the void ratio is slightly larger since a
dense granular material already dilates before a shear zone is created.

The density factor f; (Eq. 10) continuously increases in the whole specimen
(Fig. 3b). At residual state, it is equal to 1.0 (shear zone) and 0.8 (remaining
region).

¢ = arcsin (22)
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P/(cb)

| Fig. 2. Load-displacement curve and deformed FE-mesh with the distribution of void ratio in the
residual state (local continuum, e, = 0.60, o = 0.2 MPa)
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Fig. 3. Evolution of (A) void ratio e, (B) density factor fy, (a — outside the shear zone, b — in the
shear zone)
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Fig. 3. Evolution of (C) normalized stiffness factor f; /A, (D) modulus of the deformation rate d
(a — outside the shear zone, b — in the shear zone)
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E)
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Fig. 3. Evolution of (E) Lode angle 6 (a — outside the shear zone, b - in the shear zone)

Outside the shear zone, the normalized stiffness factor f;/hs increases up
to u/hyg = 0.5%, then decreases reaching an asymptote at u/hg = 4%. In the
shear zone, the stiffness factor increases up to u/hy = 0.5%, then decreases up to
u/hy = 2.4%. At the peak of the resultant vertical force on the top, it increases
again, then decreases later reaching an asymptote. At residual state, it is smaller
by 10% as compared with the value beyond the shear zone.

The modulus of the deformation rate d increases uniformly throughout the
whole specimen from the beginning of loading up to u/hg = 2%. Later, it is
significant only in the shear zone (Fig. 3d). It increases substantially in the range
of u/hy = 2-3%. Afterwards, it decreases and approaches an asymptote. On the
basis of the difference between the modulus of the deformation rate in the shear
zone and beyond it, one can find that the shear zone is created before the peak
of the resultant vertical force on the top, namely at u/hg = 2%.

The Lode angle 6 (Eq. 13) is equal to 30° in the shear zone and 25° beyond
this (residual state).

5.2. Non-Local Continuum

The results with a non-local modulus of the deformation rate d* using a different
characteristic length / of Eq. 21 (0.5 mm, 1.0 mm and 2.0 mm) with the weighting
parameter a =1 of Eq. 21 and dense sand (e, = 0.60, o, = 0.2 MPa) are shown in
Fig. 4. The effect of the weighting factor a is depicted in Fig. 5. In turn, Figure 6
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demonstrates the effect of the initial void ratio and pressure level on results with
a = 0.5.

a) b) <)

Fig. 4. Load-displacement curves and deformed FE-meshes with the distribution of void ratio in
the residual state (non-local continuum, e, = 0.60, or =0.2 MPa, a = 1.0):
a)! =05 mm,b)/ =1.0 mm,c)/ =2 mm

The larger the characteristic length, the greater both the maximum and resid-
ual vertical force on the top, the smaller the material softening and the greater
the vertical displacement of the top corresponding to the peak and residual force
(Fig. 4). Thus, the forces and corresponding vertical displacements are higher
than within a non-local continuum. The mean angles of internal friction for the
entire sand specimen are equal to ¢, = 43.3°-42.9° (peak) and ¢, = 35.1°-32.2°
(residual state). The obtained results of internal friction angles at peak and in the

i
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Fig. 5. Load-displacement curve, deformed FE-mesh with the distribution of void ratio in the
residual state and evolution of modulus of the deformation rate d (non-local continuum, / = 0.5
mm, e, = 0.60, 5. = 0.2 MPa, a = 0.5): a — outside the shear zone, b — in the shear zone
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residual state in dense sand, and the corresponding vertical displacements of the
sand specimen compare well with experimental results with Karlsruhe sand car-
ried out by Vardoulakis (1977, 1980) and Yoshida et al. (1994). In the experiments
by Vardoulakis (1977, 1980), the dimensions of the specimen were: i = 140 mm,
b = 40 mm, = 80 mm, and in the experiments by Yoshida et al (1994): Ay = 200
mm, b = 80 mm, / = 160 mm, respectively. The experiments with very dense sand
(e, = 0.55) resulted in ¢, = 45.7° and ¢, = 32.9° (Vardoulakis 1977, 1980), and
¢p = 43.4°, and ¢, = 31.3° (Yoshida et al 1994) at o, = 200 kPa. However, the
shape of the calculated load-displacement curves differs slightly. Contrary to the
experiments, the calculated stiffness is too small at the beginning of the loading
process and too high close to the peak of the load-displacement curve (in the
hardening and softening regime).

The thickness of the shear zone increases with increasing characteristic length.
The thickness of the internal shear zone is: t,; =3x! (I = 0.5 mm) and ¢, =7xI( =
1.0 mm). If the characteristic length is greater (! = 2.0 mm), the shear zone does
not appear (the deformations are concentrated at the bottom of the specimen).
The calculated thickness of the shear zone in dense Karlsruhe sand with / = 1
mm is in accordance with the observed thickness during experiments at o, = 200
kPa: t,, = 13 x dso (Vardoulakis 1977, 1980) and 10 x dsp (Yoshida et al 1994), if
one assumes that the non-local characteristic length is / = 2 x dsp. This result is
also in agreement with FE-calculations carried out by Maier (2002).

In turn, the results of ¢, with / = 0.5 mm and @ = 0.5 of Eq. 21 (Fig. 5) are
similar to those with / = 1.0 mm and a = 1.0 (;; = 14 x/). Thus, the non-local
characteristic length can be directly related to the mean grain diameter (/ = dsp) by
a modification of the weighting function w (Eq. 21). On the basis of the difference
between the modulus of deformation in the shear zone and beyond it at the
beginning of loading (Fig. 5c), one can deduce that the shear zone is created
slightly before the peak of the vertical force on the top at u/hg = 2.5%.

In the case of a higher initial void ratio ey and higher lateral pressure o,
the thickness of the internal shear zone (! = 0.5 mm, a = 0.5) is: £;;=20x! (eo =
0.70, o, = 0.2 MPa) and ¢, = 16x! (e = 0.60, o, = 0.5 MPa), Fig. 6. Thus, the
numerical results demonstrate that the higher the initial void ratio and confining
pressure, the lower the maximum normalized vertical force on the top. The higher
the initial void ratio and confining pressure, the smaller the material softening.
With an increase of the initial void ratio and confining pressure, the vertical
displacement related to the peak force P becomes larger. An increase of the
thickness of the shear zone with increasing ep and o, corresponds to a decrease of
the rate of softening. The material becomes softer, and thus a larger deformation
can develop (Tejchman et al 1999).

The distribution of void ratio in the shear zone is slightly non-uniform.

If the density factor f; of Eq. 10 is treated non-locally (a = 1.0), a regular-
isation effect appears for a considerably greater characteristic length (! >10 mm),
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Fig. 6. Load-displacement curves and deformed FE-meshes with the distribution of void ratio in
the residual state (non-local continuum, a = 0.5,/ = (0.5 mm):
a) e = 0.70, o, = 0.2 MPa, b) ¢, = 0.60, 0, = 0.5 MPa
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Fig. 7. The non-local results with / = 20 mm correspond approximately to the
results with a non-local modulus of the deformation rate at (! = 1.0 mm) (Fig. 4).
The distribution of the void ratio is more uniform as compared with results with
a non-local modulus of the deformation rate (Fig. 4).

Pl(o.bl)

0 0.05 0.10 0.15 0.28

a) b) c)

Fig. 7. Load-displacement curves and deformed FE-meshes with the distribution of void ratio in
the residual state (non-local density factor, a = 1.0, ¢, = 0.60, o, = 0.2 MPa,):
a)/ = 1.0 mm, b) / = 10.0 mm, ¢) / = 20.0 mm

In the case of a non-local stiffness factor f; of Eq. 8, a regularisation effect
did not occur even at / =100 mm (due to a small difference between the values

in the shear zone and outside it, Fig. 3c).
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6. Conclusions

The FE-calculations of a plane strain compression test for granular materials
demonstrate that a local hypoplastic constitutive model suffers from mesh-de-
pendency. The thickness of shear zones inside a specimen and load-displacement
diagrams are severely mesh-dependent.

A non-local hypoplastic model provides full regularisation of the boundary
value problem during plane strain compression. Numerical solutions converge to
a finite size of the localisation zone upon mesh refinement.

The thickness of a localised shear zone increases with increasing characteristic
length, confining pressure, and initial void ratio.

The characteristic length in a non-local continuum can be directly related to
a mean grain diameter of the granular material by modification of the weighting
function.

The thickness of a shear zone greatly depends on the choice of the non-local
internal constitutive variable. The non-local modulus of the deformation rate has
the strongest regularisation effect.

Increasing void ratio and modulus of the deformation rate are good indicators
for shear zones.

A characteristic length of a non-local model can be calibrated for different
sands with a numerical analysis of a plane strain compression test.

The FE-studies on shear localisation in granular bodies will be continued.
A hypoplastic constitutive law will be extended by a strain gradient approach
and compared with a polar (Tejchman et al 1999, Tejchman 2002) and non-local
approach. In this enhanced hypoplastic model, a characteristic length will be in-

corporated with the aid of gradients of different internal constitutive variables
(Voyiadjis and Dorgan 2003).
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