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Abstract—For a certain class of elastic lattice shells experiencing finite deformations, a continual model 
using the equations of the so-called six-parameter shell theory has been proposed. Within this model, the 
kinematics of the shell is described using six kinematically independent scalar degrees of freedom — the field of 
displacements and turns, as in the case of the Cosserat continuum, which gives reason to call the model under 
consideration as the theory of micropolar shells. Nonlinear equations of state for the surface energy density of the 
shell deformation are derived. The obtained relations of the continuum model are a special case of the general 
defining relations of elastic micropolar shells for finite deformations.
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INTRODUCTION
Starting with the works of V.G. Shukhov lattice and mesh shells are one of the common classes of 

thin-walled structures widely used in construction, see [1, 2]. Such shells are also actively used in 
modern machine, aircraft and rocket production (works by V. V. Vasiliev and other authors [3–6]). 
Thin-walled mesh elements also find other applications, for example, for the production of 
biocompatible implants [7]. It should be noted that the equations of state of discrete shells may differ 
significantly from the classical models of continuous shells [8–10].

In this paper, we consider a special class of mesh shells formed by two families of flexible fibers 
orthogonal to each other. In other words, mesh structures resembling a fishing net with square cells are 
considered. It is assumed that the nodes in which the articulation of the fibers takes place are rather 
rigid, so that the fibers retain their orthogonality after deformation. In the work, a transition was made 
from the discrete system of equations describing the deformation of each fiber to the averaged 
continuous model of the nonlinear theory of shells. Equations fitted with a curve [11–13] are used as a 
model of nonlinear deformation of fibers, within which the deformations are described by kinematically 
independent fields of displacements and rotations. The continuum model is described in terms of the 
nonlinear theory of shells presented in [13–16]. Within the framework of this variant of the theory of 
shells, displacements and turns are also considered as independent kinematic quantities. In addition to 
the bending and torsional moment, the drilling moment is also taken into account. On the edge of the 
shell, six boundary conditions are specified. In the case of static boundary conditions, the values of three 
forces and three moments are specified, and in the case of kinematic conditions, three movements and 
three rotations are given. Thus, the kinematics of the shell is characterized by six parameters, and the 
model is often called six-parameter. In fact, here the description of the deformation coincides with the 
kinematics of the two-dimensional Cosserat continuum (micropolar medium). Various applications of 
this theory are presented, for example, in [15, 17–19]. An important aspect of the nonlinear theory of 
shells is the formulation of the equations of state, that is, the dependence of the deformation energy, 
forces and moments on the measures of the deformations of the shell. For the six-parameter theory of 
shells, the equation of state with finite deformations was discussed in [14, 15, 20–22].
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Fig. 1.

1. DEFORMATIONS OF A DISCRETE MESH SHELL

Let us consider the deformation of a mesh shell formed by two orthogonal families of flexible elastic
fibers. The initial and deformed state of the shell are depicted in the figure. Here we confine ourselves
to such a variant of the mesh structure, in which the connection of the cladding fibers is rigid, so that
we can assume that the fibers retain their orthogonality even after deformation. As a theory describing
the final deformations of the fiber, we use the theory of a rigged curve, also known as the Cosserat curve
[11–13]. The kinematics of a rigged curve is described by two vector fields:

r = r(s), dk = dk(s), k = 1, 2, 3, (1.1)

where r is the radius vector of the curve in the deformed state, dk is the orthonormal vectors, directors
defining the orientation (rigging) of the curve, s is the length of the arc of the curve in the undeformed
state. Instead of directors dk, it is more convenient to use the orthogonal tensor P = dk ⊗Dk itself,
where the directors Dk, defined on the undeformed curve C0, are introduced, ⊗ denotes the tensor
product. Hereinafter, direct tensor calculus is used [23, 24]. Without loss of generality, we assume that
the vector D1 is tangent to C0.

Equilibrium equations in the metric of the undeformed state have the form [12]:

t′(s) + f = 0, m′ + r′(s)× t(s) + c = 0, (1.2)

where t and m are the internal forces and moments acting in the fiber, f and c are the external forces
and moments specified on the C0 curve, × denotes the vector product, and prime indicates the derivative
with respect to s: (. . .)′ = ∂(. . .)/∂s.

Restricting ourselves to considering hyperelastic materials, we introduce the strain energy in the form

U = U(e,k), e = PT · r′ −D1, k = − 1

2

(
PT ·P′

)
×
, (1.3)

where e and k are vector measures of deformations, T× is a vector invariant of a tensor of rank two T,
defined by the formula [24]

T× = (Tmnim ⊗ in)× = Tmnim × in

for an arbitrary vector basis im. The vectors of internal forces and moments are related to the strain
energy by the formulas

t =
∂U

∂e
·PT , m =

∂U

∂k
·PT . (1.4)
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The system of equations (1.1)–(1.4), supplemented by the corresponding boundary conditions, is a
boundary problem describing the final deformations of an elastic beam, taking into account its tensile
compression, shear deformations, bending and torsion. Accordingly, these equations can be used for
beam systems, including the mesh shell. For simplicity, we neglect the transverse shear deformations,
then U will depend only on the tangential deformation ε = e ·D1: U = U(ε,k), see [11].

Consider the deformation of the mesh shell, formed by two orthogonal fiber families, similar to that
shown in the figure. Assume that the director vectors D1 and D2 are tangent to the 1st and 2nd families,
respectively. Denoting the values assigned to the first and second families, respectively, using indices 1
and 2, we write the Lagrangian equilibrium equations for the discrete mesh shell

t′1,1(s1) + f1 = 0, (1.5)

m′
1,1 + r′1,1(s1)× t1(s1) + c1 = 0, (1.6)

t′2,2(s2) + f2 = 0, (1.7)

m′
2,2 + r′2,2(s2)× t2(s2) + c2 = 0. (1.8)

Here tα and mα are the vectors of internal forces and moments acting in the α-family, fα and cα are
the corresponding external forces and moments, and differentiation is introduced along each curve:
(. . .)′,α = ∂(. . .)/∂sα, α=1, 2.

Enumerating the nodes of the shell, as shown in the figure, we can write the total energy of the mesh
shell as the sum

E =
n∑

j=1

m−1∑
i=1

s
(i+1)
1∫

s
(i)
1

U(s1)ds1 +
m∑
i=1

n−1∑
j=1

s
(j+1)
2∫

s
(j)
2

U(s2)ds2, (1.9)

where m and n are the numbers of fibers in two directions, and the strain energy densities are introduced
as

U(sα) = U(εα,kα), ε1 = r′,1 ·P ·D1 − 1, ε2 = r′,2 ·P ·D2 − 1, kα = − 1

2

(
PT ·P′

,α

)
×
. (1.10)

For simplicity, we assume that the considered fibers are the same and are described by the same
equations of state.

Using trapezoid formulas

s
(i+1)
1∫

s
(i)
1

U(s1)ds1 =
h

2

[
U(s

(i)
1 ) + U(s

(i+1)
1 )

]
,

s
(j+1)
2∫

s
(j)
2

U(s2)ds2 =
h

2

[
U(s

(j)
2 ) + U(s

(j+1)
2 )

]
,

we can reduce the dependence (1.9) to a completely discrete form

E =
h

2

n∑
j=1

[
U(s

(1)
1 ) + U(s

(m)
1 ) + 2

m−1∑
i=2

U(s
(i)
1 )

]
+

h

2

m∑
i=1

[
U(s

(1)
2 ) + U(s

(n)
2 ) + 2

n−1∑
j=2

U(s
(j)
2 )

]
.

Thus, the total energy of the mesh grid takes the form of a weighted sum of energies specified only at

the grid nodes, that is, at the points (s(i)1 , s
(j)
2 ):

E =

m∑
i=1

n∑
j=1

cij

[
U
(
s
(i)
1

)
+ U

(
s
(j)
2

)]
, (1.11)

Here cij is some weighting factors obtained by summing the terms in the above formula. Taking into
account (1.10), equation (1.11) can also be written as follows, explicitly indicating the dependence on
strain measures

E =

m∑
i=1

n∑
j=1

cij

[
U
(
ε
(i,j)
1 ,k

(i,j)
1

)
+ U

(
ε
(i,j)
2 ,k

(i,j)
2

)]
. (1.12)
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It should be noted that the vector r and the tensor P are defined only on the grid lines. In other
words, depending on the choice of the grid line there are dependencies of r = r(s1), P = P(s1) or
r= r(s2), P =P(s2). Instead of functions of one variable, one can introduce surface fields r = r(s1, s2),
P=P(s1, s2) so that they coincide with these functions when narrowing to the grid region ω. Replacing
the double sum with the surface integral, we obtain the continual model of the mesh grid

E =

∫∫

ω

[
U(ε1,k1) + U(ε2,k2)

]
dω. (1.13)

It can be shown that discretization of the functional (1.13) with some accuracy leads to an expression
of the form (1.12). Since the discretization of the energy functional of the discrete mesh shell (1.9) and
its continual analog (1.13) leads to the same formulas (with a certain accuracy), we call these models
equivalent. To characterize the continual model obtained in more detail, we consider the equations of the
statics of the six-parameter theory of shells.

2. EQUATIONS OF THE CONTINUAL MESH SHELL
Following [13, 16], we consider the boundary value problem of the six-parameter theory of shells

(micropolar shells). The kinematics of the shell is specified using the radius vector of the position of the
base surface of the shell x = x(s1, s2) and the orthogonal tensor Q = Q(s1, s2). Lagrange equilibrium
equations and possible boundary conditions are given by the formulas

∇ ·T+ f = 0, ∇ ·M+ [FT ·T]× + c = 0, (2.1)

�1 : x = x0(s), �2 : ν ·T = τ (s), (2.2)

�3 : Q = H(s), �4 : ν ·M = μ(s), (2.3)

where ∇ = Dα∂/∂sα is the surface gradient operator defined in the initial state, sα is the surface
orthogonal coordinates, F = ∇x ≡ Dα ⊗ x′

,α is the surface deformation gradient, x0(s), H(s), τ (s),
μ(s) are given on the corresponding parts of the shell contour, respectively, of the radius vector field, the
rotation tensor, forces and moments . ∂ω = �1

⋃
�2

⋃
�3

⋃
�4 is the partition of the shell contour into

parts on which kinematic and static boundary conditions are specified; ν is the unit normal vector to the
contour ∂ω orthogonal to the normal n to the shell: ν · n = 0, T and M are force and moment tensors
of Piola type.

For an elastic shell, there is a strain energy W, which depends on the surface measures of strain E and
K as follows:

W = W (E,K), (2.4)

E = F ·QT −A, K =
1

2
Dα ⊗

(
Q′

,α ·QT
)
× , (2.5)

where A= I−D3 ⊗D3 and I are the unit tensor. In [25], a detailed analysis of the forms of the equations
of state for various types of shell symmetry was carried out. In particular, considering the square-cell
mesh shell, we can show that the material symmetry group of such a shell contains rotations around D3

at angles ±π/2 and reflections I−D1⊗ = D1 and I−D2 ⊗D2.
Taking into account the geometric meaning of the strain measures [26], it can be shown that the

expressions D1 ·E ·D1 and D2 ·E ·D2 describe tensile-compression deformations in theDα directions.
Comparing the expressions for the strain measures (1.3) and (2.5), one can notice that the relations

ε1 = D1 ·E ·D1, ε2 = D2 ·E ·D2, K = Dα ⊗ kα

are satisfied if we assume that the position vectors r and x, as well as the rotation tensors P and Q are
the same: r=x, P=Q.

Thus, the deformation energy of the micropolar shell, corresponding to the continuous model of the
mesh shell, has the form

W = U(D1 ·E ·D1,D1 ·K) + U(D2 ·E ·D2,D2 ·K) (2.6)

that is, it represents a special case of the general relation (2.4). In other words, we can assume that
the equations of state of a micropolar shell are completely determined by the defining relations of elastic
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fibers. Thus, to determine the static deformations of the mesh shells in the integral sense, it is possible
to use finite element methods and special types of finite elements developed in the framework of the six-
parameter theory of shells [15, 17–19]. Note also that the form of the equation of state (2.6) is similar to
that used in the nonlinear theory of elasticity [27], where the potential deformation energy is represented
as a sum of the form W = f(λ1) + f(λ2) + f(λ3), where λi is the main elongations, and f is a certain
function. The case of inextensible fibers was previously considered in [28].

3. CONCLUSION
A continuum model of a mesh shell, formed by two families of flexible nonlinearly elastic fibers that

retain their orthogonality in the process of deformation, is proposed. An expression for the deformation
energy of the shell is obtained, which inherits the properties of fibers and is a special case of the
general equations of state of the nonlinear theory of micropolar shells. This formulation allows the use
of previously developed methods for solving boundary value problems for continual shells in the case
of mesh shells. We note that here the assumption of preserving the orthogonality of the fibers was
essentially used, its violation leads, generally speaking, to more complex models, see, for example,
[29, 30]. A continuum model of a mesh shell, formed by two families of flexible nonlinearly elastic
fibers that retain their orthogonality in the process of deformation, is proposed. An expression for the
deformation energy of the shell is obtained, which inherits the properties of fibers and is a special case
of the general equations of state of the nonlinear theory of micropolar shells. This formulation allows
the use of previously developed methods for solving boundary value problems for continual shells in
the case of mesh shells. We note that here the assumption of preserving the orthogonality of the fibers
was essentially used, its violation leads, generally speaking, to more complex models, see, for example,
[29, 30].
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21. J. Chróścielewski, W. Pietraszkiewicz, and W. Witkowski, “On Shear Correction Factors in the Non-Linear
Theory of Elastic Shells,” Int. J. Sol. Struct. 47 (25), 3537–3545 (2010).

22. W. Pietraszkiewicz, “The Resultant Linear Six-Field Theory of Elastic Shells: What it Brings to the Classical
Linear Shell Models?” ZAMM 96 (8), 899–915 (2016).

23. A. I. Lurie, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980) [in Russian].
24. L. P. Lebedev, M. J. Cloud, and V. A. Eremeyev, Tensor Analysis with Applications in Mechanics (World

Scientific, New Jersey, 2010).
25. V. A. Eremeyev and W. Pietraszkiewicz, “Local Symmetry Group in the General Theory of Elastic Shells,”

J. Elast. 85 (2), 125–152 (2006).
26. W. Pietraszkiewicz and V. A. Eremeyev, “On Natural Strain Measures of the Non-Linear Micropolar Contin-

uum,” Int. J. Sol. Struct. 46 (3–4), 774–787 (2009).
27. K. C. Valanis and R. F. Landel, “The Strain–Energy Function of a Hyperelastic Material in Terms of the

Extension Ratios,” J. App. Phys. 38 (7), 2997–3002 (1967).
28. V. A. Eremeyev, “On Characterization of an Elastic Network within the Six–Parameter Shell Theory,” in

Shell Structures: Theory and Applications, Ed. by W. Pietraszkiewicz and W. Witkowski (CRC Press,
Boca-Raton, 2018), pp. 81–84.

29. F. dell’Isola and D. Steigman, “A Two-Dimensional Gradient–Elasticity Theory for Woven Fabrics,” J. Elast.
118 (1), 113–125 (2015).

30. L. Placidi, E. Barchiesi, E. Turco, and N. L. Rizzi, “A Review on 2D Models for the Description of Panto-
graphic Fabrics,” ZAMP 67(5), 121–140 (2016).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl



