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Abstract: In this paper we present a genetic algorithm (GA) for creating hypothetical virtual
portraits of historical figures and other individuals whose facial appearance is unknown. Our
algorithm uses existing portraits of random people from a specific historical period and social
background to evolve a set of face images potentially resembling the person whose image is to be
found. We then use portraits of the person’s relatives to judge which of the evolved images are
most likely to resemble his/her actual appearance. Unlike typical GAs, our algorithm uses a new
supervised form of fitness function which itself is affected by the evolution process. Additional
description of requested facial features can be provided to further influence the final solution
(i.e. the virtual portrait). We present an example of a virtual portrait created by our algorithm.
Finally, the performance of a parallel implementation developed for the KASKADA platform is
presented and evaluated.

Keywords: genetic algorithms, fitness function, KASKADA platform, parallel processing, high-
performance computing

1. Introduction

Throughout history, there lived a great number of extraordinary people
who managed to leave their mark on the world and whom we thus remember to
this day. Alas, due to the technology limits of the past and historical or personal
circumstances, their physical appearance often remains unknown to us. It has
always been the domain of artists to, through their imagination and skill, recreate
the possible appearance of such figures. But then an intriguing question was raised:
could we conduct a similar process using modern high-performance computing
technology and artificial intelligence algorithms?
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146 H. Krawczyk et al.

Figure 1. Virtual portrait creation – problem overview

We propose a genetic algorithm which can be used to create such a virtual
portrait of a historical figure whose exact appearance is unknown, but whose
family members’ portraits are available. It is of course impossible for us to create
a portrait perfectly faithful to reality, as there exists no scientific method which
would allow us to perform such a reconstruction. But considering the fact that
there is often significant resemblance among relatives, it may be possible to create
a virtual image which would at least give us some idea about what the historical
figure could have looked like. The general idea is presented in Figure 1.

1.1. Adopted concepts and methods

Genetic algorithms (GAs) are a popular artificial intelligence method
for solving optimisation problems through mimicking the process of evolution.
There is a population of potential solutions which are subject to recombina-
tion/reproduction (producing new solutions from existing ones) and mutation (in-
troducing small random modifications to the solutions). The solutions are rated
by a fitness function which corresponds to the function whose optimal value is
to be found. As in natural selection, there is selection pressure which favours the
most fit solutions (i.e. those which are closest to the optimum). There are differ-
ent methods of performing the selection process, e.g. roulette-wheel selection or
tournament selection. For an introductory description of GAs, see [1].

Variations of genetic algorithms have been proposed for dealing with com-
plex optimisation problems, such as multiobjective genetic algorithms (MOGAs)
[2–6]. It has also been suggested that it can prove beneficial to tweak the formula
of the fitness function during consecutive iterations [7].

For analysing similarities between different face images, we use the eigen-
faces algorithm. The algorithm extracts characteristic facial features from images
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A Parallel Genetic Algorithm for Creating Virtual Portraits of Historical Figures 147

by comparing them with an ‘average’ face computed from a set of various portraits
of random people. These extracted features (eigenfaces) can then be used for de-
termining similarity between provided face images. For a detailed description of
the eigenfaces method, see [8, 9].

Face image transformations are realised in our algorithm through a tech-
nique called morphing, often used in computer generated animations. Morphing
uses a pair of 2D images or 3D models and through mathematical transformations
computes a new one which resembles both of the originals in the pair (see [10–12]).
In our case, the thin plate spline (see [13]) mathematical model is used internally
for 2D image warping.

The image analysis and transformation processes performed by our algo-
rithm require high-performance computing techniques. Fortunately, the recombi-
nation, mutation and rating phases of GAs can generally be conducted indepen-
dently for different elements of the population, and therefore such algorithms can
usually benefit from parallel processing techniques (see [14, 15]).

1.2. Our contribution

The main idea of our genetic algorithm is to use portraits of people living
in the appropriate historical period to ‘evolve’ a set of new faces which would
potentially be reminiscent of the actual appearance of the historical figure. The
process of ‘evolution’ is controlled through comparison with available portraits of
the historical figure’s relatives and a set of provided descriptions of facial features.

One of the main problems associated with developing the algorithm was
the fact that a clear definition of an appropriate fitness function is difficult to
formulate. Furthermore, the set of input images on which the function is based
tends to be very limited in size (only a limited set of original historical portraits
may be available).

As a novel contribution introduced in our algorithm, we propose a new form
of a fitness function whose values are affected by the genetic evolution process.
This means that as newly generated face images are added to the population
during every iteration, they are used to update the set of images used by the
fitness function and so improve the process of fitness rating. Consequently, the
values of the fitness function change together with the evolution of the population.
We argue that this technique allows us to obtain better final results as well as
overcome the problem of limited size of the input portraits set. Furthermore,
our function can also be ‘supervised’ through additional parameters, which allow
supplementary information about facial features to be incorporated into the fitness
rating process. This supervision provides additional control over the appearance
of the created virtual portraits.

To achieve acceptable computation times, we developed a parallel imple-
mentation of our algorithm. For this purpose, we used the KASKADA platform
(see [16, 17]), which allowed us to efficiently develop and execute the implemen-
tation on the Galera+ compute cluster [18].
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148 H. Krawczyk et al.

In the next section, we provide a detailed description of our algorithm
and various parameters which can be used to control it. We then present an
example case of creating a virtual portrait with our algorithm. In the final section,
a parallel implementation for the KASKADA platform is presented together with
a performance evaluation.

2. Algorithm description

As mentioned in the Introduction, our algorithm is in many ways analogous
to classical genetic algorithms [1]. There is a population of face images, which
are rated, selected, recombined and mutated to form new generations. A general
overview of the algorithm is presented in Figure 2.

Figure 2. An overview of the algorithm

2.1. Input data

The input data set consists of portraits of random people living in the same
period and having a similar social background as the historical figure whose virtual
portrait we want to create. Each face image is additionally described by locations
of characteristic points marking specific facial features (e.g. eyes or mouth, see

tq116t-e/148 3I2013 BOP s.c., http://www.bop.com.pl

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


A Parallel Genetic Algorithm for Creating Virtual Portraits of Historical Figures 149

Figure 3. Historical portraits with facial features marked through characteristic points

Figure 3). The points are determined manually using a visual software tool and are
stored in XML documents. This set of images is inserted into the initial population
and participates in the evolution.

By using historical portraits as a base for our algorithm we want to assure
that the generated virtual portraits would have a general appearance appropriate
for the specific historical period.

2.2. Fitness function update and population rating

Similarly to other GAs, our algorithm uses a fitness function to rate the
evolved specimens so that the best (‘fittest’) results can be identified. An overview
of the proposed dynamic fitness function is presented in Figure 4. As can be seen
in the illustration, the rating process is based on different data sets.

Firstly, there is a set of portraits of relatives of the historical figure. Every
portrait has a certain weight associated with it, which depends on the degree of
consanguinity, e.g. a father’s portrait would have a higher weight than a cousin’s
portrait.

As described in the Introduction, an eigenface-based face recognition algo-
rithm is used by the fitness function for rating the evolved faces. This approach
requires a base set of face images which is used to generate a set of eigenfaces. For
this purpose, we use two image sets: the original historical portraits and the vir-
tual portraits generated in the previous iterations. After this step, any face image
can be compared with the obtained set of eigenfaces. For each portrait, a vector
is returned which describes the portrait’s similarity to the faces from the base set
(the vector defines the portrait’s position in an n-dimensional space, where n is
the number of the eigenfaces). This vector serves as a numerical description of the
associated portrait. The difference between two such vectors serves as a measure
of similarity between the two corresponding face images. Thus, the eigenfaces al-
gorithm allows us to compare the appearance of the generated virtual portraits
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150 H. Krawczyk et al.

Figure 4. An overview of the proposed dynamic fitness function

Figure 5. Examples of different results achieved through providing different sets
of requested facial features
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to the provided set of relatives’ images. The portraits with a higher degree of
similarity are assigned a better fitness rating.

Our algorithm allows additional information about facial appearance to be
incorporated into the fitness function by providing a description of facial features.
The preferred shape of individual face parts (e.g. eyes size, nose shape, mouth
width, etc.) can be specified by providing locations of appropriate characteristic
points. These points can be, for example, established from a textual description
in a way analogous to what was presented in Figure 3. This information can be
used to ‘supervise’ the behaviour of the fitness function and thus to tweak the
appearance of the final virtual portrait (see Figure 5).

As mentioned in the introduction, our fitness function differs from those
found in other GAs. In the classical approach, the function remains fixed during
the whole computation time. In our algorithm, we use a dynamic fitness function
which is affected by the evolution process. In every iteration, when a new set of
portraits is evolved, it is used to update the set of images used by the eigenfaces
algorithm (illustrated as the highlighted part of Figure 4), which causes the fitness
function to change its values. We find such a function more appropriate for solving
the problem of virtual portrait generation.

Before the results are presented, one peculiar aspect of the discussed
problem should be noted which differentiates virtual portrait generation from
most other optimisation problems. In our case, we are not simply interested in
obtaining the fastest convergence to the optimal solution. In fact, such an optimal
solution, i.e. a face image with the greatest degree of similarity to the historical
figure’s relatives, would be a simple ‘average face’ computed from the provided
relatives’ portraits (assuming no additional facial features are requested). This
‘average face’ could be generated with the morphing technique (described in
Section 2.4), which would require neither an advanced optimisation algorithm
nor significant computation resources.

Instead of taking this approach, we decided that our algorithm should
incorporate some degree of randomness, which is also present in the natural
processes which determine our facial appearance. As members of any family are
never identical, but all have some characteristic, ‘random’ features, we do not
focus on obtaining the ‘ideal’ result. Instead, we try to generate portraits which are
similar to the provided relatives’ images, but also have some random deviations.
This is achieved through the use of the dynamic fitness function.

Figure 6 compares the fitness values obtained with a fixed and a dynamic
fitness function (lower values mean greater similarity to the relatives’ portraits).
The values were normalised so that ‘1.0’ denotes the value obtained for the initial
population, i.e. the input set of historical portraits. From the perspective of
classical optimisation problems, the fixed fitness function seems to perform better,
as the obtained minimal value is significantly lower than in the dynamic case.
In other words, a single ‘optimal’ portrait is created. In the dynamic case, the
function’s values change between iterations and so there is no strict convergence
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Figure 6. Fitness function values obtained for the fixed and dynamic case

Figure 7. Results obtained using the fixed (left) and the dynamic (right) fitness function

to one optimal solution. Consequently, the results have higher (i.e. worse) fitness
rating than in the case of the fixed function, but are also more varied.

Although such characteristics would probably discredit the dynamic fitness
function in the classical optimisation problems, we find it appropriate to use it
for virtual portrait generation. The algorithm using the dynamic function tends
to produce more varied results which often also seem more realistic, cf. Figure 7.
The introduced degree of randomness makes the algorithm more similar to the
genetic and environmental processes occurring in nature. It should also be noted
that our approach of using images generated in previous iterations allows us to
overcome to problem of limited input data set, as it gives us a greater degree of
freedom in manipulating the base portraits set used by the eigenfaces algorithm.
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2.3. Selection

Face images are selected for recombination using a probabilistic tournament
selection: a random set of faces is chosen for a tournament, and the faces with
better rating are more likely to ‘win’ (i.e. be selected for recombination). The
selection phase is similar to procedures found in other genetic algorithms and so
will not be described here in detail.

The selection process can be controlled through standard parameters:

• number of iterations – the number of evolution iterations to conduct. If this
parameter is too low, the result face images may not resemble the provided
portraits of the historical figure’s relatives. If the parameter is too high, the
result images may be blurry or distorted;
• survival rate – determines how many of the strongest specimens (i.e. the
highest rated images) should be kept for the next iteration. If too few
specimens are kept, some highly rated images may be discarded;
• breed size – determines how many new images shall be generated every
iteration. Increasing this value improves the degree of variety of images
in the population (more images are created, each having some random
mutations) but also increases the computation time;
• tournament size – number of images chosen for probabilistic tournament
selection. Can be used to adjust selection pressure.

The specific values of the parameters were adjusted experimentally.

2.4. Recombination and mutation

Recombination and mutation are performed on the characteristic points
identified on every processed face (cf. Figure 3). First, for each pair of faces
selected for recombination, an ‘average’ set of points is computed. Then, slight
random modifications are applied to the points, resulting in modifications of facial
features (e.g. bigger eyes, narrower nose), see Figure 8.

As mentioned in the Introduction, the actual image of every newly evolved
face is created with the morphing technique. The first step of the morphing
procedure is to take each face from a recombination pair and warp the images
so that their characteristic points match the ones generated in the previous step.
After both images are transformed, they are blended together to produce a new
portrait of a person similar to both of its ‘parents’, see Figure 9.

Additional adjustments can be introduced to the mutation process through
various control parameters:

• mutation strength – determines the extent of introduced characteristic
points random displacement and so affects the overall degree of mutation.
Higher mutation strength increases face variety, but may also lead to
significant image distortion. There are different mutation strength factors
specified for different parts of the face. This means that the degree of
allowable mutations differs between face regions. Choosing those factors
incorrectly may lead to unrealistic face mutations;
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Figure 8. Examples of nose mutations (effect exaggerated for presentation purposes)

Figure 9. Face morphing – the intermediate image (in the middle) is created from the other
two and so resembles both of them
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• mutation damping – determines the degree by which the mutation strength
is reduced in every iteration. This reduction allows more subtle modifica-
tions to take place as the algorithm progresses;

• sharpening strength – the morphing procedure causes the resulting images
to appear blurry, especially after many iterations. To prevent this effect,
a sharpening filter may be used. A sharpening factor that is too high
results in visible artifacts.

Similarly to the selection parameters, the values of the above parameters
were chosen empirically.

2.5. Output

After each iteration, the algorithm proposes a set of ten portraits which
were rated as the best from the last population (see Figure 10). As it is hard for
a computer to judge facial appearance, the final choice of the most appropriate
face is left to the personal judgement of a human operator.

Figure 10. Sample output images generated by the algorithm

As with many other genetic algorithms, the stopping criteria cannot be eas-
ily defined. During our experiments, we observed that after a number of iterations
the results become increasingly similar and the visual appearance of the generated
portraits does not improve with further iterations. Figure 11 shows a numerical
measure of difference between images generated in consecutive iterations. The
values were normalised so that ‘1.0’ denotes the difference between the portraits
generated during the first two iterations. We found that to obtain a satisfactory
solution, our algorithm needs about fifty iterations, which corresponds to rela-
tive differences of about 0.1. Further processing introduces only minor changes to
the generated virtual portraits. If the number of iterations is set too high (over
150), the images appear blurry and distorted, which is a consequence of using the
morphing algorithm.
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Figure 11. Differences in portraits generated in consecutive iterations

3. Example

As an example, we attempted to create a virtual portrait of a 17th/18th

century scientist Daniel Gabriel Fahrenheit. Although his name is well-known
because of his inventions (e.g. the popular temperature scale), there are no known
paintings or drawings which would depict his facial appearance. Fortunately, a few
portraits and statues of his relatives were available for us to use in our algorithm.
We also used a set of portraits of people living in the same historical period. The
process of creating Fahrenheit’s virtual portrait is presented in Figure 12.

4. Distributed implementation for

the KASKADA platform

Firstly, a sequential implementation of the algorithm was developed. As
shown in Figure 2, there are four main processing stages:

• A: fitness function update,
• B: population rating,
• C: selection,
• D: recombination and mutation.

In our implementation, stages B and D can be parallelised, while stages
A and C must be performed serially. The sequential algorithm was executed and
the execution times of different program fragments were measured, as shown in
Figure 13. The percentage P of execution time taken up by the parallelisable
operations equals:

P =
tB+ tD
t
≈ 99.74% (1)
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Figure 12. Creating a virtual portrait of D. G. Fahrenheit

Figure 13. Execution time measurement for different stages of the algorithm
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where tA, tB , tC , tD denote the time taken by the corresponding processing stages,
and t is the total execution time, cf. Figure 13.

According to Amdahl’s law (see [19, 20]), the speedup SN gained from
running an algorithm on N parallel processors is equal to:

SN =
1

(1−P )+ P
N

(2)

In our case, the maximum potential speedup SMAX (assuming N→∞) would be
equal to:

SMAX=
1
1−P

≈

1
1−0.9974

≈ 384.62 (3)

Although the obtained SMAX value is merely a theoretical one, it indicates that
the computation time could be significantly reduced using parallel processing
techniques.

Figure 14. Overview of a master-slave implementation of the proposed algorithm
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A parallel implementation of our algorithm was created for the KASKADA
platform [16, 17]. The platform supports development and execution of distributed
algorithms in two processing scenarios: multimedia data stream processing and
master-slave processing. The second model can be successfully used for imple-
menting genetic algorithms [14, 15]. Before the master-slave implementation of
our algorithm could be developed, some of the processing stages had to be reor-
ganised (see Figure 14). The master is responsible for all operations which must
be performed globally, i.e. on the whole population. This includes algorithm ini-
tialisation, fitness function update (i.e. creation of new eigenfaces) and selection
of face pairs for recombination and mutation. The slave part performs all tasks
which can be parallelised, i.e. can be done in isolation from the whole population.
These tasks are: face recombination and mutation and population rating. Most
of the compute-intensive operations (especially face morphing) are performed by
the slaves and hence a good degree of parallelisation is achieved.

Tests of the implementation have been performed on the Galera+ compute
cluster [18] controlled by the KASKADA platform. Each of the cluster’s nodes
is equipped with two Intel Xeon L5640 CPUs and 16GB of RAM. Each of the
processors contains 6 physical computing cores equipped with the Intel Hyper-
Threading technology (see [21]) thanks to which every physical core is interpreted
as two logical cores by the operating system. Thus, on every computing node there
are 24 logical CPUs available.

Performance results obtained for the parallel implementation of our algo-
rithm running on a single computing node are presented in Figure 15. By tn:p
we denote the execution time of a single iteration of our algorithm on n compute
nodes, every node running p parallel threads. A single iteration of a serial version
of the algorithm took t1:1 = 14038 seconds. For up to 13 threads, the observed
improvement in performance was nearly linear. The minimum iteration time for
a single node was achieved for 22 threads and was equal to t1:22=1087 seconds.

Next, the performance was measured for multiple compute nodes. The
results are presented in Figure 16. One node is always used for the master
process and remains idle most of the time, while the others execute the slave
processes which perform most of the computations. Because of this, only a very
limited improvement is gained from running the algorithm on two nodes. For
a larger number of nodes, a significant improvement can be observed. The shortest
iteration time was obtained for 48 nodes and was equal to t48:22=45 seconds. By
comparing this value with the time achieved by the sequential implementation,
we can compute the actual speedup Sactual:

Sactual=
t1:1

t48:22
≈

14038
45
≈ 311.96 (4)

5. Final remarks

We presented a genetic algorithm for generating virtual portraits of his-
torical figures whose facial appearance is unknown. Historical portraits from the
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Figure 15. Iteration times and performance improvement for different numbers
of parallel threads (single computing node)

Figure 16. Iteration times and performance improvement for different numbers
of computing nodes
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appropriate period are used as a basis for the algorithm to ensure a proper general
appearance of the generated images. The output images are rated by comparison
with portraits of family members and description of specific facial features. A new
dynamic type of fitness function was created to overcome the problem of limited
number of available input images and improve the quality of the generated por-
traits. A parallel implementation was developed for the KASKADA platform and
it was established that a high speedup can be obtained when executing the algo-
rithm in a high-performance compute cluster environment.

It must be noted that we cannot claim our algorithm to produce scien-
tifically accurate results. Genetic and environmental processes which influence
human appearance are still largely a mystery to us and so are practically impos-
sible to simulate. Our algorithm should be seen only as a first step in solving the
problem of creating virtual portraits.

We recognise the possibility of future improvements to our algorithm which
could be achieved by utilising medical and biological theories concerning the facial
appearance of human beings. Furthermore, possible future advancements in these
areas may make the process of re-creating realistic virtual portraits easier to model
and simulate. It is also an interesting question if our dynamic fitness function can
be adapted and used in solving other classes of problems.
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