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A B S T R A C T

In this study, a novel procedure for identification of ultrasonic wave attenuation in heterogeneous materials 
based on signal energy was presented. The main objective was to develop a method for simple and robust 
determination of wave characteristics for further use in numerical modelling of ultrasonic wave propagation 
including attenuation of signals. Experimental investigations supported by numerical simulations were proposed 
as an approach to determine the mass proportionality coefficient in the Rayleigh proportional damping model. A 
number of concrete samples with different sensor configurations were investigated to prove the efficiency of the 
developed algorithm. The limitations of the established approach were characterized, specifically the maximum 
frequency that can be considered should be determined in advance. The ability of the proposed method to detect 
fracture in concrete samples under three-point bending was initially verified for further development of the 
attenuation-based diagnostic technique.

1. Introduction

Concrete structures are among the most widely used in civil engi-
neering today because of their high load-bearing capacity, durability, 
and relatively low production costs. Despite their many advantages, 
there are some significant issues that need to be addressed. First of all, 
concrete is a brittle material that tends to crack during service. The 
appearance of small cracks induced by shrinkage or exceeding of 
strength in tension areas is a common phenomenon in properly designed 
and manufactured concrete. However, if the cracks propagate and dilate 
excessively, there is a risk of catastrophic failure due to fracture of 
concrete itself or rebar corrosion resulting from the penetration of water 
or chemical aggression. This issue leads to an increasing interest in the 
diagnostics of concrete structures, preferably using non-destructive 
techniques.

Due to its high reliability and wide range of applications, the phe-
nomenon of elastic wave propagation is the basis of numerous methods 
dedicated to the non-invasive monitoring of state of structural elements 
[1–6]. The waves are excited using an external source (e.g., ultrasonic 
transducer) on the surface of tested element (active sensing) or can arise 
as a result of changes in the structure of the sample, e.g., cracking under 

load (passive approach). In the current study, the first approach is dis-
cussed. The excited waves can propagate in elastic medium and interact 
with its structural and material discontinuities, making them a signifi-
cant tool for detecting and imaging of damage in various materials. One 
of the most important features of ultrasonic waves is their attenuation, i. 
e., the loss of intensity of signal amplitude during propagation, 
measured in different locations of the structure. Due to the high sensi-
tivity to changes in the mechanical parameters of the medium and its 
internal structure, attenuation can provide a significant information 
about the current state of tested elements. In the case of heterogeneous 
materials, such as concrete, attenuation can be used to characterise the 
aggregate distribution, the concrete mix content or the presence of air 
voids.

Many researchers have used attenuation to characterise the me-
chanical performance and structure of cementitious elements. Gaydecki 
et al. [7] identified attenuation in concrete cylinders manufactured from 
various mixes (with different aggregate sizes). They determined the 
attenuation coefficient based on ultrasonic measurements performed 
with transducers differing in central frequencies to develop relations 
between attenuation coefficient and frequency. Berthelot et al. [8] 
investigated the influence of concrete composition, wave frequency and 
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propagation distance on the attenuation of different mortars and con-
cretes. They tested rod-shaped samples with piezoelectric transducers 
attached to opposite ends of the rods and developed functions of the 
attenuation coefficient in relation to above mentioned factors. Philip-
pidis and Aggelis [9] analysed the wave propagation phenomenon in 
different cementitious materials (mortar, paste and concrete). They 
experimentally investigated cubic samples using the through- 
transmission technique in order to determine the influence of the 
water to cement ratio on the attenuation-frequency relations. Abdullah 
and Sichani [10] tested cubic samples made of concrete and plaster. 
They observed a significant impact of different factors, namely, the 
water to cement ratio, type of cement, granulation of aggregates, and 
replacement of cement with micro-silica, on the attenuation coefficient.

Ultrasonic wave attenuation has also been used as an indicator of the 
presence of damage in concrete structures. Yim et al. [11] used atten-
uation for non-destructive evaluation of air voids in concrete and 
cement paste. They proposed inserting PZT material between the tested 
sample and the conventional ultrasonic transducer, and to self- 
compensate the recorded signals. A significant growth of attenuation 
with the increasing content of voids was observed, especially for higher 
wave frequencies. Sun and Zhu [12] considered damage identification in 
reinforced-concrete elements. They evaluated the attenuation of bare 
bars to determine the damping coefficients of high order ultrasonic wave 
modes and then tested three bars embedded in concrete (one without 
defect, and two damaged, with honeycomb insert and void). Attenuation 
was found to be effective in detecting internal defects early in the curing 
process as well as at later stages.

An important aspect of ultrasonic wave-based non-destructive 
testing is the modelling of the wave propagation phenomenon. Nu-
merical simulations can be a significant tool supporting the interpreta-
tion and evaluation of experimental results. There are a number of 
approaches to modelling wave attenuation from which one of the 
simplest and most commonly used being Rayleigh proportional damping 
[13,14]. It consists of determining the mass and stiffness proportionality 
coefficients to determine the damping matrix. Ramadas et al. [14] 
considered the modelling of ultrasonic wave attenuation in glass/epoxy 
laminates using the influence of both coefficients. They compared nu-
merical simulations in finite element models with experimental results, 
obtaining a good agreement between the two approaches. Tian et al. 
[15] investigated the ultrasonic wave attenuation of stress waves in 
concrete beams. They developed an absorption attenuation model based 
on Rayleigh damping theory and time-reversal method. The predicted 
attenuation coefficients were verified by related experimental mea-
surements. Mohseni and Ng [16] detected debonding between fibre- 
reinforced polymer and concrete samples. They prepared 3D numeri-
cal models in Abaqus using Rayleigh damping and verified the results 
obtained with experimental investigations. Treiber et al. [17] analysed 
the influence of sand aggregate (different volume fractions) on the 
attenuation of concrete. They predicted the values of the attenuation 
coefficient using numerical models and compared the results with 
experimental investigations, obtaining a good agreement of both ap-
proaches. Sepehrinezhad and Toufigh [18] considered damage identi-
fication in polymer concrete samples. They tested concrete prisms 
prepared from different concrete mixes using various wave frequencies. 
The authors proved that attenuation was effective in evaluating micro- 
defects at an early stage of mechanical degradation. Additionally, they 
performed a model prediction of the wave signals and compared them 
with experimental results, obtaining satisfactory agreement. Ramanir-
aka et al. [19] determined the contribution of absorption and multiple 
scattering to the attenuation of elastic waves propagating in concrete 
samples. They investigated the influence of the contact level between 
aggregate and mortar in order to improve the agreement between nu-
merical and experimental results. Yu et al. [20] built a 2D numerical 
model of concrete beams using the spectral element method. They 
considered wave attenuation and phase velocity measurements as 
leading factors in the calibration of the model. A significant conclusion 

of the analysis was that the aggregate orientation had a significant effect 
on the wave parameters obtained. In recent years, some works utilizing 
machine learning and neural networks have been reported for the pre-
diction and identification of attenuation in seal coatings [21], tissue 
mimicking media [22–24], polyethylene pipes [25], and origami 
structures [26].The above-described works dealt with the identification 
of attenuation using classical approach, i.e., based on the amplitudes of 
signals collected in different sensors. It should be noted that this 
approach can be problematic while considering the experimental chal-
lenges with coupling conditions between the sensors and the sample 
surface, which can lead to difficulties in the assessment of the amplitude 
of the received signals. Furthermore, the identification of the Rayleigh 
proportionality coefficients requires the value of the wave velocity, 
which leads to problems with the automated identification of the time of 
flight of the wave between sensors in the case of a large number of 
signals.

In the present work, a novel three-stage procedure for the identifi-
cation of attenuation-related characteristics in concrete elements based 
on wave signal energy has been developed. The first stage requires nu-
merical simulation of wave propagation in a simplified two-phase model 
of the analysed heterogeneous material for arbitrary assumed training 
datasets with different frequencies and mass proportionality coefficients 
α used in the Rayleigh proportional damping model. The second stage 
consists of experimental measurements of wave signals on the physical 
model and determination of experimental values of α. In the third stage, 
the evaluated α values are treated as testing dataset which is verified by 
additional numerical simulations. The results obtained from the in-
vestigations performed on concrete samples proved the efficiency of the 
procedure. The proposed algorithm eliminates the issue of inaccurate 
bonding of sensors to the sample surface, because, even in the case of 
weakened adhesion between a particular sensor and the sample surface, 
the energy changes are not affected. Furthermore, the method does not 
require the calculation of the wave velocity for each individual signal. 
The additional objective of the study was to verify whether the devel-
oped procedure could be used for the fracture characterisation in con-
crete beams under bending. It was essential to confirm that the mass 
proportionality coefficient in Rayleigh damping model determined 
using the currently developed algorithm is sensitive to cracking of 
concrete elements. However, it was only an initial step for further more 
advanced analysis dedicated to the development of the attenuation- 
based diagnostic algorithm.

2. Theoretical background of ultrasonic wave attenuation

In the dynamic analysis, a common model that allows wave attenu-
ation to be included is Rayleigh proportional damping, which introduces 
damping into the equation of motion, resulting in a reduction of vibra-
tions over time. In the case of ultrasonic waves (which are high- 
frequency vibrations), this leads to wave attenuation, i.e., loss of 
amplitude of the wave signals during propagation. The model assumes 
that the damping constant c is a linear combination of mass m and 
stiffness k [14,27]: 

c = αm+ βk (1) 

In the above equation, α and β are the mass and stiffness propor-
tionality coefficients, respectively. The coefficients are related to the 
damping ratio with respect to the formula: 

ζ =
1
2

(α
ω + βω

)
(2) 

The above described model can be simplified by eliminating one of 
the coefficients (α or β) [14]. While considering only mass damping, the 
above equation can be simplified by eliminating β, thus, the mass pro-
portional factor can be calculated as: 

α = 2ωζ (3) 
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The elimination of any coefficient simplifies the problem, but in 
general can lead to an underestimation or overestimation of damping of 
the analysed structure. However, in the case of ultrasonic guided waves, 
some works have been carried out confirming the efficiency of using 
both coefficients and each of them separately (e.g., [14]).

For simple structural elements made of materials meeting the con-
ditions of the homogeneous isotropic material model (such as steel bars 
– see [27]), in which the wave propagation is not disturbed by the in-
ternal structure, it is relatively easy to determine attenuation-related 
characteristics (damping ratios and proportionality coefficients) by 
analysing specific wave signals. In the case of heterogeneous materials, 
such as concrete, the analysis is more complex due to multiple re-
flections of ultrasonic waves at the aggregates. The influence of the 
concrete micro-structure depends on the wave frequency [28]. In a low 
frequency-range (modal analysis range, up to 20 kHz), particular grains 
do not significantly influence the propagating waves. Above this limit 
(ultrasonic range), there is simple scattering (up to about 150 kHz) and 
multiple scattering (diffusion, 150 kHz – 5 MHz) due to the interaction 
of waves with particular grains. These effects cause the wave signals to 
be less clear for interpretation. Therefore, a different approach has to be 
developed. In the current paper it is proposed to use the energy of the 
ultrasonic signals as an indicator of attenuation changes.

Let consider a continuous time-domain signal s(t) determined be-
tween 0 and te. The total signal energy can be formulated as follows: 

Et =

∫ te

0
|s(t)|2dt (4) 

The signal energy can be calculated for each specific time instance τ, 
creating a function of cumulative energy as a function of time: 

E(τ) =
∫ τ

0
|s(t)|2dt, τ ∈ 〈0, te〉 (5) 

In the case of discrete signals su with N samples, the cumulative 
energy function can be calculated numerically as: 

ET =
∑T

u=1
s2
u , T = 1,2, ...,N (6) 

In certain cases, when the signal is expressed by an explicit function, 
the signal energy can be calculated analytically. For example, let 
consider a theoretical wave signal sc(t) in the form of a cosine function 
with the initial amplitude A, angular frequency ω, exponentially dam-
ped with a mass proportionality coefficient α, determined between 0 and 
te: 

sc(t) = Acos(ωt)e− ζωt = Acos(ωt)e−
αt
2 , t ∈ 〈0, te〉 (7) 

In this specific case, the cumulative signal energy can be computed 
as: 

E(τ) = A2e− ατ

2α(α2 + 4ω2)
⋅(4ω2(eατ − 1) + 2αω sin(2τω) − α2(1 + cos(2τω)

− 2eατ)), τ ∈ 〈0, te〉
(8) 

Fig. 1. Scheme for the determination of attenuation.
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It is evident that the cumulative energy depends on the angular 
frequency and the mass proportionality coefficient, and therefore the 
wave attenuation can be determined from the cumulative energy func-
tion. The typical ultrasonic wave signals recorded in concrete samples 
from the excitation in the form of a wave packet cannot be adequately 
described by a single cosine function. However, the apparently chaotic 
wave signals, resulting from the heterogeneous structure of material, are 
similar to the exponentially damped cosine, neglecting the initial part of 
the signal which is the result of a direct impact of the excitation.

3. A novel algorithm for signal energy-based identification of 
wave attenuation

In the current study, a novel algorithm for the identification of 
attenuation-related characteristics in concrete samples is presented 
(Fig. 1). First (stage I), training datasets are created with m different 
values of excitation frequency fi and mass proportionality coefficients 
α(n)

i , i = 1,2,…,m. In the current study two datasets were assumed, one 
with constant α(n)

i and another with α(n)
i linearly increasing with fre-

quency (resulting with a constant damping ratio ζ). For each dataset, a 
number of two-phase numerical models of the analysed structure are 
created. In each model, an actuator position is assumed, at which the 
wave is excited and n sensors are established, at which the numerical 
wave signals s(n)i,j , j = 1,2,…,n are received. The specificity of numerical 
simulation of wave propagation is later described in detail in Section 
3.3. For each signal, a cumulative energy functions E(n)

i,j are numerically 
computed using formula (6). Then, a set of b cumulative energy func-
tions E(s)

i,k , k = 1,2,…,b are calculated using formula (8) with different 

values of αk and fi. For each numerical energy function E(n)
i,j a synthetic 

energy function E(s)
i,k is fitted, allowing to determine the optimal mass 

proportionality coefficients α(n)
i,j . The fitting algorithm is based on the 

minimization of residual sum of squares (RSS [29]) between the func-
tions, individually for each signal energy E(n)

i,j .
The fitting procedure is as follows. First the signal energy function is 

normalised and the time limits for optimisation are established (Fig. 2a). 
Since the signal energy function is disturbed by the influence of the 
direct impact of the excitation, the initial part of the function must be 
truncated. Moreover, the final part of the signal, which is almost con-
stant also must be eliminated to avoid false fitting of incorrect mass 
proportionality coefficients (this part does not differentiate significantly 
synthetic energy functions for different α coefficients). For this reason, 
two characteristic points in the signal energy are determined for the 
following energy levels: E0 = 0.01 and E2 = 0.99. The corresponding 
time instants are denoted as t0 and t2. Then, the midpoint t1 between t0 
and t2 is calculated. The reason for determining t1 this way was the 
observation that the first half of the energy function include significant 
disturbances while the following part is smoother, allowing for more 
reliable fitting (as in example in Fig. 2a). The signal is cut between t1 and 
t2 establishing the time window Δt for optimisation. Independently, the 

set of synthetic energy functions for a specific range of mass propor-
tionality coefficients are calculated and normalised (Fig. 2b). Since the 
synthetic signal energy function (8) is based on an exponential function, 
it is characterised by self-similarity, i.e., if cut for any time range (with 
constant time window) and normalised from 0 to 1, it will be the same, 
thus no additional editions are required for this functions. Then, the cut 
signal energy is translated through time axis on each synthetic energy 
curve and the RSS is calculated for each position of cut signal energy, 
using formula ([29]): 

RSSi,j,k =
∑

(E(n)
i,j − E(s)

i,k )
2

(9) 

From all the RSS values, a minimum is selected, indicating the best 
fitted synthetic energy at a specific translation. As a result, α(n)

i,j values are 
obtained. Since the distance between the sensor and actuator influences 
the amplitude of a direct wave, it is important to note, that sensors 
located closer to the actuator are characterised by higher damping. 
Thus, the values calculated for different sensors are not equal and 
require an averaging algorithm to obtain a single value of α that char-
acterises the whole model. It was observed that α decreases exponen-
tially with the distance from the sensor, thus it was assumed that the 
weighting algorithm should include the exponent of the distance xj be-
tween sensor and actuator. Thus, the mean mass proportionality coef-
ficient α(n)

a,i for each dataset is expressed as: 

α(n)
a,i =

∑n

j=1
exj α(n)

i,j

∑n

j=1
exj

(10) 

It is important to note that the obtained values of α(n)
a,i significantly 

differs from the initial values assumed for the training datasets α(n)
i (see 

Fig. 5 in later section 4.1.1). This is due to the fact that the wave signals 
are affected by the multiple reflection and diffraction of the wave at 
aggregates synthetically reducing the attenuation. What is more, this 
influence is different for different excitation frequencies fi. For this 
reason, a correction algorithm is required. It was assumed that the 
corrected value of α can be calculated with respect to the formula: 

α(n)
c,i (p, q, r) = r(fi)

p( α(n)
i
)qα(n)

a,i (11) 

In the formula, r is a constant reduction coefficient, and p and q are 
constant exponents of frequency fi (in kHz) and αi (in rad/s), respec-
tively. Ranges of p, q, and r coefficients are assumed and a corrected α(n)

c,i 

is calculated for these ranges. Then, an absolute relative error δα be-
tween corrected and initial values is calculated for each estimated value 
of α: 

δα(p, q, r) =
⃒
⃒
⃒
⃒
α(n)

c,i (p, q, r) − α(n)
i

α(n)
i

⃒
⃒
⃒
⃒ (12) 

Next, a mean error is calculated including values from all analysed 
training datasets. The minimum error is searched to determine the 

Fig. 2. Optimisation algorithm for determination of mass proportionality coefficient: a) cumulative energy of signal with established range for calculation; b) 
shortened signal energy function with synthetic cumulative energy functions for different mass proportionality coefficients; c) shortened signal energy function with 
fitted synthetic energy function.
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optimal values of p, q, and r. The above-described steps lead to the 
formula for estimation of α for the specific geometry of sample, material 
parameters and sensor locations.

The second stage (II) is the experimental investigation. The set of 
wave propagation measurements are conducted for the physical model 
of the sample that was reflected in the numerical simulation, for the 
same excitation frequencies fi. It is important to note that the experi-
mental α(e)

i values are unknown. As a result, a set of experimental wave 
signals s(e)i,j , j = 1,2,…,n is obtained, for which cumulative energy func-

tions E(e)
i,j are calculated using formula (6). Further steps are analogous to 

numerical calculations. The set of α(e)
i,j values are calculated based on the 

comparison with synthetic energy functions, using formula (9). Then, 
the averaged value α(e)

a,i is obtained using formula (10). Since the initial 
values of α remain unknown, the correction formula obtained from the 
numerical calculations is used with the assumption that the corrected 
value α(e)

c,i is equal to the unknown value α(e)
i . Thus, formula (11) changes 

form to: 

α(e)
c,i =

(
r(fi)

pα(e)
a,i

) 1
1− q (13) 

The obtained values of α(e)
c,i are then used as a testing dataset for the 

stage III.
The testing dataset consisting of m values of fi and α(ne)

i = α(e)
c,i is used 

to verify the proposed algorithm in stage III. Numerical simulations in 
the same two-phase numerical models as in stage I are performed for 
each pair of values. The number of n signals s(ne)

i,j is collected and their 

cumulative energy functions E(ne)
i,j are numerically computed using for-

mula (6). The RSS-based optimisation algorithm used previously (for-
mula (9)) is introduced to determine a set of α(ne)

i,j values. The values are 

averaged using formula (10), allowing to obtain α(ne)
a,i values. The same 

correction formula (11) as in the numerical stage is used to determine 
the corrected α(ne)

c,i values. These values can be verified by calculating the 

error with respect to the initial values α(ne)
i . If the verification is suc-

cessful, i.e., the error is sufficiently low, the corrected values treated as 
testing dataset are final values that can be used for further modelling 
αf ,i = α(ne)

i = α(e)
c,i . In the case of a different object of study (e.g., different 

material, sample geometry or sensor configuration), the algorithm can 
be repeated to obtain specific correction functions.

4. Materials and methods

4.1. Object of research

The research was conducted on concrete beams with a length of 160 
mm and a square cross section with dimensions of 40 × 40 mm2. The 
samples were cut from a concrete prism with the dimensions of 100 ×
100 × 500 mm3 to avoid the effect of separation of ingredients that 
could occur in a small mould. The concrete mix was prepared from: 
cement type CEM I 42.5R (330 kg/m3), water (165 kg/m3), aggregate 
0–2 mm (710 kg/m3), aggregate 2–8 mm (664 kg/m3), aggregate 8–16 
mm (500 kg/m3), and super-plasticizer (0.7 % of the cement content). 
Five samples were prepared for different purposes. First (#A) was used 
to identify the attenuation characteristics in undamaged state, and 
another four denoted as #B1-#B4 were used to observe the changes in 
attenuation during the bending test.

4.2. Experimental investigations

The samples were tested using guided wave propagation method 
under different conditions. Sample #A was tested without external load, 
situated freely on the laboratory table. Independently, samples of type 
#B were subjected to three-point bending test using universal testing 
machine Zwick/Roell Z10. The distance between the supports was 120 
mm. Each specimen #B1-4 was tested with the same testing parameters. 
Initially, the preload of 50 N was applied and the bending process was 
conducted with a constant displacement rate of 0.05 mm/min until 
reaching the limit displacement of 0.5 mm, resulting with a total test 
time of 600 s. The input ultrasonic signals were generated using an 
arbitrary waveform generator and amplified by a high voltage amplifier. 
The excitation was a wave packet modulated from a 5-cycle sinusoidal 
function using the Hann window. Seven multilayer piezoelectric trans-
ducers NAC2024 manufactured by Noliac were used to excite and collect 
propagating elastic waves. One of the transducers acted as an actuator 
(A), another one (C) was a control sensor used to trigger measurements 
and the remaining ones operated as main sensors (S1-S5) for the actual 
signal collection (number of sensors n = 5). The configuration of sensors 
for both sample types is presented in Fig. 3. The sensors were placed on 
the surface of the sample with even spacing to record wave signals at 
different locations. The aim was to collect as much information as 
possible about propagating waves and characterize the wave attenua-
tion at various distances from the actuator (a single signal at a specific 
point would not adequately represent the behaviour of waves). Ultra-
sonic wave signals of 5 ms length were recorded using a digital 

Fig. 3. Configuration of sensors: a) for sample #A; b) for samples #B1-4.
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oscilloscope with a sampling frequency of 8 MHz.
In the case of sample #A (Fig. 3a), several measurements were 

consecutively conducted with different wave frequencies in a range of 
80–450 kHz with a step of 10 kHz, resulting in 38 independent mea-
surements. The samples #B1-4 investigated during three-point bending 
were tested with different sensor configuration (Fig. 3b) to verify the 
ability of the developed algorithm to test under various conditions. The 
sensors were located with smaller spacing than in sample #A to better 
characterize progressing crack that was expected to arise in the central 
part of the sample. Automatic signal excitation and acquisition was 
assumed with a constant time step of 1 s. It is important to note that the 
excitation frequency alternated between two values (100 kHz and 300 
kHz for samples #B1-2 and 200 kHz and 400 kHz for samples #B3-4). 
This operation resulted with almost simultaneous (shifted in time by 1 s) 
measurement of wave propagation with two different frequencies in the 
same sample. As a result, two sets of 300 signals with time step of 2 s 
were obtained for each sample of type #B.

4.3. Numerical modelling

A number of numerical models were prepared to simulate the wave 
propagation in samples #A and #B. The analysed beam was modelled in 
plane stress using Abaqus/Explicit software. A simplified two-phase 
heterogeneous model (Fig. 4) was prepared using the geometry of a 
slice of the analysed beam with real aggregate arrangement. The ho-
mogeneous isotropic material model was adopted for each phase 
(mortar and aggregates). The mechanical parameters of each phase are 
presented in Table 1. All elements were discretised with element type 
CPS4R, i.e., a 4-node bilinear plane stress quadrilateral finite element 

with reduced integration and hourglass control. The global size of the 
finite element mesh was assumed to be 1 mm for both phases with local 
refinement in the area of aggregate irregularities. The mesh size was 
chosen based on the requirement of sufficient representation of wave 
behaviour, i.e., at least 10 nodes for the shortest wave of interest (after 
[30]). The calculations of wave propagation were conducted using 
explicit algorithm of the central difference method with a fixed time step 
of 10− 7 s, so that the cycle of the highest frequency wave was covered by 
at least 20 integration points (according to [31]). The excitation signal 
had a form of a horizontal concentrated force with varying amplitude, 
compatible with the wave packet signal used in experimental in-
vestigations. The horizontal acceleration signals were collected in a 
number of nodes located in positions reflecting the configuration of PZT 
sensors in experiments (independently in simulations of sample #A and 
samples of type #B).

The Rayleigh proportional damping model with a non-zero mass 
proportionality coefficient α was assumed to obtain attenuation of the 
wave signals (stiffness proportionality coefficient β equal to 0). An equal 
α(n)

i was assumed for both concrete phases (mortar and aggregates) to 
simplify the modelling. Initially, training models were prepared in a 
frequency range fi between 80 kHz and 450 kHz with a step of 10 kHz 
(covering the same frequency range as in experimental investigations of 
sample #A). Two datasets were used: the first (T1) with constant α(n)

i =

15 000 rad/s for each frequency and the second (T2) with constant 
damping ratio ζ = 0.49736 %, resulting in linearly distributed α(n)

i in the 
range between 5000 rad/s for 80 kHz and 28125 rad/s for 450 kHz. 
These training datasets were used for numerical simulations of both 
types of samples (#A and #B), independently. Numerical calculations 
were also performed on test datasets obtained from the experimental 
measurements.

5. Results and discussion

5.1. Determination of mass proportionality coefficients in sample #A

5.1.1. Training datasets in numerical model
As a first step of the analysis, m = 38 simulations were performed 

with each training dataset T1 and T2 (each simulation with different 
frequency fi from range between 80 kHz and 450 kHz). The numerical 
signals obtained from the simulations were processed using the 
described algorithm (Fig. 1) in stage I. For each signal, a cumulative 
energy function E(n)

i,j was determined and the α(n)
i,j coefficient was calcu-

lated. The range of possible αk values was assumed to be between 1000 

Fig. 4. Numerical model of analysed concrete beam with sensor configuration of sample #A.

Fig. 5. Mass proportionality coefficients in relation to frequency from training 
datasets (assumed α(n)

i , calculated α(n)
a,i and corrected α(n)

c,i values) – simulations 
with sensor configuration for sample #A.

Table 1 
Mechanical parameters of phases in numerical model of analysed beam.

Phase Density 
ρ [kg/m3]

Young’s Modulus 
E [GPa]

Poisson’s ratio 
ν [–]

mortar 2000 40 0.2
aggregate 2600 70 0.3
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rad/s and 60 000 rad/s with the step of 100 rad/s, whereas the possible 
shift of the energy function was between 0 and 1 ms with the step of 
0.0025 ms. The calculations were performed individually for each 
sensor and the α(n)

i,j values were finally averaged using formula (10) 

obtaining α(n)
a,i . The results of the calculations are presented in Fig. 5. It 

can be seen that the calculated α(n)
a,i values (dotted lines) differ signifi-

cantly from those assumed for the numerical simulations α(n)
i (dashed 

lines) for both training datasets T1 and T2. These discrepancies are due 
to the heterogeneous structure of the sample which leads to multiple 
reflections and interferences of the waves, apparently reducing the 
attenuation. In the case of dataset T1 (with constant α(n)

i ) it can be seen 
that the error increases with frequency. Furthermore, the error also in-
creases with α(n)

i , as can be seen from the results from dataset T2. Thus, 
both frequency and α have an influence on the error of calculation. For 
this reason, to eliminate the error, the model calibration was performed 
with a correction function, according to formula (11).

The optimisation procedure was performed in the range between 
0 and 2 for all coefficients p, q, and r with the step of 0.01 for p and q and 
the step of 0.001 for r (to obtain the same accuracy, because the obtained 
r values were one order lower). All the coefficients had positive values, 
because the error between assumed α(n)

i and calculated α(n)
a,i values 

increased with both frequency and α. The error function δα was calcu-
lated for all values of the coefficients p, q, r, and the global minimum was 
found for p = 0.21, q = 0.28 and r = 0.052 (including the mean error for 
both training datasets T1 and T2). As the minimised δα function is a 
function of three variables it is not possible to show it in a single figure in 
its 4D representation. Thus, three different sections have been prepared 
as coloured maps (Fig. 6). The range of the coefficients p, q, r was 
reduced to better show the localisation of the minimum. The minimum 
error was equal to 2.93 %, which is an acceptable value. After deter-
mining the optimal coefficients, additional calculations of α were 

performed to verify the efficiency of the correction formula for both 
training datasets. The corrected values α(n)

c,i are presented in Fig. 5 (solid 
lines). As expected, the value of α increases with frequency. It can be 
clearly seen that the corrected values α(n)

c,i are similar to the assumed ones 

α(n)
i . The mean error for dataset T1 is 2.05 %, whereas for T2 it is 3.80 %. 

The error in the second dataset is higher due to the significant difference 
in the higher frequency range, which will be discussed further in detail.

5.1.2. Experimental results
The signals obtained from the experimental measurements per-

formed on sample #A were processed as described in stage II of the al-
gorithm. The cumulative energy functions E(e)

i,j were fitted to synthetic 

energy functions E(s)
i,k and α(e)

i,j values were calculated. The examples of 
fitting for signals from all sensors S1-S5 at representative frequencies 
(150 kHz and 400 kHz) are presented in Fig. 7.

In the optimisation range (marked by the shaded area) the experi-
mental cumulative energy functions are smooth and clearly correlate 
with synthetic ones. However, the disturbed character of the experi-
mental functions is clearly visible at the initial part, suggesting that 
optimisation in a limited time domain was justified. It is particularly 
visible at the lower frequency (150 kHz) for sensors located near the 
actuator, because the influence of the direct wave is much more pro-
nounced. The synthetic E(s)

i,k and experimental E(e)
i,j energy functions differ 

significantly at the initial part. This effect is less visible for the 400 kHz 
frequency because higher frequency waves have shorter wavelengths 
and can interact with structural discontinuities of smaller size, making 
the energy functions smoother. As a result, the correlation between the 
experimental and synthetic functions is higher in the whole time range. 
What is more, higher frequencies are characterised by higher attenua-
tion, thus time range is shorter for 400 kHz than for 150 kHz.

The mass proportionality coefficients obtained from the optimisation 

Fig. 6. Sections of minimised error function δα (sample #A): a) δα vs. p and q for r = 0.052; b) δα vs. p and r for q = 0.28; c) δα vs. q and r for p = 0.21.
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Fig. 7. Cumulative energy functions from experiment performed on sample #A based on ultrasonic signals from sensors S1-S5 and fitted synthetic energy for 150 
kHz and 400 kHz.
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must be further corrected. Since the α(e)
i coefficients of the tested ma-

terial are unknown, the correction function determined in the previous 
section was used. The comparison of calculated α(e)

a,i and corrected α(e)
c,i 

values is shown in Fig. 8. As in the previous results, it is evident that the 
difference between calculated and corrected values is significant and 

increases with frequency and mass proportionality coefficient. The 
variation of α in relation to frequency is close to linear, which makes the 
choice of the training dataset T2 with linearly increasing α reasonable. 
Some deviation from a general trend can be seen in the lower frequency 
range (80–120 kHz), where α slightly decreases, and in the high- 
frequency range (400–450 kHz), where the increase of α is less pro-
nounced. It should be noted that the obtained values of α(e)

c,i differs from 
the ones used in training datasets, so it is important to check whether the 
correction algorithm is suitable for calculating these values.

5.1.3. Verification of calculations with testing dataset
The determined corrected values of the mass proportionality coeffi-

cient α(e)
c,i were used as a testing dataset α(ne)

i for numerical simulations. 
The signals obtained from all 38 numerical models were processed to 
obtain α(ne)

i,j coefficients which were then averaged and corrected using 
the same correction function as in the previous steps. The comparison of 
assumed values α(ne)

i (testing dataset, dashed line) and those calculated 
with correction α(ne)

c,i (solid line) is presented in Fig. 9. The mean absolute 
error equals 10.3 % in the whole range. However, it is important to note 
that the differences are significant at higher frequencies (above 350 
kHz), where the general linear trend is much more disturbed than in the 
experimental results discussed in the previous section. In the frequency 
range between 100 kHz and 350 kHz, the error equals 4.87 %, which is a 
satisfactory value, so the results are reliable in this range, thus experi-
mental values can be considered final result of the calculations: αf ,i =

α(ne)
i = α(e)

c,i .
The results for higher frequencies are not efficient because of the 

wave interaction with individual aggregates. In the case of highly het-
erogeneous materials, it is important to consider the internal structure of 
tested sample. For lower frequencies, the location of aggregates does not 
affect the wave propagation signals as long as the aggregates are evenly 
distributed and their content in the mortar does not change. The waves 
can propagate through the sample as a whole medium without signifi-
cant interaction with particular aggregates, which is possible if the wave 
is long enough. As the frequency increases, the wavelength decreases, 
thus the waves can be diffracted by particular aggregates, significantly 
affecting the wave signals. In order to better analyse this effect, the 
lengths of the waves considered in the current study were calculated. 
The time of flight (TOF) of the wave was determined as the difference 
between the time zero of the signals from sensors C and S5 measured on 
sample #A. Knowing the distance between the two sensors (L = 125 
mm), the wave velocity c was calculated by dividing L by TOF. The wave 
velocity for each considered frequency is presented in Fig. 10a. Knowing 
the velocity c and frequency of the wave f, the wavelength λ was 
calculated by dividing the velocity by the frequency. The relationship 
between wavelength and frequency is shown in Fig. 10b. The length of 
the wave with 350 kHz frequency equals 13.7 mm. Considering the fact 
that the largest aggregate size is 16 mm and the distance between 
particular aggregates can be smaller, the wave with frequency higher 
than 350 kHz can diffract at the aggregates affecting the wave signals. 

Fig. 8. Mass proportionality coefficients in relation to frequency from experi-
mental measurements – comparison of values without α(e)

a,i and with correc-

tion (α(e)
c,i ).

Fig. 9. Mass proportionality coefficients in relation to frequency in testing 
dataset obtained for sample #A – comparison of assumed values α(ne)

i = α(e)
c,i 

(from experiments) and calculated using correction algorithm α(ne)
c,i .

Fig. 10. Characteristics of wave propagating in analysed concrete sample #A: a) group velocity vs. frequency; b) wavelength vs. frequency.
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These diffractions are reflected in wave signals as additional wave 
packets, increasing the amplitude and artificially reducing the signal 
attenuation. In this case, the material can no longer be considered as 
homogenized and its macrostructure needs to be adequately represented 
in numerical simulations. This allows stating that the developed algo-
rithm can only be efficient in the specific frequency range. For any 

particular case of different material, the above-described analysis of the 
interaction of the wave with the internal structure of the sample (com-
parison between the shortest wavelength of interest and the aggregate 
size) must be performed to ensure the reliability of the proposed 
procedure.

5.2. Determination of mass proportionality coefficients in samples of type 
#B

5.2.1. Training datasets in numerical model
Similarly to the analysis of sample #A, the training datasets T1 and 

T2 were used to determine the correction algorithm for samples of type 
#B, based on numerical simulations in models with the sensor config-
uration reflecting scheme presented in Fig. 3b. The results of the cal-
culations are shown in Fig. 11. Similarly to the outcome for sample #A, 
the calculated values α(n)

a,i (without correction, dotted lines) are signifi-

cantly lower than the assumed ones α(n)
i (dashed lines), thus correction 

was required.
The calculation of the correction coefficients p, q, r was performed 

for the same range as for sample #A, i.e., between 0 and 2. The global 
minimum of δα function was found for p = 0.26, q = 0.22, and r = 0.063. 
The sections of the minimised δα function are presented in Fig. 12. The 
minimum error was 4.46 %, which is acceptable. Using the determined 
correction coefficients, corrected values of the mass proportionality 
coefficient α(n)

c,i were calculated for both training datasets. The results are 
presented in Fig. 11 (solid lines). The mean error for training dataset T1 
was 5.37 %, whereas for dataset T2 it was 3.56 %. The largest errors are 
present for higher frequencies, as was the case for sample #A, however, 

Fig. 11. Mass proportionality coefficients in relation to frequency from training 
datasets (assumed α(n)

i , calculated α(n)
a,i and corrected α(n)

c,i values) – simulations 
with sensor configuration for sample #B.

Fig. 12. Sections of minimized error function δα (sample #B): a) δα vs. p and q for r = 0.063; b) δα vs. p and r for q = 0.22; c) δα vs. q and r for p = 0.26.
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this time the differences are more pronounced for dataset T1.

5.2.2. Experimental results
The experimental signals measured on samples #B were processed as 

presented in stage II of the algorithm. To enable comparison with the 
results of sample #A, only the first signals in each dataset (without an 
insignificant value of external load) were analysed at this step. Cumu-
lative energy functions E(e)

i,j were calculated and fitted to synthetic 

functions E(s)
i,k to determine mass proportionality coefficients α(e)

i,j . The 
obtained values were averaged and corrected using correction function 
determined in the previous section. The comparison of the calculated 
α(e)

a,i and corrected α(e)
c,i values is presented in Table 2. It can be clearly 

seen that the values obtained are similar between samples tested with 
the same frequency. To verify the performed calculations, the obtained 
corrected values were assumed as a testing dataset for numerical 
simulations.

5.2.3. Verification of calculations with testing dataset
The determined corrected values α(e)

c,i were used for numerical cal-

culations as testing dataset α(ne)
i . The numerical wave signals were 

processed to determine the corrected values α(ne)
c,i with the established 

correction function. The results of the calculations are presented in 
Table 2. The mean absolute error between the values assumed for the 
simulations and the corrected ones is equal to 6.9 %, which can be 
considered sufficiently low. This means that the correction function did 
not significantly change these values, so the mass proportionality co-
efficients used for the testing dataset are the final result of the calcula-
tions, i.e., αf ,i = α(ne)

i = α(e)
c,i .

5.3. Comparison of attenuation between samples #A and #B

The values of the mass proportionality coefficients αf ,i obtained for 
samples #B were compared with the ones calculated for sample #A. For 
each of four frequencies (100 kHz, 200 kHz, 300 kHz, and 400 kHz), the 

mean value of α was calculated. The comparison is presented graphically 
in Fig. 13, and the values are shown in Table 3. The mean error for all 
frequencies equals 6.7 %. The highest differences are observed for the 
highest frequency (400 kHz), however, as stated previously, the pro-
posed algorithm can be inefficient for frequencies above 350 kHz. 
Excluding the highest frequency, the mean error reduced to 4.8 %. A 
good agreement between the mass proportionality coefficients obtained 
from samples with different sensor configurations proves the efficiency 
of the developed procedure.

5.4. Identification of attenuation changes during bending test

All experimental signals measured on samples #B (two sets for two 
different wave frequencies, each consisting of 300 signals) were pro-
cessed to observe the mass proportionality coefficient changes during 
the three-point bending test. Cumulative energy functions were deter-
mined and fitted to synthetic functions to find optimal α coefficients. 
First, α was assumed to be between 1000 rad/s and 60 000 rad/s with 
the step of 100 rad/s. The possible time shifts were assumed to be in the 
range from 0 to 1 ms with a step of 0.0025 ms. However, to better show 
subtle changes of α during bending test, the calculations were repeated 
with the accuracy of α enhanced to 10 rad/s, but in the reduced range (α 
determined in first calculations ± 200 rad/s). The accuracy of the time 
shift was also improved (to 0.0005 ms). The finally obtained α values 
were averaged and corrected using the correction function determined 
in section 4.2.1.

The calculated mass proportionality coefficients for both frequencies 
and the force–time curve for all beams are presented in Fig. 14. It can be 
seen that most of the charts show only slight changes of α in the first part 
of the test, before reaching the peak load. The 100 kHz frequency in 
sample #B1 (Fig. 14a) shows a significant disturbance between 80 s and 
170 s of the test. This could be the effect of local micro-cracking of 
concrete in this specimen. The 300 kHz frequency is almost constant 
before the peak with a slight increase near the peak. This increase may 

Table 2 
Mass proportionality coefficients from experimental measurements of samples 
#B1-4 – comparison of averaged values without correction α(e)

a,i , values with 

correction, used then as a testing dataset α(e)
c,i = α(ne)

i , and verified by numerical 

simulations α(ne)
c,i (all values in rad/s).

f 
[kHz]

#B1 #B2 #B3 #B4

100 α(e)
a,i – averaged (without 

correction)

2774 2663 – –

α(e)
c,i =α(ne)

i – averaged and 
corrected

3479 3303 – –

α(ne)
c,i – verified by simulations 2848 2624 – –

200 α(e)
a,i – averaged (without 

correction)

– – 5407 4862

α(e)
c,i =α(ne)

i – averaged and 
corrected

– – 10,316 9004

α(ne)
c,i – verified by simulations – – 10,399 9031

300 α(e)
a,i – averaged (without 

correction)

7727 7416 – –

α(e)
c,i =α(ne)

i – averaged and 
corrected

18,667 17,708 – –

α(ne)
c,i – verified by simulations 18,210 17,106 – –

400 α(e)
a,i – averaged (without 

correction)

– – 12,207 11,629

α(e)
c,i =α(ne)

i – averaged and 
corrected

– – 36,921 34,695

α(ne)
c,i – verified by simulations – – 34,407 33,711

Fig. 13. Comparison between mass proportionality coefficients αf ,i calculated 
for beam #A and beams #B.

Table 3 
Comparison of mass proportionality coefficients αf ,i from experiments per-
formed on samples #A and #B (all values in rad/s).

f [kHz] #A Mean #B Error of #B in relation to #A

100 3141 3391 8.0 %
200 9183 9660 5.2 %
300 17,987 18,188 1.1 %
400 31,793 35,808 12.6 %
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be related to the change in stress in the material under bending. The 
evolution of α in beam #B2 (Fig. 14b) does not indicate any significant 
changes for either frequency. A slight increase is initially observed, but 
the α decreases near the peak. In the case of frequency 200 kHz for 
sample #B3 (Fig. 14c), a significant increase in α can be observed and 
then there are some increases and decreases, possibly due to the for-
mation of local discontinuities in the internal structure of the beam. The 
400 kHz frequency does not vary meaningfully in the initial part, 
however, some disturbances are visible in the same time instances as for 
the 200 kHz frequency. The sample #B4 (Fig. 14d) shows a smooth 
increase in α for both frequencies before the peak. The behaviour of all 
samples after reaching the peak load is unpredictable due to the for-
mation and propagation of macro-cracks, indicating progressed 

mechanical degradation. The values of α vary significantly after peak 
load for all samples. This significant variation is related to the major 
changes in the internal structure of samples. Any changes in the α 
functions are not related to changes in the wave attenuation itself but 
results from the presence of defects that lead to multiple reflections of 
the wave, significantly altering the signals.

To better discuss the behaviour of the samples, the mass propor-
tionality coefficient was calculated for the signals from all sensors and 
plotted separately in Fig. 15. It can be clearly seen that the individual 
sensors show different changes of α during the test. For example, the 
local disturbances observed for sample #B1 for frequency 100 kHz 
(Fig. 15a) are visible mainly in sensors S3 and S4 that are close to the 
centre of sample, where the crack occurred. Sensors S1, S2, and S5 do 

Fig. 14. Attenuation changes (mean values from all sensors) in beams of type #B during 3-point bending test and force–time curves: a) beam #B1, b) beam #B2, c) 
beam #B3, d) beam #B4.
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Fig. 15. Attenuation changes in sensors S1-S5 in beams of type #B during 3-point bending test: a) beam #B1, b) beam #B2, c) beam #B3, d) beam #B4.
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not indicate any significant variation in α before peak. The sensors S1-5 
for the 300 kHz frequency for the same sample show some growths and 
drops, however, mean value was almost constant (Fig. 14a). Similarly, 
particular sensors for both frequencies 100 kHz and 300 kHz for sample 
#B2 (Fig. 15b) shows different changes before peak load, but the mean 
values did not indicate any meaningful changes (Fig. 14b). Both fre-
quencies in sample #B3 (Fig. 15c) show some local disturbances for all 
sensors, which were reflected in mean values (Fig. 14c). Similarly to the 
300 kHz frequency for sample #B1, some sensors for both frequencies in 
sample #B4 (Fig. 15d) indicate increase in α, while the others show 
decrease, however, the mean values are only slightly increasing 
(Fig. 14d). This proves that the attenuation behaviour of material varies 
differently in particular locations due to the non-uniform distribution of 
cracks throughout the sample, but the global response does not change 
significantly. This observation proves that characterisation of attenua-
tion in heterogeneous materials by a single signal is not sufficient and 
that a series of measurements performed at different locations is 
required. However, the wave attenuation is affected by changes in the 
internal structure of tested medium, so it can be stated that attenuation 
can be a promising factor in identifying the progression of damage in 
concrete elements. It should also be noted that the mass proportionality 
coefficient was determined using the correction function obtained from 
the numerical simulations on the intact sample (without structural 
damage). Thus, the results need to be treated qualitatively, because in 
the case of progressive damage, the correction function may change due 
to the presence of cracks that behave as additional wave scatterers 
influencing the ultrasonic wave signals. To adequately determine the 
mass proportionality coefficient at different levels of mechanical 
degradation, accurate models reflecting crack propagation should be 
developed, e.g., based on digital image correlation measurements dur-
ing the bending test. The aim of the current work, however, was to prove 
the sensitivity of attenuation to the presence of structural damage, 
which was achieved. Further works dedicated to quantitative analysis of 
changes of Rayleigh coefficients are planned.

6. Conclusions

The paper presented the newly developed procedure for the identi-
fication of attenuation in heterogeneous material based on ultrasonic 
wave propagation measurements. The main objective was to determine 
the mass proportionality coefficient for further modelling of wave 
attenuation using Rayleigh proportional damping. The main findings are 
presented below.

The proposed algorithm allowed automated calculation of the mass 
proportionality coefficient of concrete based on changes of cumulative 
signal energy. Thanks to the normalization of the cumulative signal 
energy, the developed method did not require analysis of differences 
between amplitudes of signals collected by individual sensors what 
eliminated the problem of inaccurate bonding of sensors to sample 
surface.

The experimental investigations were supported by numerical sim-
ulations in a two-phase plane stress FE model, which reflects the con-
tents of the real sample without taking into account the exact 
arrangement of particular aggregates. However, the limitations of this 
simplification were identified. The important issue was to identify the 
maximum frequency at which the method was efficient based on a 
comparison of the wavelength and aggregate size of the material. For 
frequencies above this limit, the real structure of the sample should be 
accurately reflected in the FE model due to diffraction of shorter waves 
at individual aggregates.

The efficacy of the procedure was proved by the similarity of the 
results obtained for samples made of the same material but with 
different sensor configurations. The initial results for both sensor con-
figurations were different, however, the correction procedures deter-
mined by the training datasets led to similar final results.

As a first step in the development of more general attenuation-based 

diagnostic algorithm, the proposed method was used to analyse changes 
of the mass proportionality coefficient of concrete samples under the 
three-point bending test. The current results showed that attenuation 
changes can be potentially used as an indicator of fracture in concrete, 
however, further studies are needed to develop the efficient diagnostic 
method. The prospective applications include the detection of micro- 
cracks in concrete element under various loads, e.g., bending, 
compression or splitting. Further works will also incorporate the non- 
zero stiffness proportionality coefficient to verify its influence on the 
results.
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