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Abstract: In this paper, the feed-forward backpropagation neural network (FFBPNN) is used to
propose a new formulation for predicting the compressive strength of fiber-reinforced polymer
(FRP)-confined concrete cylinders. A set of experimental data has been considered in the analysis.
The data include information about the dimensions of the concrete cylinders (diameter, length)
and the total thickness of FRP layers, unconfined ultimate concrete strength, ultimate confinement
pressure, ultimate tensile strength of the FRP laminates and the ultimate concrete strength of the
concrete cylinders. The confined ultimate concrete strength is considered as the output data, while
other parameters are considered as the input data. These parameters are mostly used in existing
FRP-confined concrete models. Soft computing techniques are used to estimate the compressive
strength of FRP-confined concrete cylinders. Finally, a new formulation is proposed. The results of
the proposed formula are compared to the existing methods. To verify the proposed method, results
are compared with other methods. The results show that the described method can forecast the
compressive strength of FRP-confined concrete cylinders with high precision in comparison with
the existing formulas. Moreover, the mean percentage of error for the proposed method is very
low (3.49%). Furthermore, the proposed formula can estimate the ultimate compressive capacity of
FRP-confined concrete cylinders with a different type of FRP and arbitrary thickness in the initial
design of practical projects.

Keywords: FRP; soft computing; compressive strength; confined concrete; artificial neural network

1. Introduction

A combination of high-strength fibers and matrix leads to the construction of a fiber-reinforced
polymer (FRP). The primary role of the matrix is to bind these fibers together to construct structural
shapes. Four common types of fibers (i.e., aramid, carbon, glass, and high-strength steel) and also
two standard matrices exist (i.e., epoxies and esters) [1,2]. A new area has been opened in the civil
engineering field due to the beneficial properties of FRP in the repair and rehabilitation of existing
structures. The FRP can create a continuous confinement action for the concrete member, and can
also increase the corrosion resistance of members [3]. Hereby, FRPs are popularly used to repair or
retrofit the reinforcing frame members [4–10]. Studies on the behavior of FRP and FRP-confined
concrete have advanced rapidly in recent years [11]. There are a lot of publications proposing a formula
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for FRP-confined concrete [12–19]. These proposed formulas are usually based on the Richard et al.
method [20].

Nowadays, the use of artificial neural networks, Bayesian networks and neuro-fuzzy systems has
a special place in engineering solutions, including FRP-strengthened concrete structures, structural
optimization, water resource management, vibration control, bridge engineering, etc. [11,21–37]. In
the study of vibrations in buildings, e.g., caused by earthquakes, the search for alternative solutions is
also underway (see [38–41], for example).

An artificial neural network (ANN) was used by Lee and Lee [42] to estimate the shear strength
of FRP-reinforced concrete flexural members. Sobhani et al. [43] used ANN, adaptive neuro-fuzzy
inference system (ANFIS) and regression analysis to predict the compressive strength of no-slump
concrete. Cheng and Cao [44] predicted the shear strength of reinforced concrete deep beams
using evolutionary multivariate adaptive regression splines. In addition, the M5 model tree, used
by Behnood et al. [45], is capable of predicting the elastic modulus of recycled aggregate concrete.
Ebrahimpour Komleh and Maghsoudi [46] proposed a new formulation to estimate the curvature
ductility factor for FRP-reinforced high-strength concrete beams using ANFIS and multiple regression
methods. The ANFIS model was also used by Gu and Oyadiji [47] to control a multi-degree of freedom
structures equipped with an MR damper. The ANFIS and ANN models were applied by Amini and
Moeini [48] to compare results obtained for the shear strength of reinforced concrete beams with
building codes. The strength of FRP connections using the backpropagation neural network was
studied by Mashrei et al. [49]. The deflection of high-strength self-compacting concrete deep beams
was studied by Mohammadhassani et al. applying ANFIS [50]. Nehdi and Nikopour [51] used the
genetic algorithm to predict the shear capacity of reinforced concrete beams reinforced with FRP sheets.

Currently, seawater and sea sand concrete is also becoming popular due to the shortage of resources
and, therefore, many researchers have focused their studies on these types of materials [52–54]. Some
mechanical properties of FRP-confined concrete columns made of sea sand and seawater were studied
by Li et al. [52]. They presented some theoretical models for hoop stress and strain relations and
axial compression–strain relations. Zhou et al. [54] experimentally considered the effects of a chloride
environment on the mechanical performance and durability of FRP-confined concrete columns made
of seawater.

In this paper, the feed-forward backpropagation neural network (FFBPNN) method has been
used to estimate the ultimate compressive capacity of FRP-confined concrete cylinders. For this
purpose, a set of previously published and available experimental data (281 instances) for concrete
made of ordinary sand has been collected for training and testing. Finally, a new formulation has been
proposed to estimate the ultimate compressive capacity of FRP-confined concrete cylinders. It should
be noted that the correlation coefficient of the proposed formula is equal to 0.9809, which shows a good
agreement with the actual values. A comparison has been performed between the results obtained
by FFBPNN and the results of the other existing models to demonstrate the ability of the proposed
method. The results show that the values of the mean percentage of error (3.49%), root mean square
error (3.99), and average absolute error (0.035) for the proposed method are less than other studied
methods. It means that, for the proposed formula, more than 96% of the simulated results are entirely
consistent with the experimental results, and also that the proposed method is very accurate compared
to other existing methods. Furthermore, it is shown that the FFBPNN is a formula that can be used
for all types of FRP (carbon, aramid, and glass). The proposed method can be easily employed using
a calculator with high precision while, in the case of neuro-fuzzy, neural network and other known
methods, a computer and sophisticated software are usually needed.

2. Research Objectives

Generally, ANNs have been used in applied science and engineering problems, because of their
positive features. These features can be summarized as: (I) ability to handle the uncertainties, (II) ability
to find the existing sensitivity and, finally, (III) proposing a mathematical relationship between input
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and output data. This research work addresses the following main objectives. First, the feed-forward
backpropagation neural network is used to predict the compressive strength of FRP-confined concrete
cylinders from a set of experimental data. For this purpose, a database of experimental data has been
established based on various publications. Based on these data, the main effective parameters that have
an influence on the compressive strength of FRP-confined concrete cylinders (FRPCCC) are assessed.
Finally, using the feed-forward backpropagation neural network, a new formulation is proposed, and
the effects of the presented formula are compared with existing models.

3. Overview of Existing Models

Some published publications offer a formula to forecast the compressive strength of FRPCCC ( f ′cc).
In these papers, certain parameters are adopted as the input parameters. These parameters include the
diameter of the concrete cylinder (d), length of the concrete cylinder (L), unconfined ultimate concrete
strength ( f ′co), the thickness of FRP layer (t), ultimate confinement pressure ( fl) and ultimate tensile
strength of the FRP laminate ( f f ). Table 1 shows the existing formula to compute the compressive
strength of FRPCCC.

Table 1. Some of the existing formulas for predicting the compressive strength of fiber-reinforced
polymer-confined concrete cylinders (FRPCCC).

Author Year Formula Note

Mansouri et al. [55] 2016
Neuro-fuzzy, multivariate adaptive regression

splines, neural network, and M5 model tree
techniques (without any proposed formula)

Nonlinear

Naderpour et al. [56] 2010

f ′cc =
(

f ′cc

)
chart
×C(d) ×C(L) ×C( f ′co) ×C(t) ×C( fl)

C(d) = −0.490
(

d
140 ) + 1.494

C(L) = 0.159 ln
(

L
300 ) + 1.009

C( f ′co) = 1.082
(

f ′co
35

)4
− 5.071

(
f ′co
35

)3
+ 8.209

(
f ′co
35

)2

− 5.025
(

f ′co
35 ) + 1.798

C(t) = −0.064( t
1.2

)2
+ 0.669

(
t

1.2

)
+ 0.387

C( fl) = −0.213
(

fl
1500

)4
+ 0.901

(
fl

1500

)3

− 1.008
(

fl
1500

)2
+ 0.723

(
fl

1500

)
+ 0.604

Nonlinear

Vintzileou and
Panagiotidou [18] 2008 f ′cc/f ′co = 1 + 2.8( fl/f ′co) Linear

Berthet et al. [12] 2006
f ′cc/f ′co = 1 + 3.45( fl/f ′co) 20 ≤ f ′co ≤ 50 (MPa)

f ′cc/f ′co = 1 + 0.95( fl/f ′ 1.25
co ) 50 ≤ f ′co ≤ 200 (MPa) Linear-Nonlinear

Matthys et al. [15] 2005 f ′cc/f ′co = 1 + 2.3( fl/f ′co)
0.85 Nonlinear

Matthys et al. [15] 2005 f ′cc/f ′co = 1 + 2.3( fl/f ′co)
0.85 Nonlinear

Lam and Teng [13] 2002 f ′cc/f ′co = 1 + 2( fl/f ′co) Linear

Xiao and Wu [19] 2000 f ′cc/f ′co = 1.1 + (4.1− 0.75 f ′co
2/El)( fl/f ′co) Nonlinear

Miyauchi et al. [16] 2000 f ′cc/f ′co = 1 + 3.485( fl/f ′co) Linear

Saafi et al. [17] 1999 f ′cc/f ′co = 1 + 2.2( fl/f ′co)
0.84 Nonlinear

Miyauchi et al. [16] 2000 f ′cc/f ′co = 1 + 2.98( fl/f ′co) Linear
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Table 1. Cont.

Author Year Formula Note

Spoelstra and Monti [57] 1999 f ′cc/f ′co = 0.2 + 3( fl/f ′co)
0.5 Second-order

Toutanji [58] 1999 f ′cc/f ′co = 1 + 3.5( fl/f ′co)
0.85 Nonlinear

Samaan et al. [59] 1998 f ′cc/f ′co = 1 + 6( fl0.7/f ′co) Nonlinear

Kono et al. [60] 1998 f ′cc/f ′co = 1 + 0.0572 fl Linear

Karbhari and Gao [61] 1997 f ′cc/f ′co = 1 + 2.1( fl/f ′co)
0.87 Nonlinear

Mander et al. [62] 1988 f ′cc/f ′co = −1.254− 2( fl/f ′co) + 2.254(1 + 7.94 fl/f ′co)
0.5 Second-order

Fardis and Khalili [63] 1981 f ′cc/f ′co = 1 + 2.05( fl/f ′co) Linear

Fardis and Khalili [64] 1982 f ′cc/f ′co = 1 + 3.7( fl/f ′co)
0.85 Nonlinear

Richart et al. [20] 1928 f ′cc/f ′co = 1 + 4.1( fl/f ′co) Linear

It should be noted that when a concrete cylinder is subjected to the axial compression force, the
compressive strength is less than its value for the FRPCCC (see Figure 1). It means that P1 < P2.
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Figure 1. Two specimens (i.e., concrete cylinder and FRPCCC) subjected to the compression (an axial
force).

4. Proposing a New Formulation to Predict the Compressive Strength of FRP-Confined Concrete
Cylinder

In this paper, firstly, a set of experimental data is collected from the published literature [17,58,60,65–78]
(see Table A1 in Appendix A). Then, the collected data are divided into input and output parameters (see
Table 2).

Table 2. Input and output parameters.

Type Parameters Expression

Input

d (mm) The diameter of the concrete cylinder
L (mm) length of the concrete cylinder

f ′co (MPa) Unconfined ultimate concrete strength
t (mm) The thickness of the FRP layer
fl (MPa) Ultimate confinement pressure
f f (MPa) The ultimate tensile strength of the CFRP laminate

Output f ′cc (MPa) Confined ultimate concrete strength

The values for minimum, maximum, mean, standard deviation, and coefficient of variation for
the collected data are depicted in Table 3.
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Table 3. Statistical properties for experimental data collected from the published literature.

Quantity d (mm) L (mm) t (mm) f ′co (MPa) fl (MPa) ff (MPa) f ′cc (MPa)

Mean 133.854 272.014 0.835 42.642 15.857 2123.174 80.448
Minimum 51 102 0.089 19.4 2.33 229.762 33.8
Maximum 219 438 5.9 103 94.57 3820.359 303.6

standard deviation 27.283 58.250 1.133 17.110 12.463 1112.343 29.173
coefficient of variation 0.204 0.214 1.357 0.401 0.786 0.524 0.363

4.1. The Artificial Neural Network Model

ANNs are among the computational software methods used. The neural networks can find the
existing patterns between the input and output data of experiments or simulations via training [79]. It
is noteworthy that layers, neurons and weights can compose the neural networks. Here, the primary
role of the weights is to relate every neuron in each layer to the neurons in other layers. Every neuron
is associated with neurons in other layers by the weights. Every layer processes the input data and
transfers them to the next layer. Additionally, an input layer, two or more hidden layers and an
output layer compose the feed-forward neural network. A three-layer neural network is depicted
in Figure 2. As mentioned in Section 3, the number of collected data is 281. These data are used for
the learning, validating, and testing of ANNs. In the neural network modeling, log-sigmoid transfer
functions are used and one hidden layer is selected. Firstly, all selected data are normalized based on
the following equation:

fscaled = (0.9− 0.1)
(

f− fmin
fmax− fmin

)
+ 0.1

0.1 ≤ fscaled ≤ 0.9
(1)

where f , fmin, fmax and fscaled are the selected parameters, their minimum and maximum values are
based on Table 3 and the value of the scaled parameters, respectively. Based on Equation (1), the scaled
parameters place in the range between 0.1 and 0.9, as recognized by the log-sigmoid transfer functions.
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The Levenberg–Marquardt algorithm is used to train randomly divided input and output vectors,
which are called training (also learning), validating (also verifying) and testing datasets. Since
improving the performance of the ANN model can be done by finding the optimal distribution of the
datasets, various sets were analyzed. Finally, the best division was chosen, in which 70% of all data
were training sets, while 15% of all data were validating and testing sets, respectively.

For this purpose, a 6:n:1 network is considered with six inputs, n hidden neurons and one output,
respectively (see Figure 2). Moreover, the flowchart of the utilized ANN is depicted in Figure 3.
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The mean squared error (MSE) is considered as a criterion to stop the training of the networks.
The MSE is defined as the average squared difference and is an important value that indicates an error
between the network output and the actual value obtained from research. Therefore, when the quantity
for the desired network has a minimum value, this network has a better performance. In addition, in a
network, the correlation between outputs and targets is measured by regression values (R-values). The
R-value is a parameter to measure the correlation between targets and outputs. These two criteria are
selected to recognize which network has a better performance.

Figure 4 shows the regression values of the networks versus the different numbers of neurons
in hidden layers. Furthermore, Figure 5 presents the maximum absolute value for the error of each
network. From the above description and considering Figures 4 and 5, it can be concluded that a
network with 15 hidden neurons had the best performance.
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After selecting a desirable network (6:15:1), the results for the training of this network are shown
in Figures 6–8. It can be seen from Figure 6 that the network is well established and learned, since the
values for MSE of the network begin at a large value and stop at a smaller one.
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It should be noted that the ANN technique cannot propose a formulation to predict the compressive
strength of FRPCCC. Therefore, in the next section of this paper, the K-fold cross-validation technique
is used to obtain a new formulation. Then, the efficiency of the proposed formula is examined.

4.2. Using a Model with a K-Fold Cross-Validation Technique in FFBPNN

In this section of the paper, a K-fold cross-validation (KFCV) technique is applied for the
optimization and evaluation of the perfected ANN [80,81]. In the KFCV technique, the data are divided
randomly into K folds. Then, the K-1 folds are used for training, and the last fold is used to test the
neural network. In the parametric study conducted, the values for K, changing from two to five and
K = 4, are considered. The process of learning and testing is conducted for all the K sections. Therefore,
all the K sections contribute to the learning and testing of the ANN. This process is iterated three times
for the reduction and variation of KFCV and similar distribution of data in each K. The performance of
the neural network for each iteration can be computed by the percentage of correct predictions in the
neural network for K folds.

In every epoch, the performance evaluation of the neural network is calculated. The curve is the
correct classification factor (CCF), it is drawn for three iterations and, finally, it is averaged. In the CCF
curve, after a specified epoch, the curve is saturated. Then, the optimal epoch is defined using 10% of
the curve plateau. In this study, a neural network with three layers is selected for the sake of simplicity.
For optimization of the ANN structure, some neurons in the hidden layer are optimized. For this
purpose, the selecting criteria are considered to be the area under the CCF curve (AUCCF). Therefore,
the AUCCF is measured until it reaches the optimal epoch. Hence, different neurons, from two to 13
neurons in the hidden layer, are selected and the KFCV process is repeated for the structures. Finally,
the structure with the maximum efficiency can be determined by drawing the CCF and calculating the
AUCCF. Figure 9 shows the AUCCF curve. As can be seen from this figure, the 6:11:1 structure with 11
neurons in the hidden layer has the highest performance with 86.6%. Figure 10 shows the CCF curve
for the optimized ANN structure. As shown in this figure, the optimum epoch is 224.
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Figure 10. The CCF curve of optimized ANN structure.

Data that are predicted by the optimized ANN neural network and the training data are plotted
in Figure 11. As shown in this figure, the correlation coefficient is equal to 0.9809, which confirms the
performance of the optimized ANN structure.
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Figure 11. The correlation coefficient of the predicted data by optimized ANN structure and training data.

The Tansig and Pureline activation functions are selected for the hidden layer and the output
layer, respectively. Considering the optimum structure of the neural network, weights, biases, and
activation functions, a relation, such as Equation (2), could be extracted:

Output =
(

2
1 + exp(−2×(Input×Iw+b1))

− 1
)
× Lw + b2 (2)

Input, Output, IW, LW, b1, and b2 in Equation (2) are constant coefficients, which are defined
as follows:

IW =



−1.2007 −0.6174 2.6247 0.3393 −0.7012 1.6310
13.2928 −16.8285 8.4865 1.3056 −0.4213 −7.0180
−1.0486 −0.0470 −2.9279 0.5110 −2.2153 −0.2471
−6.1496 3.0775 7.2171 −3.7018 16.1829 −15.3115
3.2838 −0.7242 −0.5853 0.0652 0.5304 −1.0226
−0.9033 0.8337 3.1251 2.2056 1.3875 2.3565
−0.9161 0.6510 1.1284 −0.1900 0.5996 0.5913
5.4701 1.9650 1.4193 −0.8012 −0.3120 1.6189
−1.3924 −1.9230 6.6908 −12.3073 2.1772 1.0588
−12.8275 14.9574 11.9745 3.8238 −21.2448 23.5244
12.3926 10.8354 −2.5711 −8.0694 11.5337 0.1035



T

LW =
[
−7.7570 −0.1861 0.2698 −0.2166 1.1077 1.2329 1.6244 −0.7781 −3.3951 0.1298 −1.1472

]T

b1 =
[
−1.7314 4.5025 −3.2840 26.0974 0.7293 1.5696 1.5758 −0.6336 16.9266 2.9547 17.0029

]
b2 = −3.9606

Input = [ d L t f ′co fl f f ]

Output = [ f ′cc]

(3)

5. Comparison of the Proposed Strength Model with Existing Empirical Ones

Five known models are selected [12,13,15,16,18,56] to verify the proposed formula. It must be
noted that no formula has been proposed in the most recent available publication [55]. The formula
proposed in this paper can be implemented in a calculator, while, in the case of the neuro-fuzzy, neural
network, multivariate adaptive regression splines and M5 model tree techniques (all considered in [55]),
a computer and professional programs should be used.

Figure 12 shows the values of the compressive strength of the FRPCCC obtained by the proposed
and existing formula versus the experimental values. Table A1 in the Appendix section shows the
experimental data that have been used to judge the ability of different methods. In fact, for all formulas,
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the same data are applied to forecast the compressive strengths of the FRPCCC. Figure 12 shows that
the presented formula can estimate the compressive strengths of the FRPCCC with a higher precision
compared to the existing formulas.
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The mean percentage of error, correlation coefficient, root mean square error (RMSE), and average
absolute error (AAE) for the studied methods are shown in Table 4 to verify the efficiency of the
proposed method. Based on this table, it should be noted that the mean percentage of error and the
correlation coefficient for the proposed method are equal to 3.49% and 0.9809, respectively. Meanwhile,
the corresponding values for other existing methods are equal to over 13% and 0.41, respectively. This
means that, for the proposed formula, more than 96% of the simulated results are entirely consistent
with the experimental ones. Furthermore, the minimum values of RMSE and AAE are obtained for
the proposed formula. Therefore, it should be pointed out that the proposed formula is very accurate
compared to other existing ones, for which the accuracy is lower than 85%.

Table 4. Comparison between different studied models.

Method
Error

Miyauchi
et al. [16]

Lam and
Teng [13]

Matthys
et al. [15]

Berthet et
al. [12]

Vintzileou and
Panagiotidou [18]

Naderpour
et al. [56]

Proposed
Formula

Mean
percentage

of error
17.77% 16.95% 13.14% 17.59% 15.42% 8.44% 3.49%

RMSE 31.83 14.96 13.95 31.20 20.64 12.86 3.99
AAE 0.28 0.15 0.14 0.25 0.18 0.11 0.035

correlation
coefficients 0.6813 0.7897 0.8064 0.6835 0.7288 0.7686 0.9809

Based on Figures 11 and 12, as well as Table 4, it is evident that the proposed formula has a good
agreement with the actual values. Therefore, it can be used in the practical projects to evaluate the
amount of column compressive capacity reinforced by FPR sheets in the initial design. It should be
noted that the collected data (see Appendix A) are for different types of FRP sheets (carbon, aramid, and
glass) and the FFBPNN method has been trained and tested with these data. Therefore, the proposed
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formula can estimate the ultimate compressive capacity of FRP-confined concrete cylinders with a
different type of FRP and arbitrary thickness.

6. Concluding Remarks

A soft computing model for the ultimate strength estimation of FRPCCC has been proposed in
this paper. A set of experimental data from the published literature has been collected and divided
into input and output parameters. Firstly, the ANN model has been created and analyzed. The mean
squared error and R-values have been used to verify the efficiency of the network.

The results of the analysis indicate that a network with 15 hidden neurons has the best performance.
However, it should be noted that the basic ANN technique cannot propose a formulation to forecast the
compressive strength of FRPCCC. Therefore, in the next step of the study, the author’s improvement
approach has been presented. A model with a K-fold cross-validation technique in the feed-forward
backpropagation neural network has been presented. The correlation coefficient, root mean square
error, mean percentage of error and average absolute error have been used to check its efficiency. The
structure with 11 neurons in the hidden layer has been found to give the best performance. Finally,
a comparison between the proposed formula and existing empirical ones has been conducted. To
verify the proposed formula, five known models described in this paper have been selected. The
results of the study show that the proposed method can estimate the compressive strengths of the
FRPCCC with higher precision compared to the existing formulas. Moreover, it can be used to predict
the compressive strength of FRPCCC with different types and arbitrary thicknesses of FRP (carbon,
aramid, and glass). It should be noted that the mean percentage of error and the correlation coefficient
for the proposed method are equal to 3.49% and 0.9809, respectively. Meanwhile, the corresponding
values for other existing methods are equal to over 13% and 0.41, respectively. It means that, for the
proposed formula, more than 96% of the simulated results are entirely consistent with the experimental
results. Furthermore, the minimum values of RMSE and AAE have been obtained for the proposed
formula. Therefore, it should be pointed out that the proposed formula is very accurate compared to
other existing methods, for which the accuracy is usually lower than 85%. It should also be added that
the proposed method can be easily employed using a calculator with high precision while, in the case
of the neuro-fuzzy network, neural network and other known methods, a computer and sophisticated
software is usually needed. Therefore, our model can be used to estimate the ultimate compressive
capacity of FRP-confined concrete cylinders in the initial design of practical projects.

Finally, it should be noted that there is a lack of experimental tests on concrete cylinders made of
seawater and sea sand retrofitted with FRP sheets in order to propose a formula that covers the entire
region. This should be a focus in future studies.
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Appendix A

The collected data are indicated in Table A1.
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Table A1. The collected data from experimental studies.

No. Ref. Fiber Type d (mm) L (mm) t (mm) f ′co (MPa) fl (MPa) ff (MPa) f ′cc (MPa)

1 [72] CFRP 150 300 0.11 45.2 5.2 3481 59.4
2 [72] CFRP 150 300 0.22 45.2 10.08 3481 79.4
3 [72] CFRP 150 300 0.11 31.2 5.04 3481 52.4
4 [72] CFRP 150 300 0.22 31.2 10.14 3481 67.4
5 [72] CFRP 150 300 0.33 31.2 15.31 3481 81.7
6 [72] CFRP 100 200 0.11 51.9 7.7 3481 75.2
7 [72] CFRP 100 200 0.22 51.9 15.15 3481 104.6
8 [72] CFRP 100 200 0.11 33.7 7.57 3481 69.6
9 [72] CFRP 100 200 0.22 33.7 15.39 3481 88

10 [72] CFRP 150 300 0.11 45.2 5.2 3481 59.4
11 [60] CFRP 100 200 0.167 34.3 12.77 3820 57.4
12 [60] CFRP 100 200 0.167 34.3 12.85 3820 64.9
13 [60] CFRP 100 200 0.167 32.3 12.85 3820 58.2
14 [60] CFRP 100 200 0.167 32.3 12.77 3820 61.8
15 [60] CFRP 100 200 0.167 32.3 12.67 3820 57.7
16 [60] CFRP 100 200 0.334 32.3 27.69 3820 61.8
17 [60] CFRP 100 200 0.334 32.3 35.55 3820 80.2
18 [60] CFRP 100 200 0.334 32.3 16.4 3820 58.2
19 [60] CFRP 100 200 0.501 32.3 38.33 3820 86.9
20 [60] CFRP 100 200 0.501 32.3 38.27 3820 90.1
21 [60] CFRP 100 200 0.167 34.8 12.8 3820 57.8
22 [60] CFRP 100 200 0.167 34.8 12.67 3820 55.6
23 [60] CFRP 100 200 0.167 34.8 12.66 3820 50.7
24 [60] CFRP 100 200 0.334 34.8 25.4 3820 82.7
25 [60] CFRP 100 200 0.334 34.8 25.46 3820 81.4
26 [60] CFRP 100 200 0.501 34.8 38.38 3820 103.3
27 [60] CFRP 100 200 0.501 34.8 38.24 3820 110.1
28 [69] CFRP 150 300 0.117 34.9 4.08 2600 46.1
29 [69] CFRP 150 300 0.235 34.9 3.44 1100 45.8
30 [77] CFRP 153 306 0.36 19.4 10.77 2275 33.8
31 [77] CFRP 153 306 0.66 19.4 19.71 2275 46.4
32 [77] CFRP 153 306 0.9 19.4 26.87 2275 62.6
33 [77] CFRP 153 306 1.08 19.4 32.2 2275 75.7
34 [77] CFRP 153 306 1.25 19.4 37.32 2275 80.2
35 [77] CFRP 153 306 0.36 49 10.68 2275 59.1
36 [77] CFRP 153 306 0.66 49 19.77 2275 76.5
37 [77] CFRP 153 306 0.9 49 26.85 2275 98.8
38 [77] CFRP 153 306 1.08 49 32.3 2275 112.7
39 [75] CFRP 100 200 0.6 42 15.21 1265 73.5
40 [75] CFRP 100 200 0.6 42 15.21 1265 73.5
41 [75] CFRP 100 200 0.6 42 15.15 1265 67.62
42 [75] AFRP 150 300 1.26 43 3.82 230 47.3
43 [75] AFRP 150 300 2.52 43 7.76 230 58.91
44 [75] AFRP 150 300 3.78 43 11.66 230 70.95
45 [75] AFRP 150 300 5.04 43 15.46 230 74.39
46 [70] GFRP 100 200 0.35 32 10.63 1520 54
47 [70] GFRP 100 200 0.35 32 10.69 1520 48
48 [70] GFRP 100 200 0.35 32 10.63 1520 54
49 [70] GFRP 100 200 0.35 32 10.61 1520 50
50 [70] CFRP 100 200 0.16 37 12.2 3790 60
51 [70] CFRP 100 200 0.16 37 12.15 3790 62
52 [70] CFRP 100 200 0.16 37 12.13 3790 59
53 [70] CFRP 100 200 0.16 37 12.11 3790 57
54 [76] CFRP 150 300 0.169 25.15 4.63 2024 44.13
55 [76] CFRP 150 300 0.169 25.15 4.61 2024 41.56
56 [76] CFRP 150 300 0.169 25.15 4.55 2024 38.75
57 [76] CFRP 150 300 0.338 25.15 9.11 2024 60.09
58 [76] CFRP 150 300 0.338 25.15 9.14 2024 55.93
59 [76] CFRP 150 300 0.338 25.15 9.19 2024 61.61
60 [76] CFRP 150 300 0.507 25.15 13.64 2024 67
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Table A1. Cont.

No. Ref. Fiber Type d (mm) L (mm) t (mm) f ′co (MPa) fl (MPa) ff (MPa) f ′cc (MPa)

61 [76] CFRP 150 300 0.507 25.15 13.72 2024 67.27
62 [76] CFRP 150 300 0.507 25.15 13.72 2024 70.18
63 [76] CFRP 150 300 0.169 47.44 4.64 2024 72.26
64 [76] CFRP 150 300 0.169 47.44 4.61 2024 64.4
65 [76] CFRP 150 300 0.169 47.44 4.57 2024 66.19
66 [76] CFRP 150 300 0.338 47.44 9.12 2024 82.36
67 [76] CFRP 150 300 0.338 47.44 9.12 2024 82.35
68 [76] CFRP 150 300 0.338 47.44 9.08 2024 79.11
69 [76] CFRP 150 300 0.507 47.44 13.79 2024 96.29
70 [76] CFRP 150 300 0.507 47.44 13.74 2024 95.22
71 [76] CFRP 150 300 0.507 47.44 13.77 2024 103.9
72 [76] CFRP 150 300 0.169 51.84 4.62 2024 78.65
73 [76] CFRP 150 300 0.169 51.84 4.54 2024 79.18
74 [76] CFRP 150 300 0.169 51.84 4.57 2024 72.76
75 [76] CFRP 150 300 0.338 51.84 9.23 2024 95.4
76 [76] CFRP 150 300 0.338 51.84 9.16 2024 90.3
77 [76] CFRP 150 300 0.338 51.84 9.02 2024 90.65
78 [76] CFRP 150 300 0.507 51.84 13.77 2024 110.5
79 [76] CFRP 150 300 0.507 51.84 13.64 2024 103.6
80 [76] CFRP 150 300 0.507 51.84 13.65 2024 117.2
81 [76] CFRP 150 300 0.845 51.84 22.78 2024 112.6
82 [76] CFRP 150 300 0.845 51.84 22.87 2024 126.6
83 [76] CFRP 150 300 0.845 51.84 22.67 2024 137.9
84 [76] CFRP 150 300 0.169 70.48 4.53 2024 87.29
85 [76] CFRP 150 300 0.169 70.48 4.53 2024 84.03
86 [76] CFRP 150 300 0.169 70.48 4.53 2024 83.22
87 [76] CFRP 150 300 0.338 70.48 9.19 2024 94.06
88 [76] CFRP 150 300 0.338 70.48 9.14 2024 98.13
89 [76] CFRP 150 300 0.338 70.48 9.22 2024 107.2
90 [76] CFRP 150 300 0.507 70.48 13.7 2024 114.1
91 [76] CFRP 150 300 0.507 70.48 13.63 2024 108
92 [76] CFRP 150 300 0.507 70.48 13.48 2024 110.3
93 [76] CFRP 150 300 0.169 82.13 4.75 2024 94.08
94 [76] CFRP 150 300 0.169 82.13 5.2 2024 97.6
95 [76] CFRP 150 300 0.169 82.13 4.98 2024 95.83
96 [76] CFRP 150 300 0.338 82.13 10.15 2024 97.43
97 [76] CFRP 150 300 0.338 82.13 9.14 2024 98.85
98 [76] CFRP 150 300 0.338 82.13 9.92 2024 98.24
99 [76] CFRP 150 300 0.507 82.13 13.59 2024 124.2
100 [76] CFRP 150 300 0.507 82.13 13.76 2024 129.5
101 [76] CFRP 150 300 0.507 82.13 13.42 2024 120.3
102 [65] GFRP 102 203 1 38.99 40.75 2078 115.3
103 [65] GFRP 102 203 1 50.51 40.75 2078 135.1
104 [65] GFRP 102 203 1 64.2 40.75 2078 145.59
105 [73] GFRP 150 300 0.3 36.3 2.33 583 46
106 [73] GFRP 150 300 0.3 36.3 2.33 583 41.2
107 [73] GFRP 150 300 0.6 36.3 4.67 584 60.52
108 [73] GFRP 150 300 0.6 36.3 4.67 584 59.23
109 [73] GFRP 150 300 0.6 36.3 4.67 584 59.77
110 [73] GFRP 150 300 0.6 36.3 4.67 584 60.16
111 [73] GFRP 150 300 0.6 36.3 4.67 584 69.02
112 [73] GFRP 150 300 0.6 36.3 4.67 584 55.75
113 [73] GFRP 150 300 0.6 36.3 4.67 584 56.41
114 [73] GFRP 150 300 1.2 36.3 9.33 583 84.88
115 [73] GFRP 150 300 1.2 36.3 9.33 583 84.33
116 [73] GFRP 150 300 1.2 36.3 9.33 583 79.64
117 [73] AFRP 150 300 2.4 36.3 18.67 583 106.87
118 [73] AFRP 150 300 2.4 36.3 18.67 583 104.94
119 [73] AFRP 150 300 2.4 36.3 18.67 583 107.91
120 [67] CFRP 51 102 0.089 41 12.22 3501 86
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Table A1. Cont.

No. Ref. Fiber Type d (mm) L (mm) t (mm) f ′co (MPa) fl (MPa) ff (MPa) f ′cc (MPa)

121 [67] CFRP 51 102 0.179 41 24.57 3500 120.5
122 [67] CFRP 51 102 0.344 41 47.22 3500 158.4
123 [67] CFRP 51 102 0.689 41 94.57 3500 241
124 [67] CFRP 51 102 0.179 103 24.57 3500 131.1
125 [67] CFRP 51 102 0.344 103 47.22 3500 193.2
126 [67] CFRP 51 102 0.689 103 94.57 3500 303.6
127 [74] CFRP 153 305 0.36 39.7 5.98 1271 55.98
128 [78] CFRP 100 200 0.1675 30.2 9.14 2728 46.6
129 [78] CFRP 100 200 0.5025 30.2 27.42 2728 87.2
130 [78] CFRP 100 200 0.67 30.2 36.56 2728 104.6
131 [78] CFRP 100 200 0.14 30.2 4.38 1564 41.7
132 [78] CFRP 100 200 0.28 30.2 8.75 1563 56
133 [78] CFRP 100 200 0.42 30.2 13.13 1563 63.3
134 [78] AFRP 100 200 0.145 30.2 7.7 2655 39
135 [78] AFRP 100 200 0.29 30.2 15.39 2653 68.5
136 [78] AFRP 100 200 0.435 30.2 23.09 2654 92.1
137 [72] CFRP 150 300 0.11 45.2 5.11 3484 59.4
138 [72] CFRP 150 300 0.22 45.2 10.21 3481 79.4
139 [72] CFRP 150 300 0.11 31.2 5.11 3484 52.4
140 [72] CFRP 150 300 0.22 31.2 10.21 3481 67.4
141 [72] CFRP 150 300 0.33 31.2 15.32 3482 81.7
142 [72] CFRP 100 200 0.11 51.9 7.66 3482 75.2
143 [72] CFRP 100 200 0.22 51.9 15.32 3482 104.6
144 [72] CFRP 100 200 0.11 33.7 7.66 3482 69.6
145 [72] CFRP 100 200 0.22 33.7 15.32 3482 88
146 [72] CFRP 150 300 0.11 45.2 5.11 3484 59.4
147 [60] CFRP 100 200 0.167 34.3 12.76 3820 57.4
148 [60] CFRP 100 200 0.167 34.3 12.76 3820 64.9
149 [60] CFRP 100 200 0.167 32.3 12.76 3820 58.2
150 [60] CFRP 100 200 0.167 32.3 12.76 3820 61.8
151 [60] CFRP 100 200 0.167 32.3 12.76 3820 57.7
152 [60] CFRP 100 200 0.334 32.3 25.52 3820 58.2
153 [60] CFRP 100 200 0.334 32.3 25.52 3820 61.8
154 [60] CFRP 100 200 0.334 32.3 25.52 3820 80.2
155 [60] CFRP 100 200 0.501 32.3 38.28 3820 86.9
156 [60] CFRP 100 200 0.501 32.3 38.28 3820 90.1
157 [60] CFRP 100 200 0.167 34.8 12.76 3820 57.8
158 [60] CFRP 100 200 0.167 34.8 12.76 3820 55.6
159 [60] CFRP 100 200 0.167 34.8 12.76 3820 50.7
160 [60] CFRP 100 200 0.334 34.8 25.52 3820 82.7
161 [60] CFRP 100 200 0.334 34.8 25.52 3820 81.4
162 [60] CFRP 100 200 0.501 34.8 38.28 3820 103.3
163 [60] CFRP 100 200 0.501 34.8 38.28 3820 110.1
164 [58] GFRP 76 305 0.236 30.93 9.43 1518 60.82
165 [58] CFRP 76 305 0.22 30.93 20.18 3486 95.02
166 [58] CFRP 76 305 0.33 30.93 25.53 2940 94.01
167 [69] CFRP 150 300 0.117 34.9 4.06 2603 46.1
168 [69] CFRP 150 300 0.235 34.9 3.45 1101 45.8
169 [77] CFRP 153 305 0.36 19.4 10.74 2282 33.8
170 [77] CFRP 153 305 0.66 19.4 19.69 2282 46.4
171 [77] CFRP 153 305 0.9 19.4 26.85 2282 62.6
172 [77] CFRP 153 305 1.08 19.4 32.22 2282 75.7
173 [77] CFRP 153 305 1.25 19.4 37.3 2283 80.2
174 [77] CFRP 153 305 0.36 49 10.74 2282 59.1
175 [77] CFRP 153 305 0.66 49 19.69 2282 76.5
176 [77] CFRP 153 305 0.9 49 26.85 2282 98.8
177 [77] CFRP 153 305 1.08 49 32.22 2282 112.7
178 [75] CFRP 100 200 0.6 42 15.18 1265 73.5
179 [75] CFRP 100 200 0.6 42 15.18 1265 73.5
180 [75] CFRP 100 200 0.6 42 15.18 1265 67.62
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Table A1. Cont.

No. Ref. Fiber Type d (mm) L (mm) t (mm) f ′co (MPa) fl (MPa) ff (MPa) f ′cc (MPa)

181 [75] AFRP 150 300 1.26 43 3.86 230 47.3
182 [75] AFRP 150 300 2.52 43 7.73 230 58.91
183 [75] AFRP 150 300 3.78 43 11.59 230 70.95
184 [75] AFRP 150 300 5.04 43 15.46 230 74.39
185 [70] GFRP 100 200 0.35 32 10.64 1520 54
186 [70] GFRP 100 200 0.35 32 10.64 1520 48
187 [70] GFRP 100 200 0.35 32 10.64 1520 54
188 [70] GFRP 100 200 0.35 32 10.64 1520 50
189 [70] CFRP 100 200 0.16 37 12.13 3791 60
190 [70] CFRP 100 200 0.16 37 12.13 3791 62
191 [70] CFRP 100 200 0.16 37 12.13 3791 59
192 [70] CFRP 100 200 0.16 37 12.13 3791 57
193 [76] CFRP 150 300 0.169 25.15 4.56 2024 44.13
194 [76] CFRP 150 300 0.169 25.15 4.56 2024 41.56
195 [76] CFRP 150 300 0.169 25.15 4.56 2024 38.75
196 [76] CFRP 150 300 0.338 25.15 9.12 2024 60.09
197 [76] CFRP 150 300 0.338 25.15 9.12 2024 55.93
198 [76] CFRP 150 300 0.338 25.15 9.12 2024 61.61
199 [76] CFRP 150 300 0.507 25.15 13.68 2024 67
200 [76] CFRP 150 300 0.507 25.15 13.68 2024 67.27
201 [76] CFRP 150 300 0.507 25.15 13.68 2024 70.18
202 [76] CFRP 150 300 0.169 47.44 4.56 2024 72.26
203 [76] CFRP 150 300 0.169 47.44 4.56 2024 64.4
204 [76] CFRP 150 300 0.169 47.44 4.56 2024 66.19
205 [76] CFRP 150 300 0.338 47.44 9.12 2024 82.36
206 [76] CFRP 150 300 0.338 47.44 9.12 2024 82.35
207 [76] CFRP 150 300 0.338 47.44 9.12 2024 79.11
208 [76] CFRP 150 300 0.507 47.44 13.68 2024 96.29
209 [76] CFRP 150 300 0.507 47.44 13.68 2024 95.22
210 [76] CFRP 150 300 0.507 47.44 13.68 2024 103.97
211 [76] CFRP 150 300 0.169 51.84 4.56 2024 78.65
212 [76] CFRP 150 300 0.169 51.84 4.56 2024 79.18
213 [76] CFRP 150 300 0.169 51.84 4.56 2024 72.76
214 [76] CFRP 150 300 0.338 51.84 9.12 2024 95.4
215 [76] CFRP 150 300 0.338 51.84 9.12 2024 90.3
216 [76] CFRP 150 300 0.338 51.84 9.12 2024 90.65
217 [76] CFRP 150 300 0.507 51.84 13.68 2024 110.54
218 [76] CFRP 150 300 0.507 51.84 13.68 2024 103.62
219 [76] CFRP 150 300 0.507 51.84 13.68 2024 117.23
220 [76] CFRP 150 300 0.845 51.84 22.8 2024 112.66
221 [76] CFRP 150 300 0.845 51.84 22.8 2024 126.69
222 [76] CFRP 150 300 0.845 51.84 22.8 2024 137.93
223 [76] CFRP 150 300 0.169 70.48 4.56 2024 87.29
224 [76] CFRP 150 300 0.169 70.48 4.56 2024 84.03
225 [76] CFRP 150 300 0.169 70.48 4.56 2024 83.22
226 [76] CFRP 150 300 0.338 70.48 9.12 2024 94.06
227 [76] CFRP 150 300 0.338 70.48 9.12 2024 98.13
228 [76] CFRP 150 300 0.338 70.48 9.12 2024 107.2
229 [76] CFRP 150 300 0.507 70.48 13.68 2024 114.12
230 [76] CFRP 150 300 0.507 70.48 13.68 2024 108.07
231 [76] CFRP 150 300 0.507 70.48 13.68 2024 110.38
232 [76] CFRP 150 300 0.169 82.13 4.56 2024 94.08
233 [76] CFRP 150 300 0.169 82.13 4.56 2024 97.6
234 [76] CFRP 150 300 0.169 82.13 4.56 2024 95.83
235 [76] CFRP 150 300 0.338 82.13 9.12 2024 97.43
236 [76] CFRP 150 300 0.338 82.13 9.12 2024 98.85
237 [76] CFRP 150 300 0.338 82.13 9.12 2024 98.24
238 [76] CFRP 150 300 0.507 82.13 13.68 2024 124.2
239 [76] CFRP 150 300 0.507 82.13 13.68 2024 129.58
240 [76] CFRP 150 300 0.507 82.13 13.68 2024 120.36
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Table A1. Cont.

No. Ref. Fiber Type d (mm) L (mm) t (mm) f ′co (MPa) fl (MPa) ff (MPa) f ′cc (MPa)

241 [17] GFRP 152 435 0.8 35 4.72 448 52.8
242 [17] GFRP 152 435 1.6 35 10.6 504 66
243 [17] GFRP 152 435 2.4 35 17.64 559 83
244 [17] CFRP 152 435 0.11 35 4.76 3289 55
245 [17] CFRP 152 435 0.23 35 10.72 3542 68
246 [17] CFRP 152 435 0.55 35 26.71 3691 97
247 [71] GFRP 153 305 1.44 30.86 9.9 526 53.66
248 [71] GFRP 153 305 1.44 30.86 9.9 526 56.5
249 [71] GFRP 153 305 1.44 29.64 9.9 526 67.12
250 [71] GFRP 153 305 1.44 29.64 9.9 526 55.29
251 [71] GFRP 153 305 1.44 29.64 9.9 526 60.23
252 [71] GFRP 153 305 1.44 31.97 9.9 526 59.06
253 [71] GFRP 153 305 1.44 31.97 9.9 526 60.79
254 [71] GFRP 153 305 2.2 30.86 16.71 581 72.92
255 [71] GFRP 153 305 2.2 30.86 16.71 581 65.67
256 [71] GFRP 153 305 2.2 30.86 16.71 581 77.99
257 [71] GFRP 153 305 2.2 29.64 16.71 581 74.56
258 [71] GFRP 153 305 2.2 29.64 16.71 581 93.02
259 [71] GFRP 153 305 2.2 29.64 16.71 581 71.74
260 [71] GFRP 153 305 2.2 31.97 16.71 581 77.35
261 [71] GFRP 153 305 2.2 31.97 16.71 581 77.08
262 [71] GFRP 153 305 2.97 30.86 24.97 643 85.72
263 [71] GFRP 153 305 2.97 30.86 24.97 643 86.76
264 [71] GFRP 153 305 2.97 29.64 24.97 643 86.22
265 [71] GFRP 153 305 2.97 29.64 24.97 643 114.66
266 [71] GFRP 153 305 2.97 29.64 24.97 643 87.44
267 [71] GFRP 153 305 2.97 31.97 24.97 643 86.11
268 [71] GFRP 153 305 2.97 31.97 24.97 643 83.99
269 [68] GFRP 150 300 4.28 25.61 37.21 652 71
270 [68] GFRP 150 300 4.28 25.61 37.21 652 71.3
271 [68] GFRP 150 300 4.28 25.61 37.21 652 74.7
272 [68] GFRP 150 300 4.28 25.61 37.21 652 79.2
273 [68] GFRP 150 300 4.28 25.61 37.21 652 81.5
274 [68] GFRP 150 300 4.28 25.61 37.21 652 77.5
275 [68] GFRP 150 300 4.28 25.61 37.21 652 89.9
276 [68] GFRP 150 300 5.9 25.61 52.71 670 98.5
277 [68] GFRP 150 300 5.9 25.61 52.71 670 110.3
278 [68] GFRP 150 300 5.9 25.61 52.71 670 105.2
279 [66] GFRP 168 336 3.73 58 24.33 548 90
280 [66] GFRP 219 438 3.7 58 18.52 548 68
281 [66] GFRP 100 200 3.08 37 24.52 398 81
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37. Siemaszko, A.; Jakubczyk-Gałczyńska, A.; Jankowski, R. The idea of using Bayesian networks in forecasting
impact of traffic-induced vibrations transmitted through the ground on residential buildings. Geosciences
2019, 9, 339. [CrossRef]

38. Khatami, S.M.; Naderpour, H.; Barros, R.C.; Jakubczyk-Gałczyńska, A.; Jankowski, R. Effective formula for
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