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ABSTRACT
A problem of state estimation for a certain class of non-linear uncertain systems has been ad-
dressed in this paper. In particular, a sliding mode observer has been derived to produce robust
and stable estimates of the state variables. The stability and robustness of the proposed sliding
mode observer have been investigated under parametric and unstructured uncertainty in the sys-
tem dynamics. In order to ensure an unambiguous non-linear state (coordinates) transformation,
the appropriate system model for the observer synthesis has been devised and analysed. The
stability analysis of dynamics of estimation error has been carried out, based on the Lyapunov
stability theory in relation to Lipschitz assumptions for non-linear functions. In order to vali-
date the performance of the devised observer, it has been applied to the model of a continuous
stirred tank reactor (bioreactor). The promising simulation results have been obtained and they
demonstrate the high effectiveness of the devised approach.

Principal symbols and abbreviations
CSTR continuous stirred tank reactor
SMO sliding mode observer
UIO unknown input observer
Σ class of non-linear affine systems
Σc class of considered non-linear affine systems
ΣCSTR cognitive model of considered processes in a CSTR
ΣOSCSTR utility model of considered processes in a CSTR
A constant matrix of the linear part of system dynamics
b(x(t)) smooth mapping associated with control inputs
�m biomass mortality rate
��̃ bounding constant of �̃(⋅)
�ur bounding constant of ur(⋅)
C constant matrix of outputs
D(t) bounded dilution rate
Δ(x(t), t) unknown bounded input
"(t) estimation error
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"̃(t) estimation error in the new coordinates
f (x(t), t) smooth mapping associated with internal dynamics
f̂ (x(t)) exactly known component of f (x(t), t)
�(x(t)) non-linear state transformation
ℎ(x(t)) smooth mapping associated with output
Ki(t) time–varying coefficient of the reaction inhibition
Ks(t) time–varying coefficient of saturation
KSMO gains vector of proportional part of SMO
LSMO gain of sliding part of SMO
L(⋅)(⋅)(⋅) Lie derivative
L(⋅) Lipschitz constant
�max(⋅) maximal eigenvalue
ms substrate concentration maintenance coefficient
�H(t) Haldane kinetics function
�[1]M (S(t), t) Monod kinetics function
�̂M(t) simplified Monod kinetics function
�max(t) time–varying maximum growth rate parameter
�0(t) substitute coefficient of the kinetics reaction
Ω set of all possible system states
 ̃(x̃(t), u(t)) non-linear mapping
r(t) growth rate function
�(x(t)) vector parameterising the uncertainties
�̃(x̃(t)) non-linear mapping
S(t) concentration of aggregated substrate
Sin concentration of substrate in inflow to a CSTR
t time instant
u(t) bounded control input
X(t) concentration of aggregated biomass
x(t) vector of state variables
x̃(t) vector of state variables in the new coordinates
x̂(t) vector of estimated state variables
̂̃x(t) vector of estimated state variables in the new coordinates
V(⋅)(⋅) Lyapunov function
Y substrate growth yield coefficient
y(t) measurable output
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1. Introduction
The modern control theory distinguishes two widely used terms, i.e. control systems and monitoring systems. Un-

doubtedly, they involve the problem of accessing information about the process variables (the current state, controlled
outputs, etc.) of a given process. This information is provided by the measuring devices (sensors) installed in the plant
where the process takes place. Unfortunately, not all process variables are physically measurable or it is not possible to
allocate the necessary number of sensors, e.g., [1–3]. It is due to, e.g., a lack of suitable measuring devices or their high
costs, and physical capacity for their installation. Therefore, the missing information about, e.g., the state variables
needs to be recovered by employing their estimates. Typically, the estimation process is based on measurements of
other available variables and the mathematical model of the process. In general, the accuracy (performance) of the
estimation process depends on the nature of the considered process, the accuracy of the model used for estimation
purposes, and the quality of the used (primarily measuring) data, e.g., [4, 5].

In the literature a large number of publications devoted to both the state and parameter estimation as well as joint
estimation (state and parameter) can be found. For instance, from the pioneering work of Luenberger and Kalman,
which provided linear state observers generating point estimates for deterministic systems and with probabilistically
modelled uncertainty [5, 6] respectively, through different kinds of interval observers, e.g., [7–10], and non-linear
observers, e.g., [3, 4, 11–15]. This work focuses on one of the varieties of non-linear observers, namely sliding mode
observers (SMOs). In general, the sliding mode observers enable effective estimation of the state of uncertain dynamic
systems. It is well–known that the mathematical (cognitive) model is only the end of an accurate representation of re-
ality. Clearly, the unstructured and parametric (structured) uncertainty may be appeared. The unstructured uncertainty
usually stems from an unmodelled dynamics (includes model simplifications) whereas the parametric uncertainty holds
inaccurate knowledge of the values of given parameters. The SMOs are able to handle the parametric and unstructured
uncertainties in the system dynamics (also disturbances) by using the ideas of sliding surfaces and the equivalent con-
trol [13, 16–22]. Hence, they are able to generate the robust estimates of the state variables. In the literature there are
several kinds of SMO structures, but typically they are based on treating uncertainty as a kind of observer unknown
input. Hence, SMOs may be considered also as unknown input observer (UIO) [13, 16, 19, 23–25]. Moreover, the
SMOs have found many applications in the areas such as electromechanical systems, e.g., [21, 26], fault detection and
diagnosis, e.g., [18, 27–30] and state estimation in chemical and biochemical processes, e.g., [13, 31–36].

As it has been mentioned above, a proper mathematical model of the considered process is necessary for estimation
purposes. Unfortunately, there are many situations when the cognitive model cannot be used as a utility model for
estimation purposes due to time–varying parameters, unknown external inputs, and above–mentioned unstructured
uncertainty, e.g., [13, 19, 37, 38]. Therefore, one of the main problems during observer synthesis is to derive a simpler
substitute model of the considered process (system). It is obvious that simplification of the cognitive model can notably
influence the accuracy of the representation of reality, and become another source of unstructured uncertainty. Hence,
the preparation of the model for observer synthesis purposes is always associated with a reduction of the level of
mathematical complexity. Therefore, it is always needed to provide a kind of trade–off between accuracy and simplicity
of the model. Moreover, the certain important aspects associated with model observability and detectability should
be taken into account. Clearly, the considered model may be unobservable due to, e.g., unknown inputs occurrence
or non-injectivity of the coordinate transformation [24]. Thus, the proper modifications of the utility model can be
needed to ensure the state observability.

In this work, due to the background of the problem, the SMO structure introduced in [13, 25, 36, 39, 40] is used
and further developed. This structure integrating a high-gain approach, e.g., [12, 41] with a sliding mode approach
to the estimation of the state variables. Hence, the main aim of this work is to deliver a robust observer for the state
estimation purposes of a certain class of non-linear affine systems. Thus, the essential aspects associated with models
reconstruction are presented. For instance, a large number of chemical and biochemical processes belong to this class,
a continuous stirred tank reactor (CSTR) (bioreactor) with the microbial growth reaction and their mortality with the
aggregated substrate and biomass (reactants) concentrations [37] is considered in this paper, in particular. Moreover,
in comparison to the methodology presented in [13, 25, 36, 39, 40], authors devised the sliding mode observer which
rejects not only the negative impact of the disturbances or the components of dynamics which parameters are time–
variant (e.g. uncertain kinetics of biochemical processes), but also deal with unstructured uncertainty. Thus, the main
contributions of this paper are as follows:
a) the sliding mode observer producing stable and robust estimates of the state variables despite the parametric and

unstructured uncertainty in the system dynamics has been devised,
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b) the proper utility model for sliding mode observer design purposes has been developed and its main features have
been investigated,

c) the comprehensive analysis of the impact of observer gain matrix values on eigenvalues of the Lyapunov matrix
has been given.
The paper is organised as follows. The problem formulation is presented in section 2. Section 3 includes the

derivation of the cognitive model of considered processes. The fundamental information about sliding mode observers
is given in section 4. Section 5 includes the derivation of the utility model for estimation purposes. The synthesis of
the sliding mode observer for bioreactor is given in section 6. The simulation results are described in section 7. The
paper is concluded in section 8 and completed with three appendices.

2. Problem statement
Considering ℝn as the n–dimensional vector space over a real number field ℝ, a certain class of non-linear affine

systems Σ can be defined as follows [42, 43]:

Σ ∶

⎧

⎪

⎨

⎪

⎩

ẋ(t) = f (x(t), t) + b (x(t), t) u(t) +w (x(t), t) z(t)
x(t0) = x0
y(t) = ℎ (x(t), u(t), v(t), t)

, (1)

where: ̇(⋅) stands for the derivative with respect to t; t ∈ T = ℝ+ ∪ {0} ⊂ ℝ is the time instant, ℝ+ denotes a
positive part of ℝ; ∀t ∈ T ∶ x(t) ∈ Xn ⊂ ℝn is the vector of state variables, which coincide with globally defined
cubic coordinates, Xn is a (connected) differentiable manifold with a ∞(⋅) structure of dimension n; ∀t ∈ T ∶ u(t) ∈
U ⊂ ℝ, |u(t)| ≤ ubound < ∞ denotes the bounded by ubound control input, and | ⋅ | is an absolute value of (⋅);
∀t ∈ T ∶ z(t) ∈ ℤm ⊂ ℝm, ||z(t)||∞ = max

{

sup
{

|

|

|

zim
|

|

|

∶ t ∈ T
}

, im = 1, m
}

≤ zbound < ∞ signifies the bounded
by zbound vector of disturbance inputs, and || ⋅ || denotes an infinity norm of (⋅), max{⋅} is a maximum of (⋅), and
sup{⋅} denotes a supremum of (⋅); ∀t ∈ T ∶ y(t) ∈ Y ⊂ ℝ is the measurable output; ∀t ∈ T ∶ v(t) ∈ Vl ⊂ ℝl
denotes the vector of measurement noise; ∀t ∈ T ∶ f ∶ Xn × T → TXn, ∀t ∈ T ∶ b,w∶ Xn × T → TXn,
∀t ∈ T ∶ ℎ∶ Xn × U × Vl × T → ℝ are smooth maps, and × denotes a Cartesian product; T (⋅) is the tangent bundle
of vector field.

It should be added that the system Σ is claimed as complete, i.e. the state trajectories x(t) are defined for every
t ∈ T , every initial condition x0 and for all exogenous signals which belong to their particular sets.

The following features describe the frame of uncertainties and the minimum knowledge on the considered system
Σc belonging to (1):

I. ∀t ∈ T ∶ f (x(t), t) is not exactly known; clearly, ∀t ∈ T ∶ f (x(t), t) is burden by parametric and unstructured
uncertainty,

II. it is assumed that there is only bounded control input u(t) in the considered system,
III. ∀t ∈ T ∶ b (x(t), t) is known and time–invariant with respect to parameters, hence ∀t ∈ T ∶ b∶ Xn → TXn,

∀t ∈ T ∶ b (x(t), t)→ b (x(t)),
IV. due to system dynamics the measurement noise can be neglected, therefore ∀t ∈ T ∶ ℎ (x(t), u(t), v(t), t) →

ℎ (x(t), u(t), t),
V. ∀t ∈ T ∶ ℎ (x(t), u(t), t) is time–invariant with respect to parameters and control input, thus ∀t ∈ T ∶ ℎ∶ Xn →

Y , ∀t ∈ T ∶ ℎ (x(t), u(t), t)→ ℎ (x(t)).
Hence, including I–V, the Σc yields:

Σc ∶

⎧

⎪

⎨

⎪

⎩

ẋ(t) = f̂ (x(t)) + b(x(t))u(t) + �(x(t))Δ(x(t), t)
x(t0) = x0
y(t) = ℎ(x(t))

, (2)
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where ∀t ∈ T ∶ f̂ ∶ Xn → TXn stands for an exactly known component of f (⋅) resulting from the elimination of
parametric and unstructured uncertainty, and their modelling as:

�(x(t))Δ(x(t), t) ≜ f (x(t), t) − f̂ (x(t)), (3)
where ∀t ∈ T ∶ �∶ Xn → TXn is the vector parameterising the uncertainties and ∀t ∈ T ∶ Δ∶ Xn × T → ℝ
with ||Δ(x(t), t)||∞ = max

{

|Δ(x(t), t)| ∶ (x, t) ∈ Xn × T
}

≤ Δ < ∞. It is worth noting that Δ(x(t), t) may be
considered as an unknown bounded by Δ input to the considered system Σc. In fact, the Δ(x(t), t) component must
be imposed in every of the state equations of considered system [13, 25, 39]. This claim provide the opportunity to
perform compensation of the uncertainty for the whole system dynamics.

In order to simplify notation the following definitions are introduced:
• x(t) ≜ x(t,x0, u(t),Δ(x(t), t)) is a general solution of system Σc related to x0, u(t) and Δ(x(t), t),
• y(t) ≜ y(x(t,x0, u(t),Δ(x(t), t))) = ℎ(x(t,x0, u(t),Δ(x(t), t))) is the output functional related to x0, u(t) and
Δ(x(t), t).

As it has been mentioned above, this work aims to deliver a robust observer for the state estimation purposes of
non-linear systems type Σc. Because a large number of chemical and biochemical processes can be described by (2), a
CSTRwith the microbial growth reaction and their mortality with the aggregated substrate and biomass concentrations
[37] is considered in the further part of the paper. It is worth adding that the proposed methodology may be applied
to more complex systems based on a CSTR, e.g., bioreactor with the settler. Moreover, the idea of simplifying the
kinetics function can be utilised in the context of multi-variable, where more than one substrate appears in dynamics.

3. Cognitive model of the considered system
A CSTR with the microbial growth reaction and their mortality with the aggregated substrate S(t) [

g∕L
] and

biomass X(t) [g∕L] concentrations is one of the most widely used biochemical processes models [37]:
S(t)→ X(t). (4)

For further considerations the set of all possible system states is defined as:
Ω = {(X(t), S(t)) ∈ ℝ2 ∶ ∀t ∈ T ∶ 0 ≤ X(t) ≤ X, 0 ≤ S(t) ≤ S}, (5)

where X and S are (real) the upper bounds of the particular reactant. It is worth adding that Ω is an invariant set
meeting the condition of the general theory of biochemical processes dynamics [10, 37]: Ω ⊂ Xn ⊂ ℝ2.

The dynamics of the considered model is described by the following phenomena [37]:
a) the microbial growth reaction (reaction kinetics) in the CSTR is described by growth rate function, r(t) ≥ 0 [g∕ℎL],
b) the inflow and outflow in the CSTR are described by the bounded dilution rate, 0 ≤ D(t) ≤ D

[

ℎ−1
],

c) the microbial mortality is taken into account in the CSTR dynamics in the following way:
biomass death: X(t)→ Xd(t),

substrate maintenance: S(t) +X(t)→ X(t),

where Xd
[

g∕L
] is the dead biomass.

From the constituent mass balance law, the model of considered processes in the CSTR ΣCSTR, taking into accountthe above–mentioned phenomena, can be written as follows [37]:

ΣCSTR ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ẋ(t) = r(t) − �mX(t) −X(t)D(t)

Ṡ(t) = − 1
Y
r(t) − msX(t) + (Sin − S(t))D(t)

X(t0) = X0
S(t0) = S0

, (6)
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where: ∀t ∈ T ∶ Y > 0 [−] , Sin > 0
[

g∕L
]

, �m > 0
[

ℎ−1
]

, ms > 0
[

ℎ−1
] denote the yield coefficient of substrate

growth, substrate concentration in inflow to the CSTR, biomassmortality rate, and coefficient of substrate concentration
maintenance, respectively. This particular systemmay be considered as an epitome example of the biochemical reaction
system, which present the most important structural properties of the whole class of systems [37].

One of the most important parts of the dynamics of biochemical processes is the reaction kinetics, which is also
one of the uncertainty sources. In general, this function is claimed as a very uncertain, complex and time–varying
component of the model [9, 10, 37, 44–49]. In fact, the kinetics of the reactions are affected by the biological com-
ponents concentrations occurring in the bioreactors. Typically, they are represented by non-linear, non-negative, and
uncertain functions referring to the particular concentrations of reactants in the liquid phase [37, 44]. A widespread
approach to formulating their models is given by the following law:

r(t) =
nc
∏

ic=1
�[ic](⋅) (⋅, t), (7)

where ∀t ∈ T ∶ �[ic](⋅) (⋅, t)
[

g∕ℎL
] and nc denote specific growth rate which separately represents the effect of each

component of the rate and number of reactants involved in a reaction, respectively. The lower index of �[ic](⋅) (⋅, t)denotes the kind of structure of the considered specific growth rate and the upper index refers to particular reactant
concentration.

It is crucial to state that model of every specific growth rate should properly represent the physical phenomenon.
Therefore, the growth rate satisfies the following conditions [9, 10, 37, 44–48]:
1) r(t) = 0, when one of the state dependent arguments of the particular �[⋅](⋅)(⋅, t) is equal to zero,
2) ∀t ∈ T ∶ r(t) is positive and bounded only when its all of the state dependent arguments are positive,
3) r(t) is always continuous function of its parameters and states of a system.

A large number of possible models to express the �[⋅](⋅)(⋅, t) can be found in the literature, e.g., [48]. Among the most
common models are: Linear, Monod and Haldane functions, denoted by �[⋅]L (⋅, t), �[⋅]M (⋅, t) and �[⋅]H (⋅, t), respectively.For instance the substrate concentration dependent Monod function based on Michaelis–Menten law is given by:

�[1]M (S(t), t) = �max(t)
S(t)

Ks(t) + S(t)
, (8)

where ∀t ∈ T ∶ �max(t) > 0 ∈ ℝ+
[

ℎ−1
] is the time–varying maximum growth rate parameter and ∀t ∈ T ∶ Ks(t) ∈

ℝ+
[

g∕L
] denotes the time–varying coefficient of saturation. It is worth mentioning that Monod function and its

derivative ∀t ∈ T ∶ �̇[⋅]M (⋅, t) > 0 are monotonic functions of their argument.
In turn, the Haldane function is as follows:

�[1]H (S(t), t) = �0(t)
S(t)

Ks(t) + S(t) +
S2(t)
Ki(t)

,

�0(t) = �max(t)

(

1 + 2

√

Ks(t)
Ki(t)

)

,

(9)

where ∀t ∈ T ∶ �0(t) ∈ ℝ+
[

ℎ−1
] is the substitute coefficient of the kinetics reaction and ∀t ∈ T ∶ Ki(t) ∈ ℝ+

[

g∕L
]

denotes the time–varying coefficient of the reaction inhibition.
It should be noted that it is commonly assumed that structure of reaction kinetics model is known (e.g. presented

models of the Monod or Haldane) whereas the parameters (�max(t), Ks(t), Ki(t)
) are claimed as uncertain. This issue

occurs in many biochemical applications because:
i) a lack of sufficient knowledge about the calibrated values of model parameters,
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ii) the need for simplification of the model structure concerning the process complexity or conditions for particular
algorithm synthesis.

Hence, in the CSTR model (6) reaction rate which models transformation of the substrate S(t) to the biomassX(t)
is modelled by using formula (7) as [9, 37, 44, 45]:

r(t) ≜ �[1](⋅) (S(t), t)�
[2]
L (X(t)) = �

[1]
(⋅) (S(t), t)X(t). (10)

In this work, the reaction rate is modelled as the product of the Haldane function (9) and the Linear function of
biomass, therefore the formula (10) is using in (6). Henceforth, due to occurrence of only one kinetics function in (6),
to provide simplified indication of the particular kinetics functions, the upper index and state dependent arguments
have been omitted what has been denoted as: �[1]H (S(t), t) → �H(t). In turn, because of necessity of modelling the
kinetics function parameters uncertainty, the following approach is proposed:

�max(t) = �0max
[

1 + p�maxΘ�max
(

!�max t
)]

,

Ki(t) = K0
i

[

1 + pKiΘKi
(

!Ki t
)]

,

Ks(t) = K0
s

[

1 + pKsΘKs
(

!Ks t
)]

,

(11)

where: �0max, K0
i , K0

s are the mean values of growth rate function parameters; p(⋅) denotes the grade of particu-
lar parameter uncertainty; Θ(⋅) stands for the periodic, continuous function; !(⋅) signifies the frequency of particular
parameter values changing. In this case Θ(⋅), p(⋅) and !(⋅) are assumed as follows:

Θ�max = sin(⋅), !�max = 0.001, p�max = 0.05,

ΘKi = cos(⋅), !Ki = 0.014, pKi = 0.05,

ΘKs = sin(⋅), !Ks = 0.015, pKs = 0.05.
(12)

In order to clarify the above description, the graphical representation of the cognitivemodel of considered processes
in the CSTR is shown in Fig. 1.

Figure 1: The graphical representation of the cognitive model of CSTR.

The devised observer provides the estimate of the unknown aggregated substrate concentration S(t) from measure-
ments of the aggregated biomass concentration X(t) with using an appropriate model for estimation purposes.

4. Sliding mode observer - background
The certain crucial facts necessary for the clarity of presentation of the devised sliding mode observer are given

in this section. In turn, the details of this general approach can be found in [13, 25, 36, 39, 40]. Thus, this section is
aimed at presenting the theoretical background and highlighting against it all the relevant issues applicable for further
considerations. The SMOs enable effective estimation of the state of uncertain dynamic systems. By connecting
concepts of using the ‘proportional’ gain, e.g., from the Luenberger algorithm with the switching conditions from
sliding mode algorithms, the proposed SMO provides two main features. Firstly, asymptotically tracking of the state
trajectories x(t) is ensured. Secondly, the impact of the unknown term Δ(x(t), t) on entire dynamics is compensated.
Czyżniewski, M. and Łangowski, R.: Preprint submitted to Elsevier Page 7 of 33
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Hence, the considered SMO is able to not only asymptotic reconstructing of the original state but also ‘estimating’
uncertainty by equivalent control term [13, 36]. Clearly, by invoking to the classical observability rank theorem [4,
38, 42, 50, 51] and also matching condition [13, 36, 52], based on checking a relative degree of Δ(x(t), t) with respect
to the output y(t), it is possible to use a sliding mode component to make uncertainty rejected. Therefore, it is possible
to decouple the unknown part of dynamics from the estimation error by using sliding mode term to compensate the
impact of the Δ(x(t), t) (the unknown input is coupled with output due to matching condition whereas its undesired
impact is decoupled from state estimates) [13]. According to [13, 25, 36, 39, 40], the general form of SMO for system
Σc (ΣCSTR) can be written as follows:
⎧

⎪

⎨

⎪

⎩

̇̂x(t) = f̂ (x̂(t)) + b(x̂(t))u(t) +
[)�
)x̂

]−1
[

KSMO(y(t) − ℎ(x̂(t)))
]

+ 1
�̃1(x̂(t))

�(x̂(t))LSMOsgn(y(t) − ℎ(x̂(t)))
x̂(t) = x̂0

, (13)

where: ∀t ∈ T ∶ x̂(t) ∈ Xn ⊂ ℝn denotes the vector of estimated state variables; � is the non-linear state transfor-
mation; KSMO > 0n×1, LSMO > 0 signify the gains vector of proportional part of SMO and the scalar gain of sliding
part of SMO, respectively; �̃1(⋅) is the first element of �̃(⋅); sgn(⋅) denotes signum function; )(⋅)

)(⋅)
is a partial derivative

operator.
Considering (2), the non-linear state transformation�∶ Xn → X̃n is defined as:

x̃(t) = �(x(t)) =
[

ℎ Lf̂ℎ ⋯ Ln−1
f̂
ℎ
]T
, (14)

where: X̃n ⊂ ℝn signifies a ‘new’, n–dimensional connected manifold of analogous properties toXn; ∀t ∈ T ∶ x̃(t) ∈
X̃n ⊂ ℝn is the vector of state variables in the ‘new’ coordinates; L(⋅)(⋅)(⋅) denotes Lie derivative [42, 53].It is known that the state (coordinates) transformation is closely related to the observability of the considered sys-
tem. Typically, for the synthesis of non-linear observers, the considered type of observability is understood by means
of a distinguishing feature. There are many definitions associated with the essential understanding of distinguishable
sets [38, 42, 50, 51, 54, 55]. For instance the uniform observability is related to the observability of all system states
regardless of control input impact whereas strong observability is associated with observability of all states in a situa-
tion when unknown input appears in the system dynamics. In this work, due to the fact of action of sliding mode term,
the observability is considered in classic, local, weak, and uniform manner.

Hence, in order to prove that (2) is observable it is needed to establish that observability co–distribution of one
forms d = span

{

dℎ, dLf̂ℎ, ... dL
n−1
f̂
ℎ∶ ℎ, Lf̂ℎ, ... L

n−1
f̂
ℎ ∈ 

}

, where  ⊂ ∞
(

Xn
) is a linear observation

space defined over field of ℝ fulfil a dimension condition dim (d) = n, ∀t ∈ T x(t) ∈ Xn, what means that re-
veal non-singularity and bijectivity properties [42, 53]. For the considered system, when output is decoupled from
impact of inputs and the matching condition holds, the linear observation space is based on subsequent Lie deriva-
tives of output equation ℎ(⋅) with respect to vector field f̂ (⋅). By imposing local coordinates into , the coordinates
(�(x(t))) transformation is given by (14). Therefore, a co–distribution d coincides with the Jacobian of non-linear
state transformation. Henceforth, this Jacobian is called observability matrix and it is given as:

̇̃x(t) = )�
)x
(x(t)) =

⎡

⎢

⎢

⎢

⎢

⎣

dℎ
dLf̂ℎ
⋮

dLn−1
f̂
ℎ

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

∇ℎ
∇Lf̂ℎ
⋮

∇Ln−1
f̂
ℎ

⎤

⎥

⎥

⎥

⎥

⎦

, (15)

where d(⋅) and ∇(⋅) are an exterior derivative operator and a vector differential operator, respectively.
When the observability condition is fulfilled the observer structure (13) can be transformed into the following form:

⎧

⎪

⎨

⎪

⎩

̇̃̂x(t) = A ̂̃x(t) +  ̃
( ̂̃x(t), u(t)

)

+KSMO (y(t) − C ̂̃x(t)
)

+ �̃
( ̂̃x(t)

)

ur(t)

̂̃x(t0) = ̂̃x0
, (16)
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A robust sliding mode observer

where: ∀t ∈ T ∶ ̂̃x(t) ∈ X̃n ⊂ ℝn denotes the vector of estimated state variables in the ‘new’ coordinates; A ∈ ℝn×n
andC ∈ ℝ1×n are the constant matrices of the linear part of dynamics and outputs, respectively and they are considered
as a parts of Brunovsky controllable canonical form [42, 50];  ̃ ∶ X̃n × Up → T X̃n, �̃∶ X̃n → T X̃n denote the non-linear mapping defined as:

 ̃ (x̃(t), u(t)) = �̃(x̃(t)) + 
̃(x̃(t))u(t), (17)
and

�̃(x̃(t)) = [�̃1(x̃1(t)) … �̃in (x̃1(t), … , x̃in (t)) … �̃n(x̃(t))]T , (18)
where:
�̃(x̃(t)) =

[

0 0 … 0 �(x̃(t)) =
[

Ln
f̂
ℎ
]

|

|

|

|x=�−1(x̃)

]T
,


̃(x̃(t)) = [
̃1(x̃1(t)) … 
̃in (x̃1(t), … , x̃in (t)) … 
̃n(x̃(t))]T,

̃in (⋅) =

[

LbL
in−1
f̂

ℎ
]

|

|

|

|x=�−1(x̃)
,

�̃in (⋅) =
[

L�L
in−1
f̂

ℎ
]

|

|

|

|x=�−1(x̃)
, in = 1, n;

�−1(x̃(t)) is the inverse Jacobi matrix of�(x(t)) and �̃, 
̃ and �̃ are claimed as a bounded and locally Lipschitz on the
set X̃n.In turn, the sliding mode term (ur(t)) from (13) in the new coordinates is determined as:

ur(t) =
1

�̃1( ̂̃x(t))
LSMOsgn (y(t) − C ̂̃x(t)) . (19)

It is for two reasons. Firstly, it is connected with the fulfilling condition of a relative degree of measured output
and secondly with introducing the sliding mode term into the observer dynamics [13, 25, 36, 39, 40].

By performing proper coordinates transformation, the observability of a given system can be claimed as indepen-
dent of the input u(t). In the literature it is called uniform observability [16, 42, 50, 51, 54]. According to the triangular
form of (16) in the new coordinates, the following conditions must be hold [13]:

1 +
) ̃in
)x̃in+1

≠ 0,
)�̃in
)x̃in+1

≠ 0, in = 1, n − 1. (20)

The conditions (20) assure that the dynamics of the considered system is uniformly observable. Moreover, the
‘observability’ of unknown inputΔ(x(t), t)must be examined. In the case, whenΔ(x(t), t) is involved in the differential
equation established as derivative of the measured output y(t), the sliding mode term, after reaching the sliding surface
(equivalent control - ur(t)) can reconstruct the unknown part of the system dynamics [25, 28, 40]. To be more detailed,
the equivalent control can ‘estimate’ the unknown input, only when the relative degree of measured output is equal to
one, what means that the first order Lie derivative of the output equation ℎ(⋅) is non zero: �̃1(⋅) = L�ℎ ≠ 0, ∀t ∈ T . It
also means that in this variant of the SMO observer, the involutive of co–distribution associated with the �̃(x(t)) is not
considered at all. For instance the idea of the sliding mode observer proposed in [28] is premised on the performing
of non-linear transformation and also fulfilling the Frobenius theorem to make unknown inputs decoupled from the
system dynamics in the new coordinates [25, 42].

It should be added that the above–presented methodology requires that the unknown inputs are structurally replaced
by the sliding mode terms, which causes not affecting the disturbance to states of the system. If the proper transfor-
mation cannot be determined for the observability of the unknown inputs, the considered method can only proceed
to obtain bounded estimation error. Moreover, the existence of the UIO SMO relies on the ‘observability’ of the un-
known input. If the assumption of the relative degree of measured output does not hold, the unknown input cannot be
reconstructed and the observer is not able to overcome the negative impact of the unknown dynamics [25, 36, 39, 40].

According to [13, 25, 36, 39, 40] tuning of the observer gains are strictly linked with establishing Lipschitz as well
as bounding constants, which are used for the Lyapunov functions assessment. The main problem of the considered
approach is that the values of the gain matrix KSMO strictly depend on the Lipschitz and bounding constants which
Czyżniewski, M. and Łangowski, R.: Preprint submitted to Elsevier Page 9 of 33
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A robust sliding mode observer

cannot be arbitrarily large. Therefore, fulfilling stability conditions is related to not only the selection of the values of
KSMO in the left–half of the complex plane but also to values of above–mentioned constants [56–59]. More specifically,
the clear relation between spectrum of the matrix AKSMO = A − KSMOC and the maximal eigenvalue �max

(

 (⋅)
),

where  (⋅) is a symmetric positive–definite matrix, in not particularly checked. However, due to the fact that the form
ofA andC coincides with the canonical form, there is a possibility of performing certain investigations. The important
observations on this issue for an exemplary two–dimensional system are set out in appendix B.

In this paper, in comparison to the methodology presented in [13, 25, 36, 39, 40] authors proved that sliding mode
term can not only reject the negative impact of the disturbances or the components of dynamics which parameters are
time–variant (e.g. uncertain kinetics of biochemical processes), but also deals with unstructured uncertainty. It means
that by proper choice of f̂ (x(t)) the unmodelled system dynamics is transferred intoΔ(x(t), t) and finally compensated
by the sliding mode term.

5. Model of the considered system for SMO synthesis
Taking into account the information from section 4, it can be noticed that the cognitive model of considered bio-

chemical processes presented in section 3 is not adequate for observer synthesis purposes. It is due to the excessive
complexity of its structure. Clearly, this complexity might cause potential difficulties in analysing the stability of the
designed SMO. Moreover, there are significant uncertainties in the structure of the cognitive model. Thus, it is not
possible to derive the state (coordinates) transformation of the cognitive model with Haldane kinetics function due
to the fact, there is no a bijectivity of the state transformation (relevant considerations on this issue are presented in
appendix A). It is worth adding that this particular switch between two kinetics function allow to make state space
fully observable due to fulfilling observability condition and also ‘tracking’ of uncertainity. In fact, due to inhibition
effects which are imposed by Haldane kinetics, the sliding mode component must be applied to compensate unknown
part of dynamics. Hence, a new (utility) model of a considered system for estimation purposes is needed. Therefore,
the following assumptions are introduced in order to derive the utility model of the system ΣCSTR:

• the structure of the specific growth rate function �H(t) is replaced by the simplifiedMonod function �̂M(t) definedas:
�̂M(t) = �0max

x2(t)
K0
s + x2(t)

, (21)

• whereas �0max and K0
s are the estimates of uncertain parameters �max(t) and Ks(t), respectively (see (11)).

To perform the observer synthesis, the state variables and inputs are defined as:
x1(t) ≜ X(t), x2(t) ≜ S(t), u(t) ≜ D(t). (22)

Finally, the utility model ΣOSCSTR reads:

ΣOSCSTR ∶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ1(t) = �̂M(t)x1(t) − �mx1(t) − x1(t)u(t) + Δ(x(t), t)

ẋ2(t) = − 1
Y
�̂M(t)x1(t) − msx1(t) + (Sin − x2(t))u(t) −

1
Y
Δ(x(t), t)

x(t0) = x0
y(t) = x1(t)

. (23)

It should be noted that the proposed function (21) substituting kinetics function enables a proper state transfor-
mation as well as a relatively good mapping of the real behaviour of the original system (cognitive model). The
comparison between the cognitive and utility model is presented in section 7.1. Moreover, the analysis of potential
usage of Haldane function in the utility model is shown in appendix A.

The components f̂ (x(t)) and b(x(t)) of model (23) are equal to:

f̂ (x(t)) =

[

�̂M(t)x1(t) − �mx1(t)
− 1
Y
�̂M(t)x1(t) − msx1(t)

]

,

b(x(t)) =
[

−x1(t)
Sin − x2(t)

]

.

(24)
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It is worth adding that typically only component representing kinetics function in a non-linear model of considered
biochemical processes is treated as highly uncertain. Therefore, the uncertain part of the system ΣOSCSTR, which holds
the necessary conditions for SMO synthesis is determined as:

Δ(x(t), t) =
[

�H(t) − �̂M(t)
]

x1(t),

�(x(t)) =

[

1
− 1
Y

]

.
(25)

Remark 1. Considering the general facts about the problem of uncertainty in function �(⋅)(t), authors claims, that the
proposed approach of using simplified Monod function (21) to ensure holding the observability condition might be
extended to the wider class of models, which describe the dynamics of bioreactors.
Remark 2. As it has been mentioned above, the significance of growth rates impact on the dynamics of biochemical
processes is unbeatable. Some papers, e.g., [11, 31, 34, 35] presents methodological and application considerations
on handling the general issue of both state and unknown input estimation in the context of the biochemical system.
This work provides some new ideas for this field. By assuming that kinetics function appears in all of the dynamical
equations of the considered system, using the sliding mode term in observer dynamics causes compensation not only
the negative impact of ‘bad’ input but also its estimation. Taking into account that in sliding phase the uncertain
part of system dynamics is ‘estimated’ by the sgn(⋅) function Δ(x(t), t) ≈ sgn(−"1(t))eq, it may be concluded that
due to the nature of Δ(x(t), t) established for considered class of biochemical system, the sliding mode observer is
able to reconstruct the behaviour of function �(t). More specifically, when the sliding mode term reaches the sliding
surface, its operation causes the current value of ur(t) given by (19) to map the value of Δ(x(t), t). Thus, knowing
that by applying transformation (3), and in particular (25) the conditions of applicability of the SMO are satisfied, the
following transformation is possible. Hence, given the structure of the Δ(x(t), t) in (25), ∀t ∈ T the values of x1(t),
x2(t), �0max, and K0

s are known or can be reconstructed on-line. Thus, in order to determine the analytical formula for
calculating �H(t), one must compareΔ(x(t), t)with the sliding mode term. For instance in the considered example (6),
by taking form of kinetics function �̂M(t) from (21), and Δ(x(t), t) from (25) the following assessment �̃H(t) of �H(t)is obtained:

∀t ∈ T x̂1(t) ≠ 0→ �̃H(t) ≈ 1
x̂1(t)

sgn(y(t) − ℎ(x̂(t)))eq + �̂M(t), (26)

where sgn(y(t) − ℎ(x̂(t)))eq is the equivalent control of the sliding mode term [52].
Thus, uncertainty compensation occurs by satisfying thematching condition – coupling the uncertaintymodelled as

an unknown input to a differentiable (in the sense of Lie derivatives – relative order of output equal to one) measurement
output. This results in the unknown input being ‘observable’ due to the operation of the sliding mode term. On the
other hand, in the SMO structure, the uncertain input is replaced by the sliding mode term. Thus, one obtains the
ability to accurately track the uncertainty, and through appropriate transformations, e.g. (26), to determine the kinetics
function of the original system.

6. Design of sliding mode observer for the CSTR
The state (coordinates) transformation for system (23) is as follows:

x̃(t) = �(x(t)) =
[

x1(t)
�̂M(t)x1(t) − �mx1(t)

]

=
⎡

⎢

⎢

⎣

x1(t)
t1(t)
t2(t)

x1(t) − �mx1(t)

⎤

⎥

⎥

⎦

, (27)

which in Xn coordinates space is always non–singular due to persistent non–negativeness of x2(t), where t1(t) =
�0maxx2(t) and t2(t) = K0

s + x2(t).Making simple calculations the inverse coordinates transformation yields:

x(t) = �−1(x̃(t)) =
⎡

⎢

⎢

⎣

x̃1(t)
−K0

s
(

x̃2(t) + �mx̃1(t)
)

x̃2(t) + �mx̃1(t) − �0maxx̃1(t)

⎤

⎥

⎥

⎦

, (28)
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which is non–singular in the whole space X̃n excluding set {∀t ∈ T x̃(t) ∈ X̃n ∶ x̃2(t) + �mx̃1(t) − �0maxx̃1(t) = 0}.Taking into account (27) the Jacobi matrix of transformation between Xn and X̃n is calculated as follows:

dx̃(t) = )�
)x
(x(t)) =

⎡

⎢

⎢

⎢

⎣

1 0
t1(t)
t2(t)

− �m
t3(t)K0

s
(

t2(t)
)2

⎤

⎥

⎥

⎥

⎦

, (29)

where t3(t) = �0maxx1(t),and its determinant is given as:

det
[)�
)x

]

=
t3(t)K0

s
(

t2(t)
)2
. (30)

Remark 3. It should be noted that the obtained determinant (30) indicates that the transformation between state spaces
is singular in the set Ob =

{

x(t) ∈ Ω∶ x1(t) = 0
}

⊂ Ω. It means that the considered system is not observable in the
whole space Ω. Due to the fact that the point {02×1

}

⊂ Ob is strictly linked with the certain important dynamical
features of the model (23) [37], it is necessary to establish a region where the proper operations of the designed SMO
is ensured. Because of the singularity of (29) only in the one particular case, it is needed to prove that the system
dynamics cannot reach the set Ob. Due to its continuous action in time this is indeed. It is tantamount to stating that
the considered system is observable in the set Ω ⧵

{

02×1
}.

Using (29) and (30) the inverse Jacobi matrix can be rewritten as:

[)�
)x

]−1
=

⎡

⎢

⎢

⎢

⎣

1 0

t2(t)
t4 + t5(t) − t1(t)

t3(t)K0
s

(

t2(t)
)2

t3(t)K0
s

⎤

⎥

⎥

⎥

⎦

, (31)

where t4 = K0
s �m and t5(t) = �mx2(t).In turn, using (17) the mapping �̃(x(t)) reads:

�̃(x(t)) =
⎡

⎢

⎢

⎢

⎣

0
(

t4 + t5(t) − t1(t)
)2

(

t2(t)
)2

x1(t) − �̃(x(t))(2)

⎤

⎥

⎥

⎥

⎦

, (32)

where t6 = Y ms;
�̃(x(t))(2) =

t3(t)K0
s x1(t)

(

t1(t) +K0
s t6 + t6x2(t)

)

Y
(

t2(t)
)3

,
whereas the mapping 
̃(x(t)) yields:


̃(x(t)) =
⎡

⎢

⎢

⎣

−x1(t)

x1(t)
(

�m −
t1(t)
t2(t)

)

+ 
̃(x(t))(2)

⎤

⎥

⎥

⎦

, (33)

where 
̃(x(t))(2) =
(

t3(t)
t2(t)

−
t1(t)x1(t)
(

t2(t)
)2

)

(

Sin − x2(t)
),

and the mapping �̃(x(t)) linked with uncertainty is as follows:

�̃(x(t)) =
⎡

⎢

⎢

⎢

⎣

1
t1(t)
t2(t)

−

(

t3(t)
Y t2(t)

−
t1(t)x1(t)

Y
(

t2(t)
)2

)

− �m

⎤

⎥

⎥

⎥

⎦

. (34)
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Hence, the dynamics of the designed SMO in the new coordinates x̃(t), by invoking to (16) is derived as:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

̇̃̂x1(t) = �̃1(x̃(t)) + 
̃1(x̃(t))u(t) +KSMO
1 (y(t) − ̂̃x1(t)) + �̃1(x̃(t))LSMOsgn(y(t) − ̂̃x1(t))

̇̃̂x2(t) = x̃1(t) + �̃2(x̃(t)) + 
̃2(x̃(t))u(t) +KSMO
1 (y(t) − ℎ(x̂(t))) +KSMO

2 (y(t) − ̂̃x1(t))
+�̃2(x̃(t))LSMOsgn(y(t) − ̂̃x1(t))

̂̃x(t0) = ̂̃x0
y(t) = x̃1(t)

, (35)

where the state, outputs and gains matrices are equal to:

A =
[

0 1
0 0

]

, C =
[

1 0
]

, KSMO =
[

KSMO
1

KSMO
2

]

, (36)

and the mappings from (32), (33) and (34) are expressed in the new coordinates as: �̃(x̃(t)) = [

�̃(x(t))
]

|

|

|x=�−1(x̃)
,


̃(x̃(t)) =
[


̃(x(t))
]

|

|

|x=�−1(x̃)
, �̃(x̃(t)) = [

�̃(x(t))
]

|

|

|x=�−1(x̃)
.

The SMO structure (35) is used for stability analysis purposes. In turn, the SMO structure in the original coordinates
(37) is used for implementation purposes. This structure is delivered by invoking to (13) incorporating the inverse
Jacobi matrix (31) and it is as follows:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

̇̂x1(t) = �̂M(t)x̂1(t) − �mx̂1(t) − x̂1(t)u(t) +KSMO
1 (y(t) − ℎ(x(t))) + LSMOsgn(y(t) − ℎ(x(t)))

̇̂x2(t) = − 1
Y
�̂M(t)x̂1(t) − msx̂1(t) + (Sin − x̂2(t))u(t) + O1(t)KSMO

2 (y(t) − ℎ(x(t))) + O2(t)KSMO
1 (y(t) − ℎ(x(t)))

− 1
Y
LSMOsgn(y(t) − ℎ(x(t)))

x̂(t0) = x̂0
y(t) = ℎ(x(t)) = x1(t)

,

(37)

where O1(t) =
(K0

s + x̂2(t))
2

�0maxK0
s x̂1(t)

and O2(t) =
(

K0
s + x̂2(t)

) K0
s �m + �mx̂2(t) − �

0
maxx̂2(t)

�0maxK0
s x̂1(t)

.
Theorem 1. The sliding mode observer (37) produces stable and robust estimates x̂1(t) and x̂2(t) of the state variables
x1(t) and x2(t), respectively in spite of the parametric and unstructured uncertainty in the system dynamics.
Proof. The estimation error ("(t) ≜ x̂(t) − x(t)) in the new coordinates ∀t ∈ T ∶ "̃(t) ∈ Ẽn ⊂ ℝn can be written as:

"̃(t) ≜ ̂̃x(t) − x̃(t) = �(x̂(t)) −�(x(t)). (38)
First, the boundedness of the estimation error, i.e. ∀t ∈ T ∶ ||"̃(t)|| ≤ "̃max ∈ ℝ+ during reaching the sliding

surface is demonstrated. It should be noted that in this situation the first element of this estimation error vector, i.e.
"̃1(t) pursues zero. Thus, as in [36], the following Lyapunov function V1(⋅) can be defined:

V1 ("̃(t)) = "̃T(t) 1"̃(t), (39)
where  1 = T

1 ∈ ℝn×n is a symmetric positive–definite matrix.
Using (35) and (23) expressed in the new coordinates, the estimation error dynamics can be written as:
̇̃"(t) = AKSMO "̃(t)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
the linear part of estimation error

+  ̃d + �̃d
⏟⏟⏟

the bounded and Lipschitz
non-linear functions

,
(40)

where:  ̃d =  ̃( ̂̃x(t), u(t)) −  ̃(x̃(t), u(t)); �̃d = �̃( ̂̃x(t))ur(t) − �̃(x̃(t))Δ(x(t), t);  ̃(x̃(t), u(t)), ur(t), and Δ(x(t), t) aretaken from (17), (19) and (25), respectively.
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A robust sliding mode observer

Owing to (40) the derivative of the Lyapunov function (39) reads:

V̇1("̃(t)) = ̇̃"T(t) 1"̃(t) + "̃T(t) 1 ̇̃"(t) = "̃T(t)
[

(

AKSMO
)T  1 +  1AKSMO

]

"̃(t) + 2"̃T(t) 1 ̃d + 2"̃T(t) 1�̃d. (41)
If (41) is strictly negative, the global boundedness of the estimation error (38) is guaranteed [25]. It should be

noted that, in general, the component of a given V̇(⋅)("̃(t)) associated with the linear part of estimation error (see (40))
can be assessed using the Lyapunov equation [43]:

"̃T(t)
[

(

AKSMO
)T  (⋅) +  (⋅)AKSMO

]

"̃(t) = −"̃T(t)(⋅)"̃(t), (42)

where (⋅) ∈ ℝn×n is a symmetric positive–definite matrix and  (⋅) shall be interpreted as in (39).
Typically, it is assumed that the matrix (⋅) is the identity matrix of proper dimension, therefore the proper choice

of the observer gains matrix ensures negative–definite matrix of the linear part of estimation error dynamics [4, 13, 36,
56, 57]. Hence, taking into account the above, the remaining components of the derivative of the Lyapunov function
may be assessed as follows [4, 13, 19, 25, 36, 39, 40, 56, 57, 60]:

|

|

|

|

|

|

 ̃d
|

|

|

|

|

|

≤ L ̃
|

|

|

|

|

|

"̃(t)||
|

|

|

|

, ||
|

|

|

|

�̃d
|

|

|

|

|

|

≤ ��̃
(

Δ + LSMO�ur
)

, (43)
where: L ̃ ≥ 0 is the (real) Lipschitz constant of functional  ̃(x̃(t), u(t)); ��̃ ≥ 0 denotes the (real) bounding constant
of the function �̃( ̂̃x(t)); �ur ≥ 0 stands for the (real) bounding constant of the function 1

�̃(x̃(t))
.

The methodology for determining the bounding and Lipschitz constants is presented in appendix C.
Combining (41), (42) and (43), V̇1("̃(t)) can assessed by [13, 36, 56, 57, 61]:

V̇1("̃(t)) ≤ −
|

|

|

|

|

|

"̃(t)||
|

|

|

|

2
+ 2�max

(

 1
)

L ̃
|

|

|

|

|

|

"̃(t)||
|

|

|

|

2
+ 2�max

(

 1
)

(

Δ + LSMO�ur
)

|

|

|

|

|

|

"̃(t)||
|

|

|

|

< 0, (44)

where �max
(

 (⋅)
) is the maximal eigenvalue of the Lyapunov matrix (see also appendix B).

Transformation (44) provides to:

0 < |

|

|

|

|

|

"̃(t)||
|

|

|

|

<
2�max

(

 1
)

��̃
(

Δ + LSMO�ur
)

1 − 2�max
(

 1
)

L ̃
. (45)

Finally, if ∀t ∈ T :

�max
(

 1
)

< 1
2L ̃

, (46)

the estimation error (38) is uniformly bounded [43].
Remark 4. It should be added that because of the different results of the numerical calculation of the Lipschitz con-
stant L ̃ [56, 57] the following operation is necessary. Taking into account (17), L ̃ can be expressed as L ̃ =
L�̃ +L
̃ubound, where L�̃ and L
̃ are Lipschitz constants of the non-linear components of the affine form (calculating
according to appendix C). This transformation is possible due to applying the triangle inequality on (17) [43, 62].

During reaching the sliding surface ("̃1(t) pursues zero) other elements of the estimation error vector "̃(t) must be
free from the uncertainty (impact of the switching operations). Thus, the adequate assignation of the sliding mode gain
LSMO is necessary. Because the sliding surface is "̃1(t) = 0, the proper design (19) gives the certainty of reaching andmaintaining on the sliding surface [36]. By ensuring that ur(t)−Δ(x(t), t) in (41) is in the sliding mode, the uncertainty
can be replaced by the incremental component [13, 25, 36, 39].

In order to reach the sliding surface ("̃1(t) = 0) in the finite time the two following conditions must be fulfilled
[36]:

LSMO >
"̃max2 + Δ
�ur

, KSMO
1 > L
̃1ubound, (47)
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A robust sliding mode observer

where "̃max2 > 0 is the maximal value of the second element "̃2(t) of the vector of estimation error "̃(t) and L
̃1 > 0
denotes the Lipschitz constant of the 
̃1(⋅) from (17).

Combining (36) and (17), the "̃1(t) dynamics can be written as [13, 36]:
̇̃"1(t) = "̃2(t) + 
̃1du(t) −KSMO

1 "̃1(t) + ur(t) − Δ(x(t), t), (48)
where 
̃1d = 
̃1( ̂̃x1(t)) − 
̃1(x̃1(t)).Defining the Lyapunov function associated with "̃1(t) as [13, 36]:

V"̃1 ("̃1(t)) =
1
2
"̃21(t), (49)

its derivative reads:
V̇"̃1 ("̃1(t)) = −K

SMO
1 "̃21(t) + "̃1(t)
̃1du(t) + "̃1(t)

[

"̃2(t) − Δ(x(t), t) + ur(t)
]

. (50)
To explain the derivation of conditions (47) using (50), the two following inequalities are considered [13, 36]:

−KSMO
1 "̃21(t) + "̃1(t)
̃1du(t) < 0,

"̃1(t)
[

"̃2(t) − Δ(x(t), t) − ur(t)
]

< 0.
(51)

It is obvious that if ∀t ∈ T both inequalities (51) holds, then (50) is always negative. The holding of the first
inequality of (51) is elementary and based on the following Lipschitz assessment:

−KSMO
1 "̃21(t) + "̃1(t)
̃1du(t) ≤ −K

SMO
1 "̃21(t) + L
̃1ubound"̃

2
1(t) < 0. (52)

If the system dynamics is in the phase of reaching ("̃1(t) ≠ 0), by eliminating the "̃21(t) expression from (52),
the inequality is transformed to KSMO

1 and the second condition from (47) is obtained. The explanation of the first
condition from (47) is more complicated. The second inequality of (51) can be assessed as follows:

"̃1(t)
[

"̃2(t) − Δ(x(t), t) − ur(t)
]

≤ |"̃1(t)|
[

"̃2(t) − Δ(x(t), t) − ur(t)
]

< 0. (53)
Taking into account that |"̃1(t)| is always positive and bounded the rest of the inequality (53) must be investigated

from point of view of always being negative. If the second condition from (47) is fulfilled, it remains to prove that the
proper choice of theLSMO involves convergence of "̃1(t) to zero. Using suitable assessment on the particular elements,
the following holds:

�urL
SMO > |"̃2(t) − Δ(x(t), t)|. (54)

Knowing that "̃2(t) and Δ(x(t), t) are time–varying and they are real numbers, in general, the right–hand side of
inequality (54) must be assessed in the most conservative way. By establishing "̃max2 andΔ, the supremum of the right–
hand side of (54) equals to the sum of bounding constants, which legitimates the first condition of (47). Hence, in the
case when the both above–mentioned conditions holds, and if "̃1(t) ≠ 0, the Lyapunov function ∀t ∈ T V̇"̃1 ("̃1(t)) < 0.Thus, to conclude the proper selection of the SMO gains ensures reaching, and thereafter maintaining on the sliding
surface "̃1(t) = 0 [13, 36]. Moreover, when "̃1(t) is in the sliding mode, then the additive sliding mode component can
be considered as an ‘estimator’ (tracking element) for Δ(x(t), t). Therefore, the switching term in the sliding mode is
claimed as a compensating element for an unknown input and significantly improve the accuracy of obtained estimates.

As it has been above–mentioned, the proper choice of the SMO gains ensures the global boundedness of the estima-
tion error. As soon as the trajectories of the estimation error reach the sliding surface, the dynamics of the estimation
error "̃(t) asymptotically converge to a zero equilibrium point [13, 36]. If the convergence of the error trajectories
is ensured, the phenomena of equivalent control begin to interact with the observer dynamics [13, 17, 20, 36, 52].
Therefore, considering (48) in the sliding mode ("̃1(t) = 0) ur(t) can be expressed as [13, 25, 36, 39, 40]:

ur(t) ≡ ueq(t) = Δ(x(t), t) − "̃2(t). (55)
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A robust sliding mode observer

Hence, substituting (55) to (40) the dynamics of the estimation error can be rewritten as follows:
̇̃"(t) = AKSMO "̃(t)

⏟⏞⏞⏞⏟⏞⏞⏞⏟
the linear part of estimation error

+  ̃d +
[

�̃( ̂̃x(t)) − �̃(x̃(t))
]

ueq(t) − �̃(x̃(t))"̃2(t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

the Lipschitz non–linear functions

.
(56)

It is obvious that the equilibrium point of (56) is "̃ = 0, so its asymptotic stability must be ensured. To prove that
the estimation error dynamics is stable in the sliding mode the following Lyapunov function V2(⋅) is defined [36]:

V2 ("̃(t)) = "̃T(t) 2"̃(t), (57)
where  2 = T

2 ∈ ℝn×n is a symmetric positive–definite matrix.
Owing to (56), the derivative of the Lyapunov function (57) reads:
V̇2("̃(t)) = ̇̃"T(t) 2"̃(t) + "̃T(t) 2 ̇̃"(t) = "̃T (t)

[

(

AKSMO
)T  2 +  2AKSMO

]

"̃(t)

+ 2"̃T(t) 2 ̃d + 2"̃T(t) 2 (−�̃(x̃(t))) "̃2(t) + 2"̃T(t) 2
[

�̃( ̂̃x(t)) − �̃(x̃(t))
]

ueq(t).
(58)

Following the same procedure as for (43), the particular components of (58) can be assessed by the proper bounding
and Lipschitz constants as follows [36]:

|

|

|

|

|

|

�̃( ̂̃x(t))ueq(t) − �̃(x̃(t))ueq(t)
|

|

|

|

|

|

≤ L�̃ueq
|

|

|

|

|

|

"̃(t)||
|

|

|

|

,
|

|

|

|

|

|

�̃(x̃(t))||
|

|

|

|

≤ ��̃,
(59)

where L�̃ > 0 is the (real) Lipschitz constant of functional �̃(x̃(t)), ueq = �urLSMO is the (real) bounding constant of
equivalent control term, whereas ��̃ > 0 is the (real) bounding constant of term �̃(x̃(t)).
Remark 5. In general, it should be noted that the problem of the appropriate selection of SMO gains is complexity.
Clearly, according to the stability analysis of non-linear observers, the procedure of observer gains determining may
be very distinct and non–trivial [13, 19, 43, 56, 57, 60, 63–65]. The presented considerations clearly show that the
methodology of the selection of Lyapunov function has undoubtedly crucial meaning. Hence, taking into account the
stability conditions, e.g, (46) and (47) it is possible that the observer works well (the generated estimates converge
asymptotically and remarkably fast to their originals) even though the given global stability conditions are not retained
[61].

Thus, analysing the designed SMO dynamics it is relatively easy to evaluate the stability of its linear part if the
gains of KSMO matrix are known. However, it is not enough from the stability point of view, in general. Clearly,
the conditions associated with the assessment of the non-linear part of error dynamics must be also fulfilled. As it
is widely discussed in the literature, e.g., [13, 36, 56, 57, 61, 63, 65] the modification of the KSMO must guarantee
that the Lyapunov matrix  (⋅) is always positive–definite or even its maximal eigenvalue �max

(

 (⋅)
) must be smaller

than the given combination of the bounding or Lipschitz constants (see, e.g., (46)). In general, for the wide class of
the linear dynamics such as, e.g., (36) it is very hard to claim what the values of KSMO influence on the eigenvalues
of Lyapunov matrix. However, for the considered case, due to take into account the controllability canonical form
and because the system is two–dimensional, it is possible to check this relationship, which is presented in appendix
B. Of course this problem can be turn to the case, when the KSMO (which involves change of �max

(

 (⋅)
) value) is

given and determination of operating region is under investigation. This is strictly linked with evaluation of Xn and
X̃n. If the values of bounding or Lipschitz constants cannot be optionally modified, the fulfilling of stability conditions
are not possible [13, 56, 57]. Due to the methodology of determining of Lipschitz and bounding constants presented
in appendix C, it should be highlighted that the way they are valued is undoubtedly important. This is because of
the numerical or analytical approach to the calculation and it is also associated with preconceiving of the operating
region of the considered system. Therefore, the obtained values of constants can be too ‘conservative’, and they may
significantly influence the evaluation of stability conditions. Thus, a new approach to deriving stability conditions is
proposed. Taking into account (42), (43) and (59) the derivative of the Lyapunov function (58) is dominated by the
following, based on Schwarz and triangle inequalities [62], function:

V̇2("̃(t)) ≤ "̃T(t)
[

(

AKSMO
)T  2 +  2AKSMO

]

"̃(t) + 2L�̃
|

|

|

|

|

|

 2"̃(t)
|

|

|

|

|

|

|

|

|

|

|

|

"̃(t)||
|

|

|

|

+ 2��̃
|

|

|

|

|

|

 2"̃(t)
|

|

|

|

|

|

|

|

|

"̃2(t)
|

|

|

+ 2L
̃ubound
|

|

|

|

|

|

 2"̃(t)
|

|

|

|

|

|

|

|

|

|

|

|

"̃(t)||
|

|

|

|

+ 2L�̃ueq
|

|

|

|

|

|

 2"̃(t)
|

|

|

|

|

|

|

|

|

|

|

|

"̃(t)||
|

|

|

|

,
(60)
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A robust sliding mode observer

where particular components, taking into account |"̃2(t)| ≤ ||"̃(t)||, can be assessed by:
2L�̃

|

|

|

|

|

|

 2"̃(t)
|

|

|

|

|

|

|

|

|

|

|

|

"̃(t)||
|

|

|

|

≤ L2�̃ "̃
T(t) 2 2"̃(t) + "̃T(t)"̃(t),

2��̃
|

|

|

|

|

|

 2"̃(t)
|

|

|

|

|

|

|

|

|

"̃2(t)
|

|

|

≤ �2�̃"̃
T(t) 2 2"̃(t) + "̃22(t) ≤ �2�̃"̃

T(t) 2 2"̃(t) + "̃T(t)"̃(t),

2L
̃ubound
|

|

|

|

|

|

 2"̃(t)
|

|

|

|

|

|

|

|

|

|

|

|

"̃(t)||
|

|

|

|

≤ L2
̃u
2
bound"̃

T(t) 2 2"̃(t) + "̃T(t)"̃(t),

2L�̃ueq
|

|

|

|

|

|

 2"̃(t)
|

|

|

|

|

|

|

|

|

|

|

|

"̃(t)||
|

|

|

|

≤ L2�̃u
2
eq"̃

T(t) 2 2"̃(t) + "̃T(t)"̃(t). (61)
Using (61), (60) can be written as follows:

V̇2("̃(t)) ≤ "̃T(t)
[

(

AKSMO
)T  2 +  2AKSMO

]

"̃(t) + L2�̃ "̃
T(t) 2 2"̃(t) + �2�̃"̃

T(t) 2 2"̃(t)

+ L2
̃u
2
bound"̃

T(t) 2 2"̃(t) + L2�̃u
2
eq"̃

T(t) 2 2"̃(t) + 4"̃T(t)"̃(t).
(62)

By eliminating the vector of estimation error from (62) the following matrix inequality is obtained:
(

AKSMO
)T  2 +  2AKSMO +

[

L2�̃ + �
2
�̃ + L

2

̃u
2
bound + L

2
�̃u
2
eq

]

 2 2 + 4I < 0, (63)
which solution with respect to the matrix  2 guarantees the global asymptotic stability of the designed SMO.

Hence, the sliding mode observer (37) is the stable and robust estimator guaranteeing that x̂1(t) and x̂2(t) are theestimates of the state variables x1(t) and x2(t), respectively despite the parametric and unstructured uncertainty in the
system dynamics.
Remark 6. The theorem 1 has been proven in a similar way to [13, 25, 36, 39, 40]. However, the wider uncertainty
has been taken into account which leads to certain interesting conclusions and remarks. Moreover, all significant
differences from [13, 25, 36, 39, 40] have been precisely indicated.
Remark 7. It is well–known that for sliding techniques the chattering problem appears [52]. In the literature there
are several approaches to the reduction of this phenomenon. In this work, a method premised on an approximation of
signum function by the following, continuous function is used [13, 20, 36]:

sgn("1(t)) ≈ 'sgn("1(t), "sgn) = "1(t)
|

|

"1(t)|| + "sgn
, (64)

where "sgn > 0 is a real tuning parameter.
Hence, when the sliding mode appears the uncertainty Δ(x(t), t) is approximated by 'sgn("1(t), "sgn) and the accuracyof this operation strictly depends on the value of "sgn. If this value is too small, the behaviour of the function may
reveal rapid changes of values (but not as much as in the case of ‘real’ chattering), whereas when this value is too big
the approximation of sliding mode action is impaired [52]. The trajectories of approximating function 'sgn("1(t), "sgn)depend on the selection of the three example values of the parameter "sgn are presented in Fig. 2. It is worth adding
that, in the context of the sliding mode term as well as its approximating function, it is important to emphasise that the
selection of the value of gain LSMO must be related not only with the fulfilment of the stability conditions (45), (54),
and (63) but also must be selected in such a way to prevent occurrence of the so-called peaking phenomenon [12, 16, 19,
43, 66, 67]. This phenomenon might lead to the fact that the estimates generated by the SMO have large values at the
beginning of the estimation process. Also might appear long transient states, high sensitivity to measurement noises or
external disturbances, or even loss of stability of the observer. Due to the numerical aspects and the fact that the value
ofLSMO is constant, the software implementation of the signum function and its approximation may lead to the peaking
phenomenon. Thus, the proper selection of the gain LSMO and "sgn is necessary because it enables satisfying stabilityconditions, reducing chattering, ensuring high quality of state reconstruction, and preventing peaking phenomenon.
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Figure 2: The trajectories of approximating function 'sgn("1(t), "sgn).

Table 1
The values of the model parameters

No. Parameter Value Unit
1. �m 0.02 ℎ−1
2. �max(t) [0.315 ; 0.3465] ℎ−1
3. �0(t) [0.6277 ; 0.6723] ℎ−1
5. D(t) [0.01 ; 0.05] ℎ−1
6. Ki(t) [23.75 ; 26.25] g∕L
7. Ks(t) [4.75 ; 5.25] g∕L
8. ms 0.01 ℎ−1
9. Sin 5 g∕L
10. Y 0.5 −

7. Case study
The sliding mode observer (37) has been applied to the model of CSTR (6). The entire system has been imple-

mented and validated in Matlab/Simulink environmental. The values of the particular parameters, assuming a 5%
uncertainty calculated from their mean value, are shown in table 1 [45]. Their variability is determined by (11) and
(12). Hence, it can be noticed that certain parameters are burden by parametric uncertainty. Moreover, according to
section 5 there is also unstructured uncertainty. Therefore, the comparison between the cognitive (6) and utility (23)
models is presented and discussed at the beginning of this section. In turn, the estimation results are investigated in
the second part of case study.
7.1. Comparison between bioreactor models

In this work, it is assumed that the cognitive model (6) is a satisfactory representation of reality. In turn, the need
to devise the utility model is discussed in detail and analysed in section 5. In this section, a simulation analysis of the
dynamics behaviour of both models is presented. In order to make a proper comparison, the same control signal has
been applied to both models. Its trajectory is presented in Fig. 3. It is worth adding that due to permanent inflow of
wastewater to bioreactor represents by u(t) in both cases the dynamics of the considered system has not reached the
equilibrium point {02×1

}, which it means that ∀t ∈ T the region of proper action of the observer is kept.
In turn, the trajectories of �(⋅)(t) for the cognitive and utility model are shown in Fig. 4. As it can be noticed, the
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A robust sliding mode observer

Figure 3: Trajectory of the control signal applied to both models.

trajectories are similar, but even a small difference between them has a significant impact on the trajectories of state
variables. These trajectories, from the initial conditions x(0) = [

1 0.5
]T, are presented in Figs. 5 and 6 for x1(t) and

x2(t), respectively.

Figure 4: Trajectories of �(⋅)(t) obtained from the cognitive and utility model of CSTR.

As it easy to observe in Figs. 5 and 6 the slight difference in kinetics involves significantly different evaluation of
the state vector over time in both models. Thus, it can be noticed what extensive uncertainty the designed SMO has to
deal with in order to reconstruct satisfactorily the state of the considered system. However, as it has been mentioned
in section 5 to fulfil the observability condition this level of mismatch between the cognitive and utility model have to
be claimed as acceptable.
7.2. Implementation of the sliding mode observer

In this section, all essential numerical aspects related to the designed SMO are first presented. In turn, the trajec-
tories of the generated estimates of the state variables and discussion of the accuracy of the estimation are included in
its last part.
7.2.1. Numerical aspects

Taking into account conditions delivered in section 6 the SMO gains, i.e. KSMO and LSMO should be distinctly
selected. Dealing with this task is inevitably associated with the calculation of the bounding and Lipschitz constants,
which are needed to assess certain particular vector or scalar variables. The realisation of this task needs to perform
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A robust sliding mode observer

Figure 5: Trajectories of the state variable x1(t) obtained from cognitive and utility model of CSTR.

Figure 6: Trajectories of the state variable x2(t) obtained from cognitive and utility model of CSTR.

assessment the time–varying: vectors of state, estimation error, and control input as well as values of parameters.
Methodology of the bounding and Lipschitz constants calculation presented in appendix C is based on numerical
approach, hence apart of knowing the analytical formulae of the particular relationships, e.g., �̃(⋅),Δ(x(t), t) the bounds
on particular signals have to be employed.

The constant bounding the control input and extreme values of the parameters of kinetics function (11) are easy
to establish, however, the calculation of all Lipschitz and bounding constants is much more difficult. According to
appendix C the convex hyper–cubes of the state variables and estimation error must be established for both ‘original’
and ‘new’ vector spaces. Let sets XBLn ⊂ Ω ⊂ Xn, X̃BLn ⊂ X̃n, EBLn ⊂ En and also ẼnBL ⊂ Ẽn stand for sets
associated with operating region of the system dynamics. In general, the decomposition into subsets associated with a
particular coordinate is linked with establishing the lower and upper bounds of the state and estimation error variables.
This work has been done by numerical (simulation) analysis of the behaviour of both cognitive and utility models,
which effects are presented in section 7.1. In fact, the sets XBLn and X̃BLn include not only the original state variables
bounds but also extreme values of their estimates. Hence, the calculation of the bounding and Lipschitz constants is
premised on utilising relatively conservative assessment of the system dynamics in the operating region. As it has been
mentioned before, the assessment of the upper and lower bounds of the state and error variables have been done by
simulation analysis of the system dynamics, however, for providing some ‘safety’ the extreme values have been selected
as ‘vaguely’ wider. The establishing of bounds for the state and vector variables after the coordinates transformation
has been performed by not only utilising derived transformation (27) but also assuming that the continuous function
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which takes values in convex set is also convex [12, 62].
For the system (23) the hyper–cube established in the state space XBLn is given by:
0.8 ≤ x1(t) ≤ 1.5, 0.5 ≤ x2(t) ≤ 1. (65)

In turn, using (27) the hyper–cube in the new state space (coordinates) X̃BLn is as follows:
0.8 ≤ x̃1(t) ≤ 1.5, 0.008 ≤ x̃2(t) ≤ 0.0525. (66)

Similarly, for the system (23) the hyper–cube established in the error space EBLn is given by:
0.05 ≤ "1(t) ≤ 0.2, 0.05 ≤ "2(t) ≤ 0.6, (67)

and the hyper–cube in the new error space ẼBLn is as follows:
0.05 ≤ "̃1(t) ≤ 0.2, − 0.0033 ≤ "̃2(t) ≤ 0.0031. (68)

Hence, using (65), (66), (67) and (68), the procedures for calculating the bounding and Lipschitz constants given
in appendix C, and the values of parameters from table 1, the following constants are determined:

ubound = 0.05, L�̃ = 0.134, L
̃ = 3.9652, L ̃ = 0.3323, L
̃1 = 1, L�̃ = 2.1061, ��̃ = 1.0133,

�ur = 1, Δ = 0.0921, "̃
max
2 = 0.0033.

(69)

As it has been mentioned in section 6, the first conditions which are considered from the stability of the designed
SMO point of view are (47). Therefore, taking into account the calculated bounding and Lipschitz constants (69), the
‘sliding’ gain LSMO and the first term of the ‘proportional’ gain KSMO

1 must meet the following inequalities:
LSMO > 0.0033 + 0.0921 = 0.0954, KSMO

1 > 0.05. (70)
Taking into account (70) the values of the KSMO can be selected depending on condition (46), whereas the choice

of the LSMO is subject to a certain additional criterion. In order to show the influence of the selection of LSMO on
the accuracy (performance) of the estimation process, the designed SMO is examined for three following values of
‘sliding’ gain:

• LSMO = 0 – the SMO is considered as an only high–gain observer without switching term,
• LSMO = 0.1 – the value of the ‘sliding’ gain is considered as very close to constrain derived in (70),
• LSMO = 20 – the value of the ‘sliding’ gain is relatively very high in comparison to the constrain (70).
It is worth adding that these values are selected to show how an additional sliding mode tracker is able to make

uncertainty rejected. By setting up LSMO = 20 the equivalent control term is established as ueq = 20. Hence, the
gain LSMO = 20 significantly exceeds the value of one, calculated from the stability condition and does not result
in the peaking phenomenon (because its value is not very high and the approximation function is selected properly).
Moreover, due to necessity of chattering phenomenon compensation the function (64) is utilised and its parameter is
assumed as "sgn = 0.01 (see remark 7).

Next, the global boundedness of the estimation error is investigated. For L ̃ = 0.3323 the condition (47) insists to
select KSMO which provide to obtain �max

(

 1
)

< 1.5047. For instance selecting the ‘proportional’ gain as KSMO =
[

2 2
]T this condition holds with �max

(

 1
)

= 1.504 (to see, how choice of the KSMO influences on the maximal
eigenvalue of Lyapunov matrix check appendix B). For selected KSMO and LSMO = 20 and also calculated bounding
and Lipschitz constants (69), in reaching phase the norm of the estimation error cannot be bigger that ||"̃(t)|| <
433.9817.

Finally, for the above–mentioned gains KSMO and LSMO the global asymptotic stability of the designed SMO is
ensured by (63). In this work, the analytical solution of (63) is not delivered, hence it is validated in the simulation
way.
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7.2.2. Estimation results
The estimation results have been obtained assuming the same as in the comparison study (section 7.1) initial con-

ditions for the considered system. Whereas the following initial conditions have been used for the estimating state
variables x̂(0) = [

1.2 0.7
]T. The trajectories of the state variables (from the cognitive model) and their estimates

(from the devised SMO (37)) are presented in Figs. 7 and 8. Four trajectories are shown in each figure: the original
state trajectory from the cognitive model and three trajectories of estimates for different values of LSMO.

Analysing the trajectories presented in Figs. 7 and 8, it can be concluded that for the bigger values of LSMO,
the performance of estimation is undoubtedly increasing. If LSMO = 0 the SMO dynamics tend is tracking not the
original trajectory of the cognitive model but the trajectory associated with the utility model related to the simplified
kinetics function. The estimation accuracy for the first state variable is very high practically from the beginning of the
simulation, and for the second one, this accuracy is satisfactory after about t = 100 [ℎ]. For more clear presentation
the trajectories of absolute values of particular estimation errors, which confirm the above observations are shown in
Figs. 9 and 10. Thus, for LSMO = 20, the trajectories of the estimates practically coincide with those of the state
variables (dashed red and solid blue lines in Figs. 7 and 8), which yields practically zero estimation errors.

In turn, the behaviour of the original and reconstructed kinetics function by applying formula (26) is given in Fig.
11. Regarding trajectories in Fig. 11, it can be noticed that for the biggest LSMO tracking of the unknown kinetics
function is suitable. The comparison of dynamical behaviour presented in Figs. 4, 5 and 6 shows that the additive
sliding mode term is able to track the uncertainty and compensate mismatch between the simplified and real dynamics.
This, therefore, confirms the robustness and stability of the generated estimates, which have been proven in section 6.

In order to highlight this property and performance of devised SMO in Figs. 12 and 13 the trajectories of state
variables and their estimates for different values of LSMO for a wide range of substrate concentration where, e.g., the
inhibition cannot be neglected are presented. The obtained results confirm the previous observations, which is further
illustrated by the trajectories of estimation errors presented in Figs.14 and 15.

Moreover, in order to show the robustness of the devised SMO, the following analysis is established. For five vastly
different initial conditions of the observer x̂(0), constant x(0), and constant gains KSMO and LSMO, and identical
to previous experiments D(t), the simulations have been performed in the face of different behaviour of unknown
input Δ(x(t), t). Taking into account, that the behaviour of Δ(x(t), t) is dependent on state variables (what has been
emphasised in (25)), starting from distinct initial conditions is highly related to the different behaviour of the unknown
input. The obtained estimation error trajectories, at the beginning phase, are shown in Figs. 16 and 17. By analysing
Figs. 16 and 17 it is easy to notice the convergence of the estimation error trajectories to zero, which confirms the
robustness of the devised SMO.

To conclude, as it has been noticed in section 7.2.1, due to the compensation of uncertainty impact on the esti-
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Figure 7: Trajectories of the state variable x1(t) and its estimates for three values of LSMO.
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Figure 8: Trajectories of the state variable x2(t) and its estimates for three values of LSMO.
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Figure 9: Trajectories of the absolute values of estimation error "1(t) for three values of LSMO.

mation the sliding mode term is crucial. This SMO component is responsible for the rejection of the parametric and
unstructured uncertainty or compensation of external, unknown disturbances. In turn, the proportional gain provides
identical action as in the classical Luenberger observer, i.e. asymptotic convergence of state estimates to their originals
by properly selected gains matrix.

8. Conclusions
In this paper, the problem of state estimation for a certain class of non-linear uncertain dynamical systems has been

investigated. In particular, the sliding mode observer has been devised to produce the stable and robust estimates of
the state variables in the presence of the parametric and unstructured uncertainty. Hence, the proposed observer is able
to reject not only the negative impact of time–varying parameters, but also cope with the uncertainty introduced by
unmodelled dynamics. The stability and robustness of the designed slidingmode observer have been rigorously proved.
For the observer synthesis purposes, the issues of deriving the correct utility model have been widely discussed. The
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Figure 10: Trajectories of the absolute values of estimation error "2(t) for three values of LSMO.
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Figure 11: Trajectory of �(⋅)(t) from the cognitive model and its reconstructions for three values of LSMO.

proposed approach is based on treating unknown kinetics function as an external input to the considered system. Thus,
the new simplified kinetics function has been given to fulfil observability rank condition and ensuring good mapping of
reality. Moreover, the analysis of the influence the observer ‘proportional’ and ‘sliding’ gains on the eigenvalues of the
Lyapunov matrix as well as the accuracy (performance) of estimation results has been presented. The designed sliding
mode observer has been applied to the model of a continuous stirred tank reactor with the microbial growth reaction
and their mortality with the aggregated substrate and biomass concentrations. The entire system has been implemented
in Matlab/Simulink environment and obtained results yield satisfying performance of the generated estimates.

Future research may focus on extending the proposed methodology to MIMO systems. Furthermore, the idea of
simplifying the kinetics function can be used in systems whose dynamics involve concentrations of more than one
substrate.
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Figure 12: Trajectories of the state variable x1(t) and its estimates for three values of LSMO for a wide range of substrate
concentration.
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Figure 13: Trajectories of the state variable x2(t) and its estimates for three values of LSMO for a wide range of substrate
concentration.
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Figure 14: Trajectories of estimation error "1(t) for a wide range of substrate concentration.
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Figure 15: Trajectories of estimation error "2(t) for a wide range of substrate concentration.

A. Discussion on observability
As it has been mentioned above, in order to make state (coordinates) non-linear transformation it is necessary

to fulfil two particular conditions. The first of them is associated with a injectivity of transformation whereas the
second is associated with the non–singularity of the Jacobi matrix. For the considered utility model of a bioreactor,
the kinetics function has been assumed as time–invariant Monod term (21). In general, the calculation of inverse state
transformation always involves solving the set of equations. The solution of this set has to be unique. In the considered
example the transformation from (27) to (28) is based on solving two algebraic equations with respect to x(t). In
comparison to the first equation (it is always identity), the second one needs some more calculation, what for (21)
Monod kinetics function is shown below:

x̃2(t) =
t1(t)
t2(t)

x̃1(t) − �mx̃1(t),
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Figure 16: Trajectories of estimation error "1(t) for five different initial conditions.
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Figure 17: Trajectories of estimation error "2(t) for five different initial conditions.

t2(t)x̃2(t) = t1(t)x̃1(t) − t2(t)�mx̃1(t),

K0
s x̃2(t) + x2(t)x̃2(t) = t1(t)x̃1(t) − t4x̃1(t) − t5(t)x̃1(t),

x2(t)
(

x̃2(t) + �mx̃1(t) − �0maxx̃1(t)
)

= K0
s
(

x̃2(t) + �mx̃1(t)
)

,

x2(t) =
−K0

s (x̃2(t) + �mx̃1(t))
x̃2(t) + �mx̃1(t) − �0maxx̃1(t)

. (71)

In turn, the adaption of �(t) as Haldane �̂H (t) presented in (9) with the time–invariant parameters proceeds to the
following calculation of state transformation:

x̃(t) = �(x(t)) =

⎡

⎢

⎢

⎢

⎢

⎣

x1(t)

�00
x2(t)

t2(t) +
x22(t)

K0
i

x1(t) − �mx1(t)

⎤

⎥

⎥

⎥

⎥

⎦

, (72)
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where �00 is an estimate of the time–varying parameter �0(t).In order to obtain the inverse transformation, it is necessary to perform a similar calculations to (71). Unfortunately,
in this case, the derivation is impossible because the following expression occurs:

x22(t)

(

x̃2(t)
1
K0
i

+ �m
x̃1(t)
K0
i

)

+ x2(t)
(

x̃2(t) + �mx̃1(t) − �0maxx̃1(t)
)

= −�mK0
s x̃1(t) −K

0
s x̃2(t). (73)

The calculations from (73) show that usage of Haldane function for sliding mode observer synthesis is pointless
due to non-injectivity of the transformation caused by x22(t) term. Therefore, it is necessary to use a simpler version
of the function �(t) like, e.g., Monod component which application does not lead to singularity. If the geometrical
approach is applied – by calculation of the Jacobian’s determinant – it can be easily shown, that the system’s states
are not observable when x1(t) = 0 or x2(t) =

√

K0
sK

0
i . The first situation can be induced by initial condition or

impact of the input u(t) whereas the second one results from the properties of non-monotone Haldane function. In
both cases, the singularity of Jacobi matrix (15) occurs what leads to the indistinguishability of the state trajectories.
It is worth adding that similar, but not equivalent remarks, can be found in [38, 68, 69]. In these papers, authors
considered a different methodology based on the concept of indistinguishable dynamics, which is strictly different
than tools based on differential geometry theory [23, 24, 55] for different biochemical reactor structures. This research
showed that the Haldane structure is not useful due to the need for deriving injective mapping, what reason from
the existence of ‘bad inputs’ (considered cases have shown that control input u(t) could make states indistinguishable
when the singular point is reached) which make two states indistinguishable. It should be noticed that there are also
other approaches to overcome the system unobservability in the literature. For example, the methodology based on
robust control in partially observable dynamics, which is premised on the utilisation of set-valued, interval observers
is presented in [70]. The state observers presented in that approach cope with the problem of uncertain kinetics by
assessing unknown part of dynamics by upper and lower estimate, which can be monotone or non-monotone function.
In turn, the approach based on uniform exponential observers can be found in [71]. These observers are based on the
embedding of original unobservable dynamics to new, extended manifold [72]. In this paper, as it has been mentioned
above, the methodology based on analysis of the state observability and detectability of unknown inputs is used. By
performing a proper modification of the system’s model structure, the unobservable part is ‘pushed’ into unknown
input whereas the dynamics become observable.

B. Analysis of impact of gain matrix values on eigenvalues of the Lyapunov matrix
The matrices A, C and KSMO of the considered system are defined in (36), therefore the dynamics of the linear

part of SMO in the new coordinates is given by:

AKSMO = A −KSMOC =

[

−KSMO
1 1

−KSMO
2 0

]

. (74)

In the context of the stability conditions, the crucial meaning has the investigation of the possibility of changing
the maximum eigenvalue – �max

(

 (⋅)
). Therefore, knowing the form of equation (42) it is possible to research the

problem of influencing the particular values of KSMO on  (⋅). Substituting (74) to (42), with assumption that (⋅) isthe identity matrix of dimension 2 × 2, the equation which might be used to make mentioned investigation is derived
as follows:

−
[

1 0
0 1

]

=
[

−KSMO
1 −KSMO

2
1 0

] [

p1 p2
p2 p3

]

+
[

p1 p2
p2 p3

] [

−KSMO
1 1

−KSMO
2 0

]

,

−
[

1 0
0 1

]

=
[

−KSMO
1 p1 −KSMO

2 p2 −KSMO
1 p2 −KSMO

2 p3
p1 p2

]

+
[

−KSMO
1 p1 −KSMO

2 p2 p1
−KSMO

1 p2 −KSMO
2 p3 p2

]

. (75)
Owing to (75) it is easy to show that:
⎧

⎪

⎨

⎪

⎩

1 = −2p2
0 = p1 −

(

KSMO
1 p2 +KSMO

2 p3
)

1 = 2
(

KSMO
1 p1 +KSMO

2 p2
)

, (76)
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and the solution of (76) is as follows:

p1 =
1 +KSMO

2

2KSMO
1

, p2 = −0.5, p3 =
KSMO2
1 +KSMO

2 + 1

2KSMO
1 KSMO

2

. (77)

In turn, the calculated eigenvalues of  (⋅) are as follows:

�test1 = 1
2

[

p1 + p3 −
√

�test
]

, �test2 = 1
2

[

p1 + p3 +
√

�test
]

, (78)

where �test ∈ ℝ+ is the discriminant of quadratic polynomial to �test = p21 + 4p22 + p23 − 2p1p3, which must be always
positive, due to symmetry of the real matrix  (⋅) [61].Combining (77) and (78) the eigenvalues can be written as:

�test1 = k�
[

KSMO2
1 +KSMO2

2 + 2KSMO
2

]

+ k�
[

1 − sgn (KSMO
1

) sgn (KSMO
2

)

√

Δtest
]

,

�test2 = k�
[

KSMO2
1 +KSMO2

2 + 2KSMO
2

]

+ k�
[

1 + sgn (KSMO
1

) sgn (KSMO
2

)

√

Δtest
]

,
(79)

where: k� = 1
4KSMO

1 KSMO
2

, and

Δtest = KSMO4
1 +KSMO4

2 + 2KSMO2
1 KSMO2

2 + 2KSMO2
1 − 2KSMO2

2 + 1. (80)

Taking into account, that gain vector KSMO (36) is by assumption always positive, the ‘signum’ expression from
(79) must be always equal to one. Finally, �max

(

 (⋅)
) yields:

�max
(

 (⋅)
)

= max
{

�test1
(

KSMO
1 , KSMO

2
)

, �test2
(

KSMO
1 , KSMO

2
)}

∶ KSMO
1 , KSMO

2 ∈ ℝ+. (81)
Therefore, the formulae (79) – (81) can be used to derive maximal eigenvalue of Lyapunov matrix for the two–

dimensional considered system. It is worth adding that the derived formulae (79) – (81) must belong toℝ field. Hence,
the main idea of performed research basing on calculating the biggest eigenvalue for each particular value of assumed
matrix KSMO. In particular, assuming that values of both gains may varying in the interval ⟨0.1 ; 10⟩ with resolution
equals to 0.1, it has been checked, what is the value of �max

(

 (⋅)
) for the particular values of KSMO

1 and KSMO
2 . The

obtained results are shown in Fig. 18. As it can be noticed in Fig. 18 the simultaneous increasing values of both gains
KSMO
1 and KSMO

2 causes reducing value of �max
(

 (⋅)
). In turn, if either both values of gains are near null or one of

them is significantly bigger than the other, the value of �max
(

 (⋅)
) significantly increasing. Another important remark

Figure 18: The relation between values of �max
(

 (⋅)
)

and KSMO.
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is associated with the next test when very high values have been set in the gains matrix. It can be observed that when
values of KSMO

1 , KSMO
2 → ∞, the maximum eigenvalue �max

(

 (⋅)
)

→ 1. This clearly shows that the structure of the
SMO in the new coordinates enforces some inherent limitations on the possibility of changes �max

(

 (⋅)
). It is worth

adding that despite the presented considerations has included only the two–dimensional system, the used methodology
of SMO synthesis always provide to the same ‘new’ general form of the system dynamics. The consequence is that for
each particular system the value changing range of �max

(

 (⋅)
) is very limited and homogeneous. Hence, for systems

whose bounding constants are too ‘large’, it is not possible to prove global limitation and global asymptotic stability
of the estimation error according to the formulae presented in the publications [25, 36, 39, 40].

C. Methodology for determining the bounding and Lipschitz constants
Due to the fact that the presented SMO synthesis requires determining the Lipschitz constants as well as the bound-

ing constants the certain methodological aspects of their computations should be explained. It is well–known that the
analytical calculations of global or local Lipschitz constants are distinctly compound, the authors proposed to em-
ploy an alternative approach based on a combination of functional analysis and optimisation methods. The certain
methodological aspects of this approach can be found also in, e.g., [56, 57].
Computation of Lipschitz constant

Taking the nLip–dimensional function F Lip class C∞
(

XLip
mLip

)

, where XLip
mLip ⊂ ℝmLip is a convex (invariant) set

considering asmLip–dimensional hyper–cube, which arguments xLip are spanning mLip–dimensional space (e.g. time–
varying variables such as the state variables or inputs). Using the functional analysis approach, the optimal Lipschitz
constant (L∗Lip) can be computed by calculation of infinity norm of Jacobi matrix [43]:

|

|

|

|

|

|

|

|

|

|

)F Lip

)xLip
|

|

|

|

|

|

|

|

|

|∞
≤ L∗Lip, L

∗
Lip ∈ ℝ+, (82)

where || ⋅ ||∞ denotes an infinity norm of matrix [43, 62].
For the determination of Lipschitz constants associated with the proposed SMO observer synthesis, assuming

a priori known bounds on the state vector x(t) the following approach can be used. This approach is based on solving
an appropriate optimisation task with respect to objective function (82). The optimisation task is formulated as follows:

|

|

|

|

|

|

|

|

|

|

)F Lip

)xLip
|

|

|

|

|

|

|

|

|

|∞
= max

{

 =
{

jLip
}nLip

jLip=1

}

≤ LLip, (83)

jLip = max
⎧

⎪

⎨

⎪

⎩

|

|

|

|

|

|

|

|

|

|

∇xLipF Lip
|

|

|

|

|

|

|

|

|

|1
=

nLip
∑

iLip=1

|

|

|

|

|

|

|

)F LipjLip

)xLipiLip

|

|

|

|

|

|

|

∶ xLip ∈ XLip
mLip

⎫

⎪

⎬

⎪

⎭

,

jLip = 1, nLip, iLip = 1, mLip.
where || ⋅ ||1 is a vector norm [43, 62].

Hence, calculating the maximal value from the set  , the Lipschitz constant, which covers with (82), is established.
Taking into account that for each of jLip , the maximal value of its || ⋅ ||1 must be calculated, in general, the problem
of Lipschitz constant computation can be considered as a non-linear convex optimisation task.
Computation of bounding constant

In general, nbound–dimensional function f bound class ∞
(

Xbound
mbound

)

, which arguments xbound are spanning mbound–
dimensional space is considered. The computation of bounding constant Cbound ∈ ℝ+ is similar to the calculation of
Lipschitz constant (83). Therefore, assuming that Xbound

mbound
has the same meaning as XLip

mLip , the optimisation task can
be formulated as follows:

|

|

|

|

|

|

f bound||
|

|

|

|∞
= max

{

|

|

|

|

|

|

f bound||
|

|

|

|2
∶ xbound ∈ Xbound

mbound

}

≤ Cbound. (84)
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Hence, the optimal value of bounding constant is established by calculating || ⋅ ||∞ norm which is considered as
maximising a || ⋅ ||2 norm of function f bound on the set Xbound

mbound
.
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