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Abstract
The notion of heat uncompensated transformation has early been introduced by Clausius in
1854 and next, after fifty years of forgetting, in 1904 Duhem has revalorized it and combined it
with a new notion of work uncompensated transformation [3]. In this way the so-called Clausius-
Duhem inequality has been established. In our paper we wish to present a novelized procedure
of estimating the role of the uncompensated transformations of heat and work within the flow
of viscous and heat conducting working fluid like water stream. The original procedure was
introduced by Puzyrewski and it is essential in expressing of a local, in time and space, balance
of entropy. Futhermore, this unique approach leads to redefinition of the efficiency notion, as
is usually applied to fluid-flow machineries, to a new one important in computational fluid dy-
namics (CFD) three-dimensional modeling. As a result, it is shown that usage of the polytropic
efficiency, instead of the isentropic efficiency, is more convenient and seems to be natural in CFD
approach. Helpfully, we have also found a correlation between those two efficiency definitions
with usage of proposed new dimensionless (criterion) number.
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Nomenclature

A – area, m2

~b – mass force (~b = −g ~ez, g = 9, 81), m/s2

B – working body with capacity V
CFD – computational fluid dynamics
cp – specific heat capacity at constant pressure, J/kg K
dθ – increase of temperature from standard conditions, K
↔

d – rate-of-strain tensor
dQ – total heat transfer (dQ =

∫∫
Aheat

~Fheat · ~n dAdt), J
e = u+ κ+ ψ – specific total energy, J/kg
~e – versor
~Fwork – flux of mechanical energy
~Fheat – flux of thermal energy (commonly designated as: ~q), W/m2

~gθ – temperature gradient
~h – entropy flux, W/K m2

i – medium enthalpy, [kJ/kg]
↔

I – Gibbs unit tensor (
↔

I= δij~ei ⊗ ~ej , where i, j = x, y, z)

Id – trace of
↔

d (Id = tr
↔

d= dii)
ṁ – real mass flow rate
N – Clausius total uncompensated heat transformation, [J/K]
Nu,CFD – circumferential power of a stage obtained by CFD approach
~n – unit vector normal to the surface ∂V
nη – entropy sources such as losses, dissipation
ns – uncompensated heat and work transformation (total entropy produc-

tion), W/kgK
nµ – uncompensated viscous work transformation (entropy production by

mechanical effects), W/kgK
nλ – uncompensated heat transformation (entropy production by heat trans-

port effects), W/kgK
p – Pascal-Boyle thermodynamic pressure, N/m2

Pu – Puzyrewski number
↔

R – turbulent stress tensor (
↔

R= Rij~ei ⊗ ~ej)
s – specific entropy (state parameter explained in terms of kinetic theory

of gases)
S – Clausius total entropy, J/K
t – local time referring to the concept of transformation
tr – trace
T – thermodynamic temperature (Kelvin absolute temperature scale)
↔

t – total momentum flux (
↔

t= −p
↔

I +
↔

τ +
↔

R)
u – specific internal energy, J/kg
u0 – specific internal energy at standard conditions for temperature and

pressure, J/kg
~u – blade drift velocity vector, m,s,
~v – velocity vector, m/s
v – specific volume (v = ρ−1), m3/kg
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A role of the heat and work uncompensated transformations. . . 13

~x – position vector
xz – distance in line of gravitation, m
z – high (position in line of gravitation), z = xz

∂V – the contact area of the solid structure with the working medium, ∂V = A = Awork∪
Aheat

0D – zero-dimensional algebraic model of flow based on integral balances of mass, mo-
mentum and energy

3D – three-dimensional model based on differential equations, which requires complete
geometry of a flow channel

⊗ – dyadic multiplicator

Greek symbols

η – efficiency, Eqs. (26)–(30); specific entropy (the notation of state parameter by Carnot,
Rankine, Reech, Gibbs, Duhem), kJ/kgK

H – Carnot total entropy, Eq. (1)
θ - thermodynamic temperature (Rankine temperature scale)
κ – specific kinetic energy, J/kg; Rankine Universe temperature, κ = 2.4K
↔

λ – tensor of conduction coefficients,
↔

λ= λij~ei ⊗ ~ej
λ – volume bulk viscosity
µ – shear (dynamic) viscosity
ρ – fluid density
↔

τ – viscous stress tensor
τ – time, the parameter of integration in the cycle
ψ – specific potential energy, J/kg
ζ – losses

Subscripts and superscripts

in – inlet
out – outlet
p – polytropic
s – isentropic
t – theoretical
u – circumferential
z – direction in line of gravitation in the Cartesian coordinate system
0p,1p,2p,. . . – polytropic points of process
0s,1s,2s,. . . – isentropic points of process
0,1,2,. . . – real points of process

1 Introduction

Proposition of the entropy by Sadi Carnot as a new thermodynamic state pa-
rameter, which was originally intended to descriptions of the movement of heat,
quickly leads to serious implications in science and technology, and even everyday
life. The entropy conservation law in heat engines, proposed by him in 1824, says
that [1]:
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“after summarizing all entropy changes that occur during the work cy-

cle, caused by heating and working process, the entropy of the working

medium returns to the initial state”

that is mathematically presented as
∮

(
d

dt
H)dτ =

∮ ( d

dt

∫∫∫

V

ρη dV
)

dτ = 0 . (1)

Further development of this line of thinking led to derivation of a formula of the
law of conservation local in time and space. It can be obtained by using Carnot’s
suggestion that in an ideal cycle the entropy, η, entropy flux, ~h, and entropy
source, nη, should be conserved independently. It means that we can summarise
η, ~h and nη into one scalar equation

∫∫∫

V

(

ρ
d

dt
η = div~h+ ρnη

)

dV (2)

should be noted that, in the original Carnot paper the uncompensated heat trans-
formation, nη, was described only by words such as ‘dissipation’, ‘losses’ during
his dissipation on work of real thermal engines.

Soon later, the works of Sadi Carnot led to the improvement of other, com-
peting and even antagonistic lines of development in thermodynamics. A thesis
competitive to the law of conservation of entropy in thermodynamic cycles was
proposed by Rudolf Clausius (1865), that sounded as follows [2]:

“Universe entropy is a half-conserved, it could not decrease or be stable,

it can only increase”.

It is the law of half-conservation of entropy. In time interval τ0–τ Clausius has
written it as inequality

S − S0 ≤
∫ τ

τo

dQ

T
dτ +N0−τ , (3)

where N0−τ =
∫ τ
τo
[
∫∫∫

ρnηdV ]dτ .
In its form this law of half-conservation is integral both in time and space.

Nevertheless, from a mathematical point of view, it is identical with the Carnot
local law of entropy conservation (2). This equation was adopted in the literature;
it constitutes the basis while learning the second law of thermodynamics. In this
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A role of the heat and work uncompensated transformations. . . 15

inequality, the postulate spoken by Clausius that “uncompensated transformation

of heat is always positive”, stands out [2]

N0−τ > 0 . (4)

Despite these fundamental differences in the definition of the law of conserva-
tion of entropy Eqs. (1) and (3), thermodynamics has developed itself only at an
integral level for many years , because mainstream thinking through the Carnot
function (later called thermodynamic efficiency) was used for the design of heat
cycle. From the other hand, local (field) approach, now known as 3D, represented
by the thermodynamics of viscous fluid, which transfers heat and is subject (field
of study) to flows, turbulence, phase, and chemical transformations, basically did
not exist. Up to now we have not any expression N0−τ in thermodynamics of 3D
fields. Hence, the question what is the amount of uncompensated transformation
of work nµ and heat nλ has never arose [3].

The question about the uncompensated transformation of heat was caused
by irreversible flow of heat energy, was undertaken by Stokes (1851) and Lame
(1852), who have already dealt with anisotropic heat flow and thermal conduc-
tivity coefficients and they discovered that the tensor of thermal conductivity can
be asymmetrical [3]. This allows to formulate the Fourier constitutive equation

as follows: ~Fheat =
↔
λ ~gθ, where

→
g θ denotes temperature gradient. The conduc-

tion coefficients tensor
↔
λ according to Stokes and Lame, could be asymmetrical,

which means that his mathematical structure consists of nine independent con-
stants. It has happened so until 1931, when Onsager in [4] protested against this
wasting of creative forces of nature and enforced a symmetry for the coefficients.
That solution was called as a ‘fourth principle of thermodynamics’ and opened
the gates for the fifth, sixth, etc., ontologically worthless principles [3]. Józef
Wierusz-Kowalski1 in his paper The conditions for a constant thermal conduc-

tivity should be satisfied (1890) focused on inequality saying that the heat un-
compensated during the conduction process should be consistently positive and,
therefore, constants for heat conduction (the tensor of lambda) must satisfy the
requirements [5]:

λ11 > 0 , and λ11λ22 −
1

4

(

λ12 + λ21

)2
> 0 . (5)

Further conditions satisfy the quadratic form of the Jacob formula.

1He is well known Polish thermodynamics; the initiator of social events where Pierre Curie
and Marie Sklodowska met each other.
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In 1901 Duhem suggested an inequality for uncompensated transformation of
work, which was very similar to those of Wierusz-Kowalski’s and was referred to
as [6]

nµ =
↔
τ ·

↔
d=

(

λId
↔
I +2µ

↔
d
)

·
↔
d= λI2d + 2µdijdji , (6)

wherein the tensor of viscous stress is determined by two viscosities: volume bulk
viscosity, λ, and shear viscosity, µ. Jacobi quadratic form, corresponding to the
constitutive relations, will be positive if the following two conditions are fulfilled:

µ > 0 , and 3λ+ 2µ > 0 . (7)

The Wierusz-Kowalski inequality and the above-mentioned Duhem inequality
are the first practical use of the Clausius laws of half-conservation of entropy in
the field-theoretic models.

2 The uncompensated transformation of heat and work

in the local balance of entropy

Nowadays, constructing high-performance and reliable fluid-flow machinery with-
out using the computational fluid dynamics (CFD) modeling is hard to imagine.
CFD and thermal fluid-structure interaction (FSI) have become a major tool to
design and estimating stage efficiency [7]. The study of thermodynamic phe-
nomena in terms of local level (three-dimensional model based on differential
equations) is especially needed to create ever more accurate models of physical
phenomena. As Adrian Bejan wrote in his treatise [8], the identification of local
entropy production allows to all over again build further principles of so-called
constructional laws leading to the final design.

To determinate equations describing local sources of entropy, in terms of the
uncompensated transformation of heat and work within the flow, we shall use
as a basis Romuald Puzyrewski’s procedure [9, 10]. This procedure is based on
the following set of equations describing viscous and heat conductive fluid in the
working fluid volume V :

• balance of entropy

d
dt

∫∫∫

V

ρ s dV =
∫∫

∂V

~h · ~n dA+
∫∫∫

V

ρnsdV ,
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A role of the heat and work uncompensated transformations. . . 17

• balance of momentum

d
dt

∫∫∫

V

ρ~vdV =
∫∫

∂V

↔
t ~n dA+

∫∫∫

V

ρ~b dV ,

• balance of mass

d
dt

∫∫∫

V

ρ dV = 0

• balance of angular momentum:

∫∫∫

V

ρ~v × ~x dV =
∫∫

∂V

(
↔
t ~n)× ~x dA ,

• balance of energy:

d
dt

∫∫∫

V

ρ(u+ κ+ ψ)dV =
∫∫

∂V

( →
Fwork +

→
Fheat

)

· ~ndA .

Using the Reynolds procedure for time differentiation over moving volume and
the Green procedure that turns a surface integral into volume integral of the
divergence, we attain set of balance equations in a conservative and local form
[10,11]:

• balance of mass: ∂tρ+ div(ρ~v) = 0 ,

• balance of momentum: ∂t(ρ~v) + div(ρ~v ⊗ ~v) = div
↔
t +ρ~b ,

• balance of angular momentum:
↔
t=

↔
t
⊤
,

• balance of entropy: ∂t(ρs) + div(ρs~v) = div~h+ ρns ,

• balance of energy: ∂t(ρu+ ρκ+ ρψ) + div
[
ρ~v(u+ κ+ ψ)

]
=

= div(
→
Fheat +

→
Fwork) .

The equation of the balance moment of momentum will be futher used implicity
by taking into account symmetry of the Cauchy stress tensor.

The balance equations are supplemented with the following constitutive equa-
tions:
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• stress tensor:
↔
t= −p

↔
I +2µ

↔
d −2

3µId
↔
I , Id = tr

↔
d ,

• vector of mass forces: ~b = −9.81~ez (the Earth gravitational field),

• thermal energy flux: ~Fheat = θ~h

• mechanical energy flux: ~Fwork =
↔
t ~v ,

• Fourier equation for thermal energy flux: ~Fheat = λ~gθ =
↔
λ ~gθ ,

• internal energy equation: u = u(v, s), for example u = u0 + cpdθ ,

• kinetic energy equation: κ = 1
2~v · ~v ,

• gravitational potential energy: ψ = zg = ~x·~b = xz~ez ·(−9.81~ez) = −9.81xz ;

and following kinetic equations:

• the tensor of deformation rate:
↔
d= 1

2(grad~v + grad⊤~v) = dij~ei ⊗ ~ej ,

• the trace of deformation rate: Id = tr(
↔
d ) = div ~v ,

• the temperature gradient: ~gθ = grad θ .

A separate equation, with a special status, is the Gibbs equation, which puts
together state parameters into one formula

d

dt
u = θ

ds

dt
− p

dv

dt
, (8)

where Gibbs derivative is here interpreted to be the time derivative of the internal
energy u(v, s). The (material) derivative appearing above leads to serious impli-
cations and to use the set of the balance equations in nonconservative form, in
which the material derivative has a leading role.

The transition from conservative into nonconservative form involves inserting
the material derivative into the balance equations:

• balance of mass: d
dtρ+ ρdiv~v = 0 ,

• balance of momentum: ρ d
dt~v = div

↔
t +ρ~b ,

• balance of entropy: ρ d
dts = div~h+ ρns ,

• balance of kinetic energy: ρ d
dtκ = div(

↔
t ~v)−

↔
t ·

↔
d +ρ~b · ~v ,
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A role of the heat and work uncompensated transformations. . . 19

• balance of potential energy: ρ d
dtψ = −ρ~b · ~v ,

• balance of total energy: ρ d
dt(u+ κ+ ψ) = div( ~Fheat + ~Fwork) ,

• balance of internal energy: ρ d
dtu = −ρ d

dt(κ+ ψ) + div( ~Fheat + ~Fwork) .

We will introduce additive spliting of the stress tensor
↔
t into the part re-

sponsible for the reversible phenomena (e.g., gas compression) and irreversible
phenomena (e.g., due to gas viscosity). As we assume that the entire flux of en-
tropy is responsible for entropy transport from place to place, therefore separating
the flux of entropy into the reversible and irreversible part does not exist in this

approach. So the Cauchy stress tensor has a form of
↔
t= −p

↔
I +

↔
τ , which is

decomposition to a spherical tensor of thermodynamic pressure and the traceless
tensor of viscous stress tr

↔
τ=0. Therefore the balances of momentum and kinetic

energy take the form

ρ
d

dt
~v + gradp = div

↔
τ +ρ~b , (9)

ρ
d

dt
κ = div(

↔
τ ~v)− ↔

τ ·
↔
d −div(p~v) + p div~v + ρ~b · ~v (10)

and the balance of internal energy

ρ
d

dt
u =

↔
τ ·

↔
d +p

d

dt
v + div( ~Fheat) . (11)

Let us note the mathematical identities in equations:

div~h = div( ~Fheatθ
−1) = ~Fheat · grad(θ−1) + θ−1div ~Fheat , (12)

div~h = −θ−2 ~Fheat · ~gθ + θ−1div ~Fheat . (13)

The size of uncompensated viscous work and uncompensated heat is defined now,
following Puzyrewski, as

nµ =
↔
τ ·

↔
d=

(

−2

3
µId

↔
I +2µ

↔
d

)

·
↔
d= −2

3
µ(Id)

2 + 2µ
↔
d ·

↔
d , (14)

nλ = λ~gθ · ~gθ . (15)

The further steps of procedure are simple – it involves substituting into the
equation of entropy the individual relationships and to determine irreversibles
designated as ns. In order to keep the units, we multiply Gibbs equation by den-
sity while the entropy equation by temperature:

ρ
d

dt
u = ρθ

ds

dt
− ρp

dv

dt
, (16)
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θρ
d

dt
s = θdiv~h+ θρns . (17)

Now, it is easy to find ns:

θρns = θρ
d

dt
s− θdiv~h = ρ

d

dt
u+ ρp

d

dt
− θdiv~h , (18)

θρns =
↔
τ ·

↔
d +div ~Fheat − θdiv~h . (19)

Then, using expression for the divergence of entropy flux we obtain:

θρns =
↔
τ ·

↔
d +div ~Fheat − θ

(
− θ−2 ~Fheat · ~gθ + θ−1div ~Fheat

)
. (20)

Finally, we read
θρns = nµ + θ−1nλ (21)

or
ns = nµ(ρθ)

−1 + nλρ
−1θ−2 , (22)

which we read:

Contribution to the entropy production comes from both the uncom-

pensated transformation of work, nµ, as well as uncompensated trans-

formation of heat, nλ.

The example of practical calculation proposed by Professor Puzyrewski indicates
that in the case of the conductive viscous fluid flows in the adiabatic channel (for
example in a turbine stage), nµ plays a dominating role [9, 10]. However, in the
heated channels in which convective movement mainly appears (e.g. in the steam
boilers), the uncompensated transformation of heat will dominate [12].

3 Entropy sources and the efficiency of fluid-flow

machinery

Linking the increase of entropy in actual energy transformations, during which
heating conversion becomes working, with the efficiency of the fluid-flow machin-
ery is a typical issue. However, the reference point to which obtained actual
decrement of enthalpy is compared to, becomes problematic. In design approach,
which uses the zero-dimensional (0D) model, it is natural to reference the ob-
tained value of the enthalpy losses to the enthalpy decrease during isentropic
process [13–15]. In this case, the enthalpy of working medium at the outlet after
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A role of the heat and work uncompensated transformations. . . 21

isentropic process, iout, s, is theoretical enthalpy at the outlet iout, t (e.g., outlet
of one turbine stage or outlet of high pressure group of stages) and depends on
the outlet pressure, pout, and the outlet entropy (sout = sin), which equals the
entropy of working medium on the inlet, sin(Fig. 1)

iout, s = iout, t(pout, sin) . (23)

However, the application of isentropic process is excessively obsolete and prac-
ticaly impossible for three-dimensional (3D) modeling using CFD tools. This
happens because the commonly used computational codes simultaneously prefer
to solve the system of equations for the flow based on discretization of flow area
by finite element method (FEM) or finite volume method (FVM) and make it
difficult to numerical-idealization of the thermodynamic process [16, 17]. In this
case, the entropy at the outlet from the stage is a function of outlet pressure and
outlet entropy

iout, p = iout(pout, sout) . (24)

It seems unnatural (eg., in 3D the the fow losses are taken into account, addi-
tionally outlet loss connected with the unused kinetic energy of fuid is included)
to use isentropic process determined by 0D method in this place. So in order to
determine the share of viscous (laminar and turbulent) and thermal conductivity
on the production of entropy in the flow, we have to assume as a reference point
for nonviscous and non-heat conducting fluid – the Euler model of fluid [17, 18].
Then the production of entropy associated with uncompensated transformation
of heat and work (given in Eq. (22) by ns) equals to zero. However, due to the use
of real gas model we attain the polytropic process (with the efficiency denoted as
ηp,CFD and power Nu,CFD) in opposite to isentropic process (power Nu, t CFD),
which is typical of the ideal gas model. In this process, the increase of entropy
will be linked to the nature of transformation while the dissipation of energy will
not occur. As a result we have got a reference point, which will be the entropy
at the outlet of the stage after polytropic expansion, iout, p, understood as the
entropy after theoretical transformation, iout, t, depending on the outlet pressure,
pout, and entropy sout, p after the polytropic transformation for Euler’s fluid

iout, p = iout, t(pout, sout, p) . (25)

The graphical interpretation of thermodynamic transformations in the turbine
stage stator (pressure drop p0−p1 on stage nozzle) and rotor (pressure drop p1−p2
on stage: rotor wheel), respectively, of the turbine for isentropic, 0-2s, politropic,
0-2p and actual, 0-2, transformation is shown in Fig. 1. In this figure enthalpies:
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Figure 1: Enthalpy drop and entropy gain in the Molier diagram, where: 0, 1, 2 – real points of
process; 1s, 2s– points of isentropic process; 1p, 2p– points of politropic process.

isentropic i2,s = iout, s, and polytropic i2,p = iout, p calculated for a single turbine
stage can be found.

For the thermal turbine stages the difference between the enthalpy after isen-
tropic process, iout, s, and the enthalpy after polytropic process for Euler’s fluid,
iout, p, will be insignificant, as evidenced in [16,17]. However the next section will
give some information about this issue.

4 The relationship between isentropic and polytropic

efficiency

To explain further differences between isentropic and polytropic efficiencies, it is
profitable to consider this aspect apart from the turbine stage, and look at it in
a wider perspective, that is in the case of efficiency in a flow, where no heated and
cooled or moving surfaces occur. It should be pointed out that the flow efficiency
is connected with the general concept of the ratio of utilization of the energy
stored, carried by the unit of mass of a working medium; it describes the relation
of real enthalpy, i, change of the medium to some referential (theoretical) change

ISSN 0079-3205 Trans. Inst. Fluid-Flow Mach. 135(2017) 11–27

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl
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of energy, e, of the medium, which mathematically is proposed by Puzyrewski [10]

ηe =

∫ τ,out
τ,in idτ

∫ τ,out
τ,in e(s, v)dτ

=
iin − iout

∫ τ,out
τ,in e(s, v)dτ

, (26)

where e(s, v) may be an internal energy, free energy, free enthalpy or any other
energy expressing elastic properties of the fluid, and τ is the equivalent time of
thermodynamic process for example flow in the stage. For this case e(s, v) is
the specific total energy depends from entropy destruction s and specific volume
change v in the time from start of the process τin to the end of process τout.

Classical isentropic efficiency of a flow, computed in the 0D modeling, employs
isentropic drop [13, 14], (subscript: e = s):

ηs = ηs,0D =
iin − iout
iin − iout,s

. (27)

This definition is practical for the 0D model, since it is related to the ideal state
described by enthalpy iout,s – it is easily interpreted in the Molier chart (Fig. 1.)
and does not require the temperature Tout to be known [13, 14]. However, the
definition of the isentropic efficiency does not have solid physical fundamentals
for 3D approach, since the process iin − iout,s may not be adopted in the real
fluid flow. On the other hand, the polytropic definition also does not require the
temperature Tout to be known initially; energy dissipation is calculated in the 3D
model solely for the real process iin − iout, or in the case of Eulerian fluid – for
available energy drops to zero – the process becomes polytropic iin−iout, p [17,18].
Hence, in the 3D modeling based in CFD methodology, the polytropic efficiency
definition is [17]

ηp,CFD =
Nu,CFD

Nu, tCFD
=

∫∫

Au(−p
↔
I +

↔
τ +

↔
R)~n · ~u dA

∫∫

Au(−p
↔
I )~n · ~u dA

∼= (iin − iout) · ṁ
(iin − iout, p) · ṁt

, (28)

where ~u is the structure velocity (e.g., blade drift velocity), ṁ and ṁt mass flow
real rate and in the case of Eulerian fluid, respectively, Au – surface of blade.
However 0D approach polytropic efficiency ηp, 0D [10] seems more natural than
ηs = ηs, 0D and is defined as proposed by Puzyrewski (subscript: e = s) [10]

ηp, 0D =
iin − iout
∫ τ,out
τ,in

1
ρ ṗdτ

, (29)

where ṗ is the rate of pressure change that is valid for any channel geometry, both
convergent and divergent.
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From Eq. (29), the difference between isentropic efficiency, ηs, and polytropic
efficiency, ηp, 0D, lies in a different referential (theoretical) state for the energy
drop [10,19]. In Puzyrewski monograph [10] evaluation of the difference is found:

ηs = ηp, 0D

(

1 + ζ
T̄in−out − T̄out,s−out

T̄out,s − T̄out

)

. (30)

where the over bar denotes averaged temperature of the thermodynamic process.
From the above equation it reads that both efficiencies are close to one another
by their values, if ηs = (1+Pu)ηp, 0D [9,10]; on the other hand, for CFD we write
ηs = (1 − Pu)ηp,CFD [17]. For both cases the Puzyrewski number, Pu, can be
written as

Pu =
( T̄in−out

T̄out,s−out
− 1
)

ζ . (31)

However for ideal situation, it can be assumed that Pu = 0. Hence Puzyrewski
number says difference between design level (ηs,0D) and real situation with 3D
geometry (ηp,CFD). For turbine stages it varies from 0.002 to 0.0001. This means
in practice, that the computed polytropic efficiency is by 0.2 to 0.01% higher from
the isentropic efficiency. For many cases, it is closely enough to justify assumption
ηs, 0D ∼= ηp,CFD [17, 18].

The relationship between isentropic, ηs, and polytropic efficiency, ηp, 0D, can
be shown graphically, as presented in Fig. 2.

Figure 2: The relationship between isentropic and polytropic efficiency in case 0D for the case
of expansion of working medium in turbine [16,19].
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5 Conclusions

Basing on all our historical knowledge about the balance of entropy, it should
be said that in the phenomenological approach there are two competitive lines of
reasoning leading, respectively, to the law of conservation of entropy and the law
of half-conservation of entropy. The Clausius law of half-conservation of entropy
became the starting point for the statistics and information theory [20]. Hence, in
opposition to the entropy concept existing in everyday life understood as parame-
ter measuring the degree of chaos, comes the entropy of Carnot concept describing
the highest order of the thermal motion (order parameters: coertia and inertia)
used by professionals like Duhem and Natanson [3, 21].

The detailed analysis of the enthalpy sources in the flow rationally justifies the
usage of the Euler fluid to analyze the efficiency of energy machines designed and
tested using three-dimensional methods. The application of polytropic transfor-
mation, instead of isentropic process, using CFD tools is more natural and more
comfortable treatment at the same time, because we use the same computational
tools to determine the reference point (reference value). In addition, thanks to
polytropic transformation the difference in value between these two transforma-
tions is insignificant and can also be readily determined by a dimensionless Pu
number. New areas to analysis Pu number are flow with a pressure increasing
process [22] as new type of turbine inlet like in patents [23-25] with inlet scroll;
steam turbine exhaust hoods [26,27]; modernized turbines [28,29]; ORC turbines
[30,31]; Tesla microturbines [32]; blowers [33]; compressors [34,35] and also hy-
draulic turbines [36].
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