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Abstract—This article describes a novel model-order reduction
(MOR) approach for efficient wide frequency band finite element
method (FEM) simulations of microwave components. It relies on
the splitting of the system transfer function into two components:
a singular one that accounts for the in-band system poles, and
a regular part that has no in-band poles. In order to perform
this splitting during the reduction process, the projection basis is
formed of two sets of orthogonal vectors that must be computed
in sequence. The first set to be computed consists of the in-band
eigenvectors, which are associated with the dynamics of the
electromagnetic field, while the second set uses the block moments
of the original system, that are computed in the orthogonal
complement to the subspace spanned by the in-band eigenvectors.
The advantage of this method is that it results in a more compact
reduced-order model than a method that employs only moment
matching for the projection basis computations.

Index Terms—Computer-aided engineering, design
automation, error analysis, finite-element methods, Galerkin
method, microwave circuits, reduced basis methods,
reduced-order systems.

I. INTRODUCTION

FULL-wave electromagnetic simulations by means of
numerical methods, such as the finite element method

(FEM) and the finite difference method, play crucial roles in
the design of microwave devices. However, if the analysis
involves investigating the electromagnetic behavior of the
structure in a wide frequency band, the simulation can become
extremely time-consuming, since it will require the solution of
a very large linear system of equations at each of the frequency
points considered.
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Since the early 1990s, numerous numerical techniques have
been proposed to rapidly compute the scattering matrix of
devices at many frequency points—so-called fast-frequency
sweep methods. Such techniques are of two types: data-driven
and model-driven. In the former, the formula for a rational
interpolating function that approximates the original transfer
function is sought, based on the response of the original model,
computed at carefully selected frequency points. Examples of
data-driven techniques can be found in [1]–[6].

On the other hand, model-driven approaches use the concept
of model-order reduction (MOR) and transform the original
system of equations (the full-order model, FOM) to a so-called
reduced-order model (ROM). In MOR, the solution is sought
in a low-dimensional subspace spanned by a suitable chosen
set of vectors Q. The original problem is then projected
onto this subspace using the Galerkin procedure, resulting
in the ROM. Since the size of the projection space is
small, the number of degrees of freedom in the ROM
is a few orders of magnitude smaller than in the FOM,
allowing fast computation of the system transfer function at
many frequency points. There are two main types of MOR
methodologies. The first, referred to as reduced-basis methods
(RBM) [7], [8], takes advantage of the fact that a small
number of field solutions (called snapshots) are sufficient to
represent the fundamental dynamics of the original model.
These snapshots are assembled and orthogonalized, forming
the orthonormal projection basis Q. RBM generates very
compact ROMs, but requires the solution of the original FEM
system of equations at each snapshot frequency point, which
can be time consuming, especially for wideband analysis.
This drawback is eliminated in MOR techniques based on
the moment-matching property, where just one or a few
FEM solutions are needed, since the original and reduced
system transfer function themselves and their derivatives are
matched at one specified frequency [9]–[11], or at just a
few points [12]–[15]. In this case, the projection basis Q is
composed of the subsequent block moments of the original
model. The first model-driven techniques were introduced
into electronic circuit analysis in the early 1990s with the
development of the asymptotic waveform evaluation (AWE)
[11], in which the original and reduced block moments are
matched in an explicit way. However, the reduced models
computed using AWE are prone to numerical instability.
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As a remedy, modifications of AWE—such as the Galerkin
asymptotic waveform evaluation (GAWE) [16], the multipoint
Galerkin asymptotic waveform evaluation (MGAWE) [17], the
adaptive multiexpansion frequencies approach [18], and the
well-conditioned asymptotic waveform evaluation (WCAWE)
[19]—were proposed. In order to ensure the passivity of the
reduced-order systems, the passive reduced-order interconnect
macromodeling algorithm (PRIMA) was put forward [20].
PRIMA is suitable for first-order systems. For FEM analysis,
techniques that can handle second-order systems are especially
attractive. Efficient nodal-order reduction (ENOR) [10] was
one of the first such techniques, but it unfortunately suffers
from similar instability issues as AWE does.

A remarkable single-point moment-matching based
technique for second-order systems called the second-order
Arnoldi method for passive-order reduction (SAPOR) was
proposed in [9] and [21]. It is stable, proven to be passive,
and the moments of the reduced model are accurately
matched with the moments of the original model. However,
the projection basis generated by SAPOR (and, in effect, the
reduced model itself) tend to be excessively large. What is
more, this approach is better for narrowband simulations,
since the reduction error is low only in the vicinity of the
expansion point, whereas at the sides of the frequency band of
interest it can be large. The width of the frequency band can
be extended using multipoint moment-matching approaches,
such as [14], [15], [17], [18]. However, these involve an extra
cost associated with the factorization of the large FEM matrix
at each expansion point. The projection basis resulting from
multipoint moment-matching techniques can also be large.

This paper presents a novel compact model-order reduction
approach called subspace-splitting moment-matching MOR
(SSMM-MOR), which is inspired by the idea presented in
[22], and extends our recent preliminary work [23]. The key
concept is the same as in the recently proposed compact
reduced-basis method (CRBM) [22] and we take advantage
of it in this work: to decompose the projection spaces into
two subspaces, namely, a singular subspace and a regular
subspace. Like in CRBM, the regular projection subspace is
generated in such a way that each of its vectors is orthogonal
in the energy sense to the subspace used to represent the
singular part. In this work, we show that this results in
automated splitting of the reduced system transfer function
into singular and regular parts. These two parts can then
be considered independent one of the other, and this fact
is essential for developing a new moment-matching MORe
technique we propose in this paper. The singular part tends to
be highly nonlinear and is approximated using the subspace
composed of the eigenvectors associated with the system poles
in the frequency band of interest. These describe the natural
oscillating dynamics of the electromagnetic field. On the other
hand, as already noted in [22], the transfer function associated
with the regular part is rather smooth and it can thus be
approximated using a different basis. In [22] snapshots were
used to this effect - like in RBM, here we propose the subspace
to be composed of just a few block moments of the original
model computed using a modified SAPOR algorithm.

In effect, the resultant reduced-order model is accurate for

wide-frequency band analysis. SSMM-MOR usually requires
the original FEM system matrix to be factorized only once
in order to compute eigenvectors and block moments. By the
same token, the entire process is controlled by an efficiently
computed error estimator that assesses the error introduced
by the reduction process and effectively serves as stopping
criterion.

II. FINITE ELEMENT METHOD BACKGROUND

We consider a source-free and lossless computational
domain Ω ⊂ R3, with the boundary made of a perfect
electric conductor (denoted by ΓE) and the cross-sections of
waveguide ports (denoted by Γp

P , with p = 1, . . . np), where
np is the number of ports. In order to compute the scattering
parameters of the microwave structures using the finite element
method (FEM), we must first consider the following boundary
value problem (BVP):

∇× (µr
−1∇× ~E)− k20εr ~E = 0 in Ω,

(µ−1r ∇× ~E)× n̂+ jk0η0~hpk = 0 on Γp
P ,

~E × n̂ = 0 on ΓE ,

(1)

where n̂ is the outward normal unit vector on the boundary
of Ω, ~E is the electric field, j is the imaginary unit, k0
is the wavenumber, εr and µr are the relative permittivity
and permeability of the medium, respectively, η0 is the
characteristic impedance of free-space, and ~hpk is the
normalized pattern of the tangential magnetic field associated
with k-th mode at the p-th port. The overall number of modes
in the analysis is nm.

A weak formulation of the above BVP is obtained by
considering a vector testing function ~W (see [14], [24] for
details). The FEM formulation begins with the discretization
of the computational domain—in our case, by means of
curvilinear tetrahedrons [25]. Next, the set of the second-order
hierarchical vector basis functions in each tetrahedron is
defined [26]. The electric field and the testing function are
written down as follows:

~E =
n∑

k=1

ek ~Tk

~W =
n∑

k=1

wk
~Tk, (2)

where ~Tk are basis functions, n is the number of applied
functions and ek, wk are coefficients. Following the standard
FEM procedure applied to the weak form, we obtain the
following n-dimensional second-order input–output system of
equations:

(Γ + s2C)E(s) = sBIc,

Uv = BHE, (3)

where Γ and C ∈ Rn×n are the FEM symmetric system
matrices, n is the number of FEM degrees of freedom,
s = jω/c is the complex frequency (with c being the speed
of light and ω being the angular frequency), E ∈ Cn×nm is
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Fig. 1: Scattering parameters and geometry of the folded
waveguide filter.

the matrix of unknowns (the FEM basis function coefficients),
Uv , Ic ∈ Cnm×1 are the vectors of amplitudes of the voltage
and current waves, respectively, B ∈ Cn×nm is the normalized
matrix associated with the excitation applied to the ports of
the structure and (·)H stands for the conjugate transpose. In
order to characterize the microwave structures in terms of
the scattering parameters at the specified frequency points
in a given frequency band, it is necessary to carry out a
frequency sweep in which the system of equations (3) is solved
for s = {s1, s2, . . . snf

}, and, at each point, the scattering
parameters are computed using the formula:

S(s) = 2(I + Z(s)−1)−1 − I, (4)

with I being the identity matrix, where the impedance matrix
Z(s) is given by:

Z(s) = BH(Γ + s2C)−1sB. (5)

It is important to note that Z(s) is considered as the transfer
function of system (3).

In practice, the frequency sweep process can be
memory-demanding and time-consuming, especially when
complex devices are being analyzed or optimized in a wide
frequency band, or when the goal of the simulation is to predict
spurious passbands or the effect of higher-order modes [1].
More precisely, the entire FEM process can be divided into a
few steps, the most time-consuming of which are: generation
of the tetrahedral mesh, preprocessing, construction of the
FEM system of equations (3), and the solution of the resultant
system for the specified frequencies. The final step involves
symbolic and numerical factorization and solving the system
of equations using the factors [27]. To give an idea of the
duration of the steps associated with the FEM simulations,
we consider a real case: the sixth-order waveguide folded
filter [28] shown in Fig. 1. The goal of the simulation is to
compute its scattering parameters in the 12–24 GHz band. It is
important to note that in this band, five waveguide modes are
excited at each of the two ports. The number of excitation
vectors is thus nm = 10. The standard FEM formulation
[29] results in a system of equations with 359,202 unknowns.
The running time of the main FEM steps is summarized in
Fig. 2. For simulation of a single frequency point, the mesh
generation process is the most time-consuming part. However,
if we consider the simulation with 51 points, we can see that
numerical factorization is definitely the most demanding part.

Thus, in order to speed up the overall FEM analysis of a
given frequency band, it is desirable to focus on reducing the
frequency sweep time. This problem is addressed in the next
section.

III. CLASSIC MOMENT-MATCHING BASED MOR
APPROACHES

One of the most popular family of techniques for
speeding up frequency-domain computational electromagnetic
simulations is MOR, the aim of which is to transform the
original system of equations to a ROM of the following form:

(ΓR + s2CR)ER(s) = sBRIc,

Uv = BH
RER, (6)

where:

ΓR = QTΓQ,

CR = QTCQ,

BR = QTB, (7)

are reduced system matrices in the sets ΓR, CR ∈ Cv×v ,
and BR ∈ Cv×nm . Matrix Q ∈ Cn×v is the orthonormal
projection basis, where v denotes the number of vectors in
the projection basis. Since the number of unknowns in (6) is
much smaller than in (3) (v � n), the solution and, therefore,
the frequency sweep over the specified frequency band in this
case is performed much more rapidly, resulting in the reduced
transfer function:

ZR(s) = BH
R (ΓR + s2CR)−1sBR, (8)

which approximates the original model with sufficient
accuracy over the desired frequency range.

As briefly discussed in the introduction, many MOR
techniques have been proposed. In this work, we consider
SAPOR due to its stability, accuracy and efficiency. For the
sake of clarity, we provide an outline of this technique here;
a comprehensive description can be found in [9], [21].
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Fig. 2: Simulation times for specific stages of simulation. The
first plot corresponds to the simulation of a single frequency
point, while the second one to simulation of 51 frequency
points. Intel MKL PARDISO [27] was used to solve large
systems of linear equations.
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A. The SAPOR method

The goal of SAPOR is to generate the orthonormal
projection basis Q, which is used to transform the original
system (3) to the reduced system (6). The basis Q is
orthonormalized using a numerically stable Krylov subspace
method, and is spanned by q moments of E(s), where q
is called the reduction order. Therefore, q moments of the
reduced system are matched with the moments of the original
one.

In its basic form, and taking into account that the
second-order system is of the form of (3)—that is, it has no
first-order terms—the SAPOR algorithm is as follows:

1) Equation (3) is shifted using s = s0 + σ, resulting in:

(σ2C + σD + K)E(σ) = B0 + σB1 (9)

where: D = 2s0C, K = s20C + Γ, B0 = s0B, and
B1 = B.

2) Next, an auxiliary variable is introduced:

Z(σ) = B1 − σCE(σ) (10)

3) Substituting (10) into (9), we obtain:

(I− σA)

[
E
Z

]
=

[
Q0

P0

]
(11)

where Q0 is the zeroth block moment of E,

A =

[
−K−1D K−1

−C 0

]
, Q0 = K−1B0, (12)

and:
P0 = B1. (13)

4) The block second-order Arnoldi (SOAR) algorithm is
used to construct the Krylov subspace: basis Q ∈ Cn×v ,
where v = qnm. What is important, Q is spanned by
the block moments of E and is orthonormal, where
the second-order orthonormalization is performed by
means of the Gram-Schmidt approach called SOrth.
Pseudocode and the details of these two techniques are
provided in [21].

5) Finally, the reduced-order model (6) is generated using
the basis Q.

It is remarkable that in the SAPOR process (as in
other moment-matching based algorithms), the most
time-consuming steps of symbolic and numerical factorization
of the original FEM system matrix are performed only once.
Computation of each subsequent block moment requires just
a single (block) solve of the FEM system of equations using
the factors already stored in the memory. SAPOR in most
cases therefore outperforms fast-frequency sweep methods
that require the system matrix to be factorized many times
(at many expansion frequency points); include RBM [7], [30]
and data-driven approaches [1]–[6].

B. Error estimator

In order to be able to use SAPOR, we need to assess the
error of the ROM. This error estimate can then be used as the
stopping criterion for the algorithm [8], [30]–[33].
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Fig. 3: SAPOR in the analysis of the folded waveguide filter
in Fig. 1.

In practice, we do not know the error introduced by the
ROM with respect to the original model. To assess this error,
we take advantage of an a posteriori error estimator. Since the
error must be evaluated over the whole frequency bandwidth,
it is important that it can be computed extremely rapidly.

We here use a goal-oriented error estimator (described in
details in [8]) that considers the interaction of the residual
error with the excitation at the ports. It is defined as:

es(s) = |Zp(s)BHR(s)|/|2sZp(s)BHB|, , (14)

where Zp(s) = diag[η1(s), η2(s), . . . , ηnm(s)] is the
impedance normalization matrix, with ηi(s) being the
impedance of the i-th mode. The residual error R(s), used
in (14), has the form:

R(s) = 2sB− (Γ + sBBH + s2C)QĒR(s), (15)

whereas ĒR(s) is the solution of the reduced system of
equations:

ĒR(s) = (ΓR + sBRBH
R + s2CR)−1(2sBR). (16)

In order to efficiently assess the error over the whole frequency
band, the formula (14) is transformed to:

es(s) = |2sZpB
HB− ZpB

HΓQĒR(s)− s2ZpB
HCQĒR(s)

− sZpB
HBBHQĒR(s)|/|2sZp(s)BHB|.

(17)

It is important to underline the fact that the low-order blocks
BHB, BHΓQ, BHCQ, and BHBBHQ are computed only
once, in the so-called offline stage. In the online stage, the
frequency-dependent terms are taken into account to estimate
the error in the whole frequency bandwidth. As a result, the
error estimation can be evaluated throughout the frequency
band with ease.

C. Numerical example

Here, the procedures described in subsections III-A and
III-B are used to analyze the folded waveguide filter shown in
Fig. 1. Fig. 3 shows the actual and estimated errors; the actual
error is defined as:

eactual = max|SMOR − SREF|. (18)

SMOR is the scattering matrix obtained using SAPOR, whereas
SREF is computed directly with FEM by means of (3)–(4).
Three cases are considered, with the number of block
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moments in the projection basis Q equal to q = {2, 11, 17},
corresponding to v = {20, 110, 170}, since the number of
excitation vectors considered is nm = 10. It can be observed
that the original and reduced system transfer functions and
their derivatives match in the vicinity of the expansion point,
which in this case is 19.2 GHz. Obviously the frequency band
in which the actual and estimated errors are at the noise
level widens with the number of block moments added to
the projection basis. The actual and estimated errors are well
correlated, so definition (17) can be used to assess the error
introduced by the reduced model.

As can be seen, SAPOR allows us to obtain highly accurate
reduced-order models in an efficient and numerically stable
way. As shown in [9], [21], the moments of the original and
reduced models are matched to the specified reduction order.
Stopping can be ensured by using the efficient error estimator
defined in (17). However, SAPOR works best for narrowband
simulations, since in wideband analysis the error at the sides of
the frequency band decreases slowly and high reduction orders
are needed to bring it down. Compared to the MOR methods,
which have been proven to be optimal or nearly optimal in
terms of the projection basis size (such as proper orthogonal
decomposition or RBM), SAPOR generates an excessively
large projection basis.

IV. DECOUPLED REDUCED SYSTEM TRANSFER FUNCTION

We now have a closer look at the reduced transfer function
of the device, as defined in (8). The reduced blocks of matrices
ΓR, CR, and BR are obtained by projecting of the original
FEM matrices Γ, C, and B onto a subspace spanned by the
vectors of the projection basis Q. The main factor contributing
to the size of the projection basis in moment-matching MOR is
the highly nonlinear behavior of the system transfer function,
where many poles are present in the band of interest. In this
case, high-order derivatives (in other words, many moments)
are needed to accurately approximate the transfer function in
the vicinity of these poles, if indeed convergence is achieved.
To reduce the size of the projection basis for moment-matching
MOR, increasing the computational efficiency and, at the same
time, to prevent the algorithm from numerical stagnation,
it is beneficial to decompose the system transfer function
into regular and singular parts, and to generate a different
projection base for each of them.

To this end, we have to firstly take into account, that the
distribution of the electric field ~E(ω) in the band of interest
B = [ωmin, ωmax] can be decomposed into two parts: a regular
one, denoted by ~F (ω), and a singular one, ~eB(ω), standing
for the eigenmodes hit in the frequency band of analysis,
following the theory provided in [22]. By the same token,
we can split the basis for the electric field into two sets of
vectors:

Q = [QE ,QM ], (19)

and use QE and QM to span the subspace corresponding
to the singular and regular part of the electric field
solution. Subspace QE is then composed of the electric field
eigenvectors associated with the poles in the band of interest,
and represents the natural oscillating dynamics of the electric

field in the computational domain. The second part, QM , spans
whatever else is required to approximate the electric field in
the band of interest with high accuracy. While QE is already
defined, we are free to choose QM . Our goal is to generate
QM so that the reduced system transfer function is naturally
split into the singular part, with the in-band poles, and the
regular part, with no poles inside the band.

ZR(s) = ZE(s) + ZM (s). (20)

This representation allows deeper insight into the contribution
of the regular and singular parts to ZR(s). In order to derive
the decoupled representation of the transfer function ZR(s),
we have to make sure that QM is constructed from vectors
that lie in the orthogonal complement of the subspace spanned
by QE .

If we consider the FEM system matrix, Γ and C, we can
construct the following generalized eigenproblem:

ΓQE = CQEΛ, (21)

where Λ is a diagonal matrix containing the eigenvalues
corresponding to the resonant frequencies in the band of
interest, B, and QE are its corresponding eigenvectors, that
represent the singular part of the projection basis (19).
Since matrices Γ and C are symmetric, the eigenvectors are
C-orthogonal:

CE = QT
ECQE = I. (22)

Left-multiplying (21) by QT
E and substituting (22), we obtain:

ΓE = QT
EΓQE = Λ (23)

Now, since we want QM to be in the orthogonal complement
of the subspace spanned by QE , we enforce C-orthonormality
on the regular part of the projection basis QM with respect to
QE vectors. We thus obtain:

QT
MCQE = 0

QT
ECQM = 0.

(24)

Using this orthogonality and left-multiplying (21) by QT
M , we

obtain:
QT

MΓQE = 0, (25)

and similarly:
QT

EΓQM = 0. (26)

Finally:

ΓM = QT
MΓQM

CM = QT
MCQM = I (27)

since the vectors of QM are enforced to be C-orthonormal. It
is important to emphasize that ΓM is a full matrix, since the
vectors in QM are not eigensolutions to (21). To summarize
the above formulas, we arrive at the following definitions of
the reduced-order model matrices:

Γd
R =

[
Λ 0
0 ΓM

]
, (28)

Cd
R =

[
I 0
0 I

]
, (29)
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and
Bd

R =

[
QH

E B
QH

MB

]
=

[
BE

BM

]
. (30)

As can be seen, the off-diagonal blocks in (28) and (29) are
zero matrices, which means that the two blocks associated
with the regular and singular parts are decoupled (superscript d
corresponds to the decoupling process). The expression for the
impedance matrix transfer function, based on the decoupled
reduced-model, is thus defined as follows:

Zd
R(s) = s

[
BE

BM

]H ([
Λ 0
0 ΓM

]
+ s2

[
I 0
0 I

])−1 [
BE

BM

]
,

(31)
which can be simplified to:

Zd
R(s) =sBH

E (Λ + s2I)−1BE+

sBH
M (ΓM + s2I)−1BM .

(32)

Finally, we obtain the formula for the decoupled impedance
matrix transfer function, which is decomposed into the
part associated with the singular and regular components,
respectively:

Zd
R(s) = Zd

E(s) + Zd
M (s). (33)

Due to the above decoupling process, we can separately
analyze the contribution of the regular and singular parts
of the reduced-order model to the system transfer function
Zd

R(s) that aims to approximate the original impedance matrix
transfer function Z(s). It is now seen that for decoupling all
that is needed is the C-orthogonality of QM and QE . Part QM

can be determined in many ways. One possible approach is to
use snapshots and C-orthogonalize them (like in CRBM [22]),

but other approaches are also possible and become apparent
by examining the frequency behaviour of the two parts of the
impedance matrix transfer function.

To this end, we consider the sixth-order folded filter
analyzed in Section II. The imaginary part of the transfer
function Z(s) associated with the fundamental waveguide port
mode is plotted in Fig. 4. It can be seen that this is a highly
nonlinear function. The next plot in Fig. 4 shows the singular
part of the impedance, ZE(s), which is also a highly nonlinear
function. We focus on the regular part of the impedance,
namely ZM (s), which is shown in the last plot in Fig. 4.
This plot makes it clear that, as previously noted in [22],
this is indeed a rather smooth function (in contrast to the
two previous plots in Fig. 4) that can be approximated using
a low-order polynomial, or just a few terms of the Taylor
expansion.

This result suggests that, in order to approximate the regular
part of the transfer function, we can take advantage of the fact
that moment-matching reduction techniques require just one
symbolic and one numerical factorization of the FEM system
matrix. The derivatives of the transfer function, associated with
subsequent moment, are then computed by several solutions
of the linear system of equations, which can be done relatively
rapidly. However, in order to use this, the moment-matching
based model-order reduction procedure needs to be modified
to enforce C-orthogonality with respect to the eigenvectors hit
in the frequency band of analysis only.

V. SUBSPACE SPLITTING MOMENT-MATCHING
MODEL-ORDER REDUCTION TECHNIQUE

With the conclusions from Sections III and IV, we are now
ready to derive the subsequent steps of the novel model-order
reduction approach, exploiting subspace splitting. We start the
reduction process by computing nE eigenvectors associated
with the resonant frequencies in the band of interest B. We
use the shift-and-invert preconditioner and Arnoldi iteration
[34] to efficiently find resonances. The original generalized
eigenproblem to be solved is defined in (21), which for a single
eigenpair takes the form:

(Γ− λC)qE = 0. (34)

Since iterative solvers converge well to large eigenvalues,
and the eigenvalues of interest are relatively small, we first
perform a spectral transformation to push the eigenvalues
we are looking for towards the end of the spectrum and
thus enhance the convergence. The spectral transformation
affects the eigenvalues but does not affect eigenvectors. This
operation transforms the original generalized eigenproblem
into the standard eigenproblem:

TqE = γqE , (35)

with γ = (λ− σ)−1 and

T = (Γ− σC)−1C, (36)

where σ 6= λ is a shift. The largest in magnitude eigenvalues
γ correspond to the eigenvalues λ of the original problem that
are closest to the σ. The eigenvalue we are interested in is
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then recovered as λ = σ+ 1/γ. Very often this method needs
just one factorization of the FEM system matrix to find all
eigenvalues in the wide frequency band of interest, as can be
seen in all considered numerical tests. However, in case the
shift-and-invent Arnoldi process does not converge, additional
factorizations of system matrix for different shifts have to be
computed.

Next, in order to approximate the regular subspace, we use
the moment-matching approach, or more precisely the block
SOAR and SOrth (Second-order Orthonormalization) methods
described in [35]. However, in order to take advantage of the
decoupling property of the system transfer function, we need
to modify these algorithms to preserve the C-orthogonality of
the overall projection basis.

The moment-matching process based on block SOAR does
not require any additional factorizations of the system matrix
since, in order to compute the zeroth block moment, we use
the matrix factors obtained in the previous step to compute
the eigenvectors. Each subsequent block moment requires
just a single solve of the system of equations using the
factors already stored in memory. As shown in Section IV,
the regular part of the transfer function is rather smooth,
so a small number of block moments suffice to accurately
approximate it. This is in contract to the large number of
block moments required to match the system transfer function
response in wide frequency band of analysis in the original
moment-matching algorithm.

For the sake of clarity, we provide here the algorithms of
the modified SOAR and SOrth procedures.

1 input: A , C , QE , Q0 , P0 , q , nm

2 output: orthonormal projection basis QOUT

3 HE = QT
ECQ0

4 Q0 = Q0 −QEH
E

5 Q1 = SOrth
(
Q0,C

)
, P1 = P0

6 for i = 1, 2, . . . , q

7
[
Q̂i+1

P̂i+1

]
= A

[
Qi

Pi

]
8 HE

i = QT
ECQ̂i+1

9 Hi = QT
1:iCQ̂i+1

10 Q̂i+1 = Q̂i+1 −QEH
E
i

11 Q̂i+1 = Q̂i+1 −Q1:iHi

12 Qi+1 = SOrth
(
Q̂i+1,C

)
13 end
14 QOUT = append(QE ,Q1:q) ,

Algorithm 1: Modified SOAR procedure.

A, Q0, and P0 are defined in (12) and (13). Firstly (step 4),
the 0-th block moment is C-orthogonalized with respect to the
singular part of the projection basis QE , using the coefficients
computed in step 3. Next, in step 5, the C-orthogonality is
enforced among the vectors that form the 0-th block moment,
using the modified SOrth procedure. The subsequent block
moments are computed in step 7, and they are subject to the
C-orthognalization with respect to QE (step 10), as well as
the previous block moments (step 11), using the coefficients
computed in steps 8 and 9, respectively. In the last step, the
singular part of the projection basis is extended by the regular
component composed of the subsequent block moments.

1 Input: Q̂m, C, nm

2 Output: the C-orthonormal matrix - Qm

3 set Q̂m =
[
q̂1 q̂2 . . . q̂nm

]
4 for i = 1, 2, . . . , nm

5 for j = 1, 2, . . . , i− 1
6 Rji = qT

j Cq̂i

7 q̂i = q̂i −Rjiqj

8 end
9 Rii =

√
q̂T
i Cq̂i

10 if Rii
∼= 0, stop (deflation)

11 qi =
1

Rii
q̂i

12 end
13 end
14 Qm=

[
q1 q2 . . . qnm

]
Algorithm 2: Modified SOrth procedure.

It should be noted that q̂T
i Cq̂i is positive, since C is a

symmetric positive-definite matrix.

A. The complete SSMM-MOR approach

The proposed subspace-splitting moment-matching
(SSMM) model-order reduction algorithm can now be
summarized in the following steps:

1) Perform the factorization of the original FEM system
matrix at the central frequency point sc.

2) Compute the eigenvectors associated with the
eigenvalues from the frequency band of interest
using shift-and-invert transformation (e.g., with the
Implicitly Restarted Arnoldi or Lanczos method [36]),
with the shift set to the center frequency.

3) Form the singular part of the projection basis QE from
the eigenmodes.

4) Using the factors obtained in step 1, generate the 0-th
block moment to form the regular part of projection
basis QM .

5) While the maximum value of the error estimator is above
the assumed threshold, repeat: using the factors obtained
in step 1, uplift the regular part of projection basis QM

with the new block moment.
As noted, the method requires just one symbolic and numerical
factorization of the original FEM system matrix to generate
both parts of the projection basis. This strategy is efficient
even for wide-frequency bands of interest, as shown in
the numerical examples considered in Section VI. However,
in case single-point moment matching approaches (such
as SAPOR) fail to converge, multi-point moment-matching
techniques (such as [15], [37]) can be of help.

B. Extension to lossy dielectrics

The proposed SSMM-MOR approach can be used to
perform a fast frequency sweep of lossless problems, where the
FEM system matrices Γ and C are real symmetric. In order to
apply this method to problems which include lossy dielectrics
(with complex permittivity and permeability), the formulas
for the decoupled impedance function have to be properly
updated, since system matrices in these cases are complex
symmetric (non-Hermitian). To this end, C-orthogonality
with respect to the pseudoinner product (without complex
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conjugate) has to be used. For such problems, we define the
following eigenproblem, where the superscript l refers to lossy
cases:

ΓlQl
E = ClQl

EΛl, (37)

where Λl and Ql
E are the eigenvalues and corresponding

eigenvectors, respectively. Taking into account the
C-orthogonality on the basis of the pseudoinner product
of the vectors in both parts of the projection basis Ql

E and
Ql

M , normalization of the vectors, as well as the symmetry
Γ = ΓT , we get:

Cl
E = (Ql

E)TClQl
E = I,

Γl
E = (Ql

E)TΓlQl
E = Λl,

(Ql
M )TClQl

E = 0,

(Ql
E)TClQl

M = 0,

(Ql
M )TΓlQl

E = 0,

(Ql
E)TΓlQl

M = 0,

Γl
M = (Ql

M )TΓlQl
M ,

Cl
M = (Ql

M )TClQl
M = I, (38)

and we finally obtain the formula for the decoupled impedance
matrix Zl

R(s), for which the SSMM-MOR approach can be
utilized, similarly as in the lossless case:

Zl
R(s) =sBH

E (Λl + s2I)−1BE+

sBH
M (ΓM + s2I)−1BM .

(39)

C. Limitations of the SSMM-MOR technique

In order to be able to take advantage of the projection
subspace splitting, we have to use the orthogonality property.
This implies that we have to restrict FEM formation to cases
where the system matrices are frequency-independent. This
means that SSMM-MOR is not suitable for FEM simulations
with PML or dispersive materials (e.g., ferrites).

Also, we can only deal with problems that lead to both
constant and second-order frequency terms in FEM equations.
More complicated forms, for which other terms occur, emerge
when first-order radiation boundary condition or conductivity
losses are considered. For these kind of problems, the system
poles are the eigenvalues of a polynomial eigenproblem or, in
the more general case, a rather nonlinear eigenproblem. While
there are numerical techniques that can find these eigenpairs
[38], the orthogonality of the eigenvectors is lost. This is a
serious limitation as orthogonality is essential for splitting and
separating the regular part of the impedance matrix transfer
function from the singular one.

Alternatively, radiation or scattering problems can be
analyzed using the proposed SSMM-MOR technique with
spherical mode expansion [39]. This obviously imposes some
limitations on the type of open structures that can be
treated. Note that other techniques in which eigenfunction
expansion is used—such as resonant mode expansion
(RME), boundary integral resonant mode expansion (BI-RME)
[40], [41], finite-integration technique (FIT) with two-step
Lanczos reduction [42], and CRBM [22]—all possess similar

Fig. 5: Folded filter: ROM system matrices with
C-orthonormalization.

limitations. Additional ports or approximate formulas can also
be considered, as postulated in [43].

VI. NUMERICAL RESULTS

In this section, SSMM-MOR is used to perform a fast
frequency sweep and compute the scattering parameters of
four structures. All tests were implemented in a Matlab
environment or C++ code using an Intel i5-7400 processor
and 64GB RAM. Intel MKL PARDISO [27] was used to
solve large systems of linear equations. The error tolerance
was taken as 1e-4 in all cases. The reference scattering and
impedance matrices were computed using full-order model
(equations: (4) and (5), respectively).

A. Folded waveguide filter

In the first test, we used the method to analyze a folded filter,
as considered in previous sections. It was first analyzed using
the original FEM formulation [29] with 359,202 unknowns in
the 12–24 GHz band, at 2001 points. In order to accurately
model the structure, all the modes excited in the band of
interest have been considered, giving nm = 10 (five modes
for each port). The results are presented in Fig. 1.

Next, the reduction scheme described in this paper was
applied. In order to approximate the singular part of the
impedance function, we generated a projection basis QE

composed of the 51 eigenvectors associated with the resonant
frequencies in the 12–24 GHz band. To approximate the
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Fig. 6: The error between the original regular part of the
impedance and the reduced part as a function of the number
of block moments in the projection basis, where q indicates
the number of block moments.
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Fig. 7: Maximum value of the actual error as a function of
the number of vectors in the projection basis for the folded
waveguide filter.

regular space, the projection basis QM , consisting of just
eight block moments, has been computed using the procedures
described in section V. The error estimator serves as stopping
criterion. Since we have enforced C-orthogonalization of
the regular and singular part of the projection basis Q =
[QE QM ], we obtain the decoupled reduced matrices Γd

R and
Cd

R, which is consistent with the theory provided in equations
(19)–(30), and can be seen in Fig. 5. Fig. 4 shows the plots
of the original, regular, and singular parts of the impedance.
Fig. 6 shows the error between the original regular part of
the impedance and the reduced part, as a function of the
number of block moments in the projection basis. It can be
seen that the error drops significantly with the reduction order.
The final plot in Fig. 7 shows the maximum value of the
actual error as a function of the size of the projection basis.
In this case, 131 vectors sufficed to obtain the reduced-order
model that accurately approximates the original model over
the whole frequency band. Finally, we have performed the
fast-frequency sweep using traditional SAPOR. It can be seen
that, in this case, as many as 170 vectors are needed to generate
the reduced model with an accuracy below 1e−4, as shown in
the results described in Section III. Table I summarizes these
results of SAPOR and SSMM-MOR.

B. H-plane filter

The second test deals with a H-plane filter based on the
WR-75 waveguide [44]. The goal of the simulation was to
compute the scattering parameters of the structure in the
12–24 GHz band at 401 equidistantly located points, with
eight modes excited at each of the ports. Firstly, the original
FEM model with 162,200 unknowns was generated, and the
reference scattering characteristics were computed. In order
to accurately model the structure, all the modes excited in the
band of interest have been considered, giving nm = 16 (eight
modes for each port). The results are presented in Fig. 8.

TABLE I: Analysis results for the folded waveguide filter,
nm = 10

Algorithm SAPOR SSMM-MOR
No. of eigenvectors - 51
No. of moments 17 8
Total basis size 170 131
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Fig. 8: Scattering parameters of H-plane filter.

Next, SSMM-MOR was used to perform the fast frequency
sweep. Solving for the eigenvectors, the 75 eigenresonances
were found in the specified band. In order to uplift the
projection basis, eight block moments were generated to
approximate the regular subspace.

The plot of the singular impedance component associated
with the fundamental port mode (wave mode with the lowest
cutoff frequency) is shown in Fig. 9; it can be observed that it
is highly nonlinear. On the other hand, the regular impedance
component is smooth, as expected. We obtained ROM with a
size if 203, where the traditional SAPOR approach needed as
many as 288 vectors to achieve the same level of estimated
error; this is shown in Fig. 9.

C. Eighth-order dual mode waveguide filter

In the third test, we analyzed an eighth-order dual mode
waveguide filter [45], considering the 11–19 GHz frequency
band with 201 equidistant points. In the first simulation, the
scattering parameters of the filter were obtained using the
original FEM model with 202,474 unknowns. All the modes
excited in the band of interest have been considered, resulting
in nm = 16 (8 modes for each port). The results, as well as
the geometry of the filter, are presented in Fig. 10.
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Fig. 9: H-plane filter: reference impedance plot, singular
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number of vectors in the projection basis for SSMM-MOR
and SAPOR.
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Fig. 10: Scattering parameters of a dual mode filter.
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Fig. 11: Eighth-order dual mode filter: reference impedance
plot, singular impedance component, regular impedance
component, and maximum value of the actual error as a
function of the number of vectors in the projection basis for
SSMM-MOR and SAPOR.

In the next step, the proposed reduction scheme was applied.
In order to approximate the singular subspace, 55 eigenvectors
associated with poles in the specified frequency band were
computed; the regular part of the projection basis consists of 8
block moments. Thus, the size of the entire basis is 183, while
the traditional SAPOR approach needed 272 vectors to achieve
the same level of error. A comparison of the two methods,
along with the reference impedance plot, singular impedance
component, and regular impedance component as a function
of frequency, is shown in Fig. 11.

D. Dielectric resonator bandpass filter

The last test dealt with a lossy structure: a dielectric
resonator filter [46] analyzed at 201 frequency points in the
4–12 GHz frequency band. The filter contains dielectric rings
with εr = 38 and a dielectric loss tangent of 1e-3. The
reference characteristics were obtained using the model with
219,326 unknowns. The scattering parameters, as well as the
geometry of the filter, are presented in Fig. 12.

Since the structure contains a lossy dielectric material,
the formulas provided in Section V-B have to be utilized
in order to construct the projection basis. The singular
subspace consists of 101 eigenvectors, while the regular part
is constructed with 14 block moments. Thus, the size of the
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Fig. 12: Scattering parameters and geometry of dielectric
resonator filter.
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Fig. 13: Dielectric resonator filter: reference impedance
plot, singular impedance component, regular impedance
component, and the maximum value of the actual error as
a function of the number of vectors in the projection basis for
SSMM-MOR and SAPOR.

whole basis is 129, whereas the traditional SAPOR approach
needed 176 vectors to achieve the same level of estimated
error. A comparison of both SAPOR and SSMM-MOR
methods, along with the reference impedance plot, singular
impedance component, and regular impedance component as
a function of frequency, is shown in Fig. 13.

E. The size of the reduced-order models

In the last test, we would like to compare the size of
the reduced-order models obtained by means of the proposed
SSMM-MOR method, with other MOR techniques, namely:
RBM, SAPOR, CRBM and RGM-MOR [15]. It is assumed
that the accuracy of all ROMs is the same – the maximum
value of estimated error is below 1e-4. Table II summarizes
the results. It can be seen that for all the cases considered,
CRBM allows one to generate the most compact ROM. The
size of ROMs obtained by means of SSMM-MOR is slightly
larger (less than 20%).

F. Runtime comparison

In the last numerical test we would like to characterize the
efficiency of the proposed approach, compared to other MOR
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TABLE II: The size of reduced-order models generated using
RBM, SAPOR, SSMM-MOR, CRBM, RGM-MOR

Algorithm Case A Case B Case C Case D
RBM 160 256 224 120

SAPOR 170 288 272 176
SSMM-MOR 131 203 183 129

CRBM 111 171 151 115
RGM-MOR 190 400 304 150

TABLE III: Runtimes of RBM, SAPOR, SSMM-MOR,
CRBM, RGM-MOR

A B C A2 B2 C2
RBM 138.9s 107.6s 76.4s 14.7s 5.7s 10.5s

SAPOR 132.7s 179.8s 144.8s 8.9s 3.6s 5.5s
SSMM-MOR 121.1s 76.1s 64.9s 11.7s 4.9s 7.7s

CRBM 126.9s 84.5s 69.6s 13.9s 4.9s 10.8s
RGM-MOR 91.5s 189.7s 104.5s 8.9s 3.6s 5.3s

methods: CRBM, RBM, SAPOR and RGM-MOR. All these
methods comprise algorithmic steps such as: factorization,
solution of FEM system of equations, projection of the FEM
matrices onto a subspace spanned by the projection basis, error
estimation and orthogonalization of the projection basis. The
computational complexity depends not only on FEM degrees
of freedom n but also on the number of frequency points nf ,
the number of vectors in projection basis v and the number
of RHS (right-hand side) vectors nm. Moreover, factorization,
solution and projection involve operations performed on sparse
matrices. Sparse matrix solution kernels are difficult to be
characterized in terms of numerical complexity as this heavily
depends on the number of nonzero elements and sparsity
pattern, among others. Therefore, instead of comparing the
computational complexity, we compare runtimes of five MOR
techniques for selected simulation scenarios using C++ code.
To this end, we consider six cases: A, B, C (which have
been analyzed in previous numerical tests) and A2, B2, C2,
which are the same as A, B, C, with the only difference being
the frequency band of interest (14-15GHz, 12.5-13.5GHz, and
11-13GHz, respectively).

The results are shown in Table III, where the shortest and
the longest runtimes are denoted using bold and underline,
respectively. It can be seen that for narrow frequency-band
simulations (A2, B2, C2), moment-matching techniques
(SAPOR and RGM-MOR) are the fastest, whereas methods
which require a few FEM system matrix factorizations (RBM
and CRBM) are less efficient. However, for the wideband
simulations, the answer to the question: which MOR method is
the most efficient? is not straightforward. The computational
time of MOR algorithms depends not only on factors
highlighted above, but also on other parameters such as the
width of the frequency band, the number of times and the
number of frequency points at which the error estimate is
evaluated, the computing platform (processor, the number
of threads, memory bandwidth), MOR accuracy, geometry
of the structures, etc. However, what is apparent is that
for wideband analysis, despite requiring only one single
factorization, SAPOR seems to perform poorly. RGM-MOR is
the fastest for case A, however, for cases B and C it is much

slower, comparing to SSMM, CRBM and RBM. SSMM-MOR
wins in cases B and C, and comes out second in case A. It also
performs reasonable well in the narrowband tests. In all six
tests the runtimes for SSMM-MOR are better than for RBM
and CRBM (with the exception of a draw between CRBM
and SSMM-MOR for case B2). So, while it is not always
an optimal choice, SSMM-MOR certainly offers a significant
speedup over SAPOR for multiport wideband analysis and
decent performance for narrowband problems.

G. Computing Eigenvectors

In our implementation of CRBM and SSMM-MOR we
use Arnoldi/Lanczos method (ARPACK library) in the shift
and invert mode. The eigenvectors are computed iteratively.
Each iteration requires the solution of the system of FEM
equations. This is done using the factors obtained in the
numerical factorization. The number of iterations depends
on the number of eigenvectors required, the frequency band
considered in the simulation, the number of variables, the
geometry of a structure, etc. It is not easy to provide a
general formula for the number of floating point operations
of the symbolic and numerical factorizations, as well as the
solve stage. In the previous section we provided runtimes for
the complete process. In Table IV we give the number of
numerical factorizations and solve operations used to generate
the projection basis for each of the MOR algorithms. We
consider two cases: narrowband and wideband analysis (A2
and A). The numbers in round brackets denote the number of
solve operations used to compute the eigenvectors.

TABLE IV: Number of factorizations and solutions in CRBM
and SSMM.

Fact. Solve Fact. Solve
Algorithm Case A (10 RHS) Case A2 (10 RHS)

RBM 16 160 6 12
SAPOR 1 170 1 16

SSMM-MOR 1 182 (102) 1 26 (16)
CRBM 6 162 (102) 3 22 (16)
RGM 3 190 1 16

VII. CONCLUSIONS

This paper has proposed a novel model-order reduction
approach for efficient wide frequency band FEM simulation of
microwave components. This approach generates a projection
basis composed of the eigenmodes hit in the frequency band
of analysis and the subsequent block moments of the original
system. This allows the system transfer function to be split
into a singular and regular part. The regular part is then
approximated by a few block moments, while the singular
part is found by projecting the system matrices onto a space
spanned by the eigenvectors corresponding to the poles located
within the frequency band of interest. The results show that
this method is a cost-effective alternative to state-of-the-art
MOR techniques, especially when the time needed to factorize
the FEM system matrix becomes dominant.

One restriction of the method proposed in this paper is that
the two subspaces need to be orthogonal in the energy sense
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(or strictly speaking, the pseudoenergy sense). In practical
terms this means that either the structure is lossless or the
loss can be expressed in terms of a frequency-independent
(but possibly complex) permittivity or permeability.
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