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Abstract: Properties of state observers depend on proper gains selection. Each method of state
estimation may require the implementation of specific techniques of finding those gains. The aim of
this study is to propose a universal method of automatic gains selection and perform its verification
on an induction machine speed observer. The method utilizes a genetic algorithm with fitness
function which is directly based on the impulse response of the observer. System identification using
least-squares estimation is implemented to determine the dynamic properties of the observer based
on the estimation error signal. The influence of sampling time as well as signal length on the system
identification has been studied. The results of gains selection using the proposed method have been
compared with results obtained using the approach based on the placement of the poles of linearized
estimation error equations. The introduced method delivers results comparable with analytical
methods and does not require prior preparation specific to the implemented speed observer, such
as linearization.

Keywords: induction machine; speed observer; gains selection; system identification; genetic
algorithms; least-squares estimation

1. Introduction

The availability and low price of microcontrollers and digital signal processors caused
the rapid development of controlled electric drives [1–4]. The most commonly used electric
machines are induction machines which owe their popularity to their simplicity, reliability
and low price. Thanks to development of improved control methods [4–6] induction
machines find their application in many fields including renewable energy industry (wind
turbines, and small hydro plants), electric vehicles, elevators, etc. Most of the advanced
induction machine control systems require knowledge of hard to measure variables such
as rotor flux. In practice such measurement is avoided, and state estimation is performed
instead [7,8]. Rotor speed is another variable that does not have to be directly measured,
although equipment for speed measurement is widely available, as sensorless drives
gain popularity.

There are numerous techniques of speed estimation of induction machine electric
drives, including adaptive flux observers (AFOs), model reference adaptive systems
(MRASs) observers, and backstepping observes [7–19]. The estimation quality highly
depends on the proper gains selection of the observer. The gains selection method usually
depends on the implementation of the observer and often requires linearization of the error
equations [20–24].

The main aim of this study if to propose a universal gains selection method based
directly on the output signals of the observer. The introduced algorithm is verified on
an extended speed observer proposed in [25] as, with 12 gains to set, it is a challenging
observer to tune. The gains selection problem for this observer was resolved in [21]
by linearizing error equations and analyzing the placement of the poles of the system.
Due to complexity of the observer, such an approach required a high workload to solve
the problem.
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The automatic gains selection method proposed in this study utilizes a genetic algo-
rithm. The fitness function performs a simulation of the system, including the observer,
and based on the impulse response of the observer estimates its dynamic properties. Based
on the output signal of the observer a system identification is performed and the dynamics
of the identified system is analyzed to evaluate the gains set.

The equations of the extended speed observer [25] are introduced in Section 2 as well
as the matrix describing observer dynamics acquired by the linearization of the system
performed in [21]. Section 3 covers the description of the proposed gains selection method.
The algorithm of the dynamic properties estimation based on the observer response is
introduced in Section 4. The fitness function used in this study is very similar to the one
proposed in [21]. The objective function and its modifications are covered in Section 5. The
system identification algorithm has several parameters to tune. This problem was resolved
by performing studies presented in Section 6. This section also covers gains selection
results as well as a comparison of the proposed method with [21].

2. Extended Speed Observer of Induction Machine

The gains selection method proposed in this study was verified on an extended speed
observer of the induction machine proposed in [25]. The observer is described by three
vector differential equations:

dîs
dt = a1 îs + a2ψ̂r + ja3ζ̂ + a4us + k11ζ̃ + jk12ζ̃ + k13̃is + jk14̃is

dψ̂r
dt = a5 îs + a6ψ̂r + jζ̂ + k21ζ̃ + jk22ζ̃ + k23̃is + jk24̃is

dζ̂
dt = a5ω̂r îs + a6ζ̂ + jω̂r ζ̂ + k31ζ̃ + jk32ζ̃ + k33̃is + jk34̃is

 (1)

where denotes vector quantity,ˆdenotes estimated values,˜denotes corrective feedback, us
is stator voltage, is is stator current, ψr is rotor flux, ζ is an auxiliary variable introduced in
the extended model of the induction machine [25], ωr is rotor speed, k11–k34 are observer
gains and a1–a6 are constant coefficients that depend on machine parameters:

a1 = −RsL2
r + RrL2

m
wLr

, a2 =
RrLm

wLr
, a3 = − Lm

w
, a4 =

Lr

w
, a5 =

RrLm

Lr
, a6 = −Rr

Lr
, w = LsLr − L2

m, (2)

where Rs, Rr are stator and rotor resistances, Ls, Lr, and Lm are stator, rotor, and magnetizing
inductances, respectively.

Usually, in case of induction machine based sensorless electric drives the only mea-
sured variable is a stator current is. The corrective feedback related to this variable is
therefore a difference between estimated and real value:

ĩs = îs − is. (3)

In the case of variable ζ the corrective feedback is defined as:

ζ̃ = ζ̂ − ω̂rψ̂r. (4)

The estimated rotor speed can be obtained from estimated rotor flux and variable ζ:

ω̂r =
ψ̂rx ζ̂x + ψ̂ry ζ̂y

ψ̂2
r

, (5)

where suffixes x,y denote compounds of vectors in any reference frame and ψr is the
magnitude of the rotor flux vector.

The dynamic properties, including stability, of the observer can be obtained by analyz-
ing poles of the observer. The matrix describing dynamics of the estimation error has the
following form [21]:
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

a1 + k13 −k14 + a5
isq
ψrd

+ ωr a2 k12ωr 0 −a3 − k12

k14 − a5
isq
ψrd
−ωr a1 + k13 0 a2 − k11ωr a3 k11

a5 + k23 −k24 a6 a5
isq
ψrd

+ ωr + k22ωr 0 −1− k22

k24 a5 + k23 −(a5
isq
ψrd

+ ωr) a6 − k21ωr 1 k21

k33 + a5ωr −k34 −ωra5
isd
ψrd

k32ωr a6 + a5
isd
ψrd

−k32 + a5
isq
ψrd

k34 k33 + a5ωr −ωra5
isd
ψrd
−ω2

r −k31ωr ωr a6 + k31


(6)

where suffixes d,q denote compounds of the vectors in the rotor flux reference frame.
Eigenvalues of this matrix are be called poles of the observer in this study.

3. Optimization Algorithm

Heuristic optimization techniques are often used to solve gains selection problems,
especially when nonlinear systems are considered, due to possibility of the usage of flexible
fitness functions and lack of the requirement of knowledge of its derivative. In this study
an approach utilizing genetic algorithms is used, though other methods, e.g., swarm
optimization, can be applied.

The general algorithm of gains selection is shown in Figure 1. The real coded genetic
algorithm is used, and the population is formed of individuals where each represents a set
of gains K:

K =

 k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34

. (7)

The population is initialized with random gains k~U (kmin, kmax), where U is a uniform
random function and kmin, and kmax are minimal and maximal values of the observer
gains, respectively. The new generation is created via tournament selection, where the best
individual from a number of randomly chosen candidates becomes a parent and is added
to the mating pool. Individuals from this set take part in the mating process and offspring
are formed using a whole arithmetic crossover:

Kchild = αKa + (1− α)Kb, (8)

where Kchild is the new set, Ka and Kb are the parents and α~U (0,1). Gains of such a newly
generated set are subject to non-uniform mutation with probability pmut:

kmut =

{
k + ∆(g)(kmax − k) i f α ≥ 0.5

k− ∆(g)(k− kmin) i f α < 0.5
, (9)

where kmut is the new value, k is the original value, α~U (0,1) and ∆(g) is defined as:

∆(g) = 1− β
(1− g

gmax )
b

, (10)

where β~U (0,1), g is the number of current generation, gmax is the number of the last
generation and b is a coefficient describing how fast mutation impact fades away with
generations. The resulting gains sets form a population of the next generation.

After every new generation is created all gain sets need to be evaluated. As a result,
each individual has its score assigned what allows for comparison between solutions. In the
case of speed observers, it is important to ensure proper dynamic properties of the observer,
including stability, short settling time and sufficient damping. The placement of the poles
of the observer is a good source of information about dynamics of the system; therefore,
fitness functions used to evaluate estimation quality are often based on the placement of
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the poles of linearized error equations of the observer [24]. Such an approach requires
performing appropriate mathematical calculations specific to the analyzed observer.
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Figure 1. Gains selection algorithm.

The main aim of this study is to propose a method of gains selection of the observer
that does not require investigation of its mathematical implementation. The proposed
solution is to determine dynamic properties based on the output signal, such as rotor
flux estimation error. The block diagram of the proposed system is presented in Figure 2.
During the evaluation step of the genetic algorithm each individual (gains set) is tested
by performing a simulation. First, the observer is updated with an analyzed gains set and
then the simulation is reset. The dynamic properties cannot be determined by measuring
the steady state of the system. In order to attain the transient state an estimation error
of the rotor flux is enforced by multiplying both compounds of this vector by 0.8. The
signal, in this case module of the rotor flux error vector, is registered during the transient
state. Based on this signal a system identification is performed and poles of the observer
are estimated. The poles identification step is described in detail in Section 4. The final
score is returned by a fitness function, defined in Section 5, based on estimation errors,
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and attained placement of the poles. After the evaluation is completed, the procedure is
repeated for a new gains set.
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Figure 2. Block diagram of gains selection system.

Performing a whole simulation after reset, including transient states of induction
machine during the start-up, may significantly increase the time needed to complete the
gains selection. To speed up the gains evaluation, state variables of the machine and the
observer are saved after steady state is reached. Afterwards, this state is restored every
time a new gains set is loaded instead of performing an actual simulation reset.

4. Dynamic Properties Identification

The dynamic properties of the system can be determined by analyzing its response to
a known input signal. It is possible to solve the problem by estimating the parameters of a
linear discrete dynamic system. Such a system is described by the following equation:

y(k) + a1y(k− 1) + a2y(k− 2) + . . . + any(k− n) = b1u(k− 1) + b2u(k− 2) + . . . + bnu(k− n), (11)

where k is discrete time, y(k) is the output signal, u(k) is the input signal, n is the order of
the system, a1, a2, . . . , an, b1, b2, . . . , and bn are system parameters.

Equation (11) can be rewritten as:

y(k) =
B
(
q−1)

A(q−1)
u(k), (12)

where:
A
(

q−1
)
= 1 + a1q−1 + a2q−2 + . . . + anq−n, (13)

B
(

q−1
)
= b1q−1 + b2q−2 + . . . + bnq−n. (14)

The output of the system can be computed based on previous input and output
samples using linear regression form:

ŷ(k) = φ(k)ϑ, (15)
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where ϑ is a vector of parameters of the system:

ϑ =
[

a1 a2 . . . an b1 b2 . . . bn
]T , (16)

and φ holds previous values of the output and the input:

φ =
[
−y(k− 1) −y(k− 2) . . . −y(k− n) u(k− 1) u(k− 2) . . . u(k− n)

]
, (17)

The system identification problem can be solved by finding a parameters vector ϑ
that minimizes the distance between the vector of predictions ŷ and the vector of mea-
sured outputs y for a series of observations. A solution can be found using least-square
estimation [26]:

ϑ̂ =
(

ΦTΦ
)−1

ΦTy, (18)

where ϑ̂ is the vector of estimated parameters, y is the output vector and Φ is the regres-
sor matrix:

Φ =


−y(k− 1) −y(k− 2) . . . −y(k− n) u(k− 1) u(k− 2) . . . u(k− n)
−y(k− 2) −y(k− 3) . . . −y(k− n− 1) u(k− 2) u(k− 3) . . . u(k− n− 1)

. . . . . . . . . . . . . . . . . . . . . . . .

−y(k− ns) −y(k− 1− ns) . . . −y(k− n− ns) u(k− ns) u(k− 1− ns) . . . u(k− n− ns)

, (19)

y =
[

y(k) y(k− 1) . . . y(k− ns + 1)
]T , (20)

where ns is the number of observations.
The term

(
ΦTΦ

)−1ΦT in Equation (16) is also known as pseudoinverse or Moore–
Penrose inverse, hence the lest-square estimation can be written as:

ϑ̂ = Φ†y, (21)

where Φ† is pseudoinverse of Φ.
It is advised to compute the pseudoinverse directly instead of using Equation (18)

due to a high impact of numerical errors. An accurate solution can be obtained by using a
singular value decomposition [27]. The algorithms to compute pseudoinverse are imple-
mented in most numeric computing environments such as MATLAB, GNU Octave or in
the libraries for numerical linear algebra such as LAPACK.

After a successful system identification is performed, conclusions about dynamic
properties of the system can be drawn by analyzing the poles of the system. The poles can
be computed based on the coefficients of the denominator of the transfer function (12) by
solving equation:

A
(

q−1
)
= 0. (22)

The poles of the discrete transfer function λdisc and are transformed from z-plane
to s-plane:

λcont =
ln(λdisc)

Ts
. (23)

where Ts is the sampling time used while collecting data for system identification and
λcont are transformed poles. Such transformation allows placement of the poles analysis
and estimation of dynamic properties, such as settling time or damping. Since poles are
complex numbers, function ln(λdisc) is a complex logarithm and can be computed as:

ln(λdisc) = ln(|λdisc|) + iarg(λdisc). (24)
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5. Fitness Function

The fitness function used in this study is similar to the one presented in [21] which is
based on the placement of the poles of the observer. The minimized cost function has the
following form:

f =
n

∑
i=1

wi fi(λ), (25)

where n is the number of objectives, λ is the vector of the poles of the observer, w is the
vector of weights of the objectives and f is the vector of functions defining the objectives.
The poles of the observer are complex numbers:

λ = σλ ± iωλ, (26)

where σλ is the rate of decay and ωλ is the frequency of oscillation.
The first four objective functions are the same as in [21] and are described in detail

there. Function f 1 is used to ensure stability of the observer:

f1 =
6

∑
p=1

[
f1r(λp) + f1i(λp)

]
, (27)

where

f1r =


−ar(σλ − σmax) i f σλ ≤ σmax

0 i f σmax < σλ < σmin

ars(σλ − σmin) i f σλ ≥ σmin

, (28)

f1i =

{
0 i f |ωλ|< ωmax

ai(|ωλ|−ωmax) i f |ωλ|≥ ωmax
, (29)

where coefficients σmin, σmax, and ωmax define allowable space on the s-plane and ar, ars,
and ai define how fast the value of the cost function increases while poles move away from
this area.

Function f 2 was defined to minimize the settling time of the observer by moving the
dominant poles away to the left from the imaginary axis:

f2 = max(σλ1, σλ2, . . . , σλ6). (30)

The objective related to the function f 3 is to ensure proper damping of the observer to
eliminate oscillations in the transient state:

f3 =
6

∑
p=1

{
f3a(λp) f3b(λp) i f −<[λp] <

∣∣=[λp]
∣∣

0 i f −<[λp] ≥
∣∣=[λp]

∣∣ , (31)

where

f3a(λ) =

√
2<[λ]√

<2[λ] +=2[λ]
+ 1, (32)

f3b(λ) = e−a( <[λ]r −1), (33)

where r is the real part of the dominant pole.
Function f 4 minimizes gains values in order to decrease the influence of the stator

current measurement errors:

f4 =|k13|+|k14|+|k23|+|k24|+|k33|+|k34|. (34)

Functions f 1–f 3 are based on the placement of the poles of the observer and function f 4
depends directly on the values of the gains. In [21] values of those functions were evaluated
using the placement of the poles acquired by computing the eigenvalues of matrix (6).
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In the proposed method, it is assumed that the matrix describing the dynamics of the
observer is unknown. The placement of the poles is found using system identification
by analyzing the response of the observer what requires performing a simulation. As a
result, the signal of the real estimation error is known and can be directly used to define
the objective function. Therefore, the fitness function was updated with a new objective f 5.
Its goal is to minimize steady state error of the estimation:

f5 =
∣∣ψ̃r(tend)

∣∣, (35)

where tend is the end time of the simulation.

6. Results

The proposed gains selection method was verified for a speed observer presented in
Section 2 and the machine with parameters is described in Appendix A. The simulations
were carried out with a fixed sampling time of 10 µs. All variables, except of the time, are
expressed in per unit values.

This section covers an analysis of the system identification method including the
influence of the number of samples used during identification, the sampling time of the
signal, and the order of the identified system. After those parameters are determined, the
possibility of implementation of fitness function based on this method is verified using the
genetic algorithm to find observer gains.

6.1. Influence of the Order of the Identified System

Prior to system identification, the order of the system n must be determined, which
defines the number of the poles. The analyzed observer is described by three vector
differential equations. Each vector is defined by two compounds; therefore, each vector
represents two state variables. As a result, the order of the system is 6. It may be possible
to approximate the system with a lower order system, therefore models of the lower order
system were considered as well.

The system identification results are shown in Figure 3. The impulse response of the
observer, caused by enforcing an 80% rotor flux estimation error, is shown in Figure 3a.
Figure 3b presents poles acquired from computing eigenvalues of the matrix describing
dynamics of the linearized observer (6). Identified poles for order of the system n equal
to 6, 4 and 2 are presented in Figure 3c–e. The dynamics of the system are determined
mainly by dominant poles (poles with the highest real part) and the poles on the left side on
the complex plane have significantly less impact on the response of the system. For n = 6
(Figure 3c) the distance of the dominant pole of the identified system from the imaginary
axis is close to the distance of the dominant pole of the linearized system. It is therefore
possible to estimate a settling time of the observer based on identified poles. The rest
of the poles, further from the imaginary axis, were not approximated as accurately due
to their low impact on the output response. Such misplacement does not affect a gains
selection algorithm as the fitness function is determined mainly through the placement of
the dominant poles. In the case of n = 4 (Figure 3d) dominant poles remained at a similar
distance from the imaginary axis as for n = 6, but for n = 2 (Figure 3e) the poles moved
noticeably to the right. The settling times read from the transient response and estimated
from placements of the poles using formula (36) are shown in Table 1.

tsettling ≈ 3T = 3
1
σ

, (36)

where σ is a real part of the dominant pole.
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Table 1. Comparison of settling times for observer gains ensuring damped transient response read
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Transient
Response

Linearized
System

Identified
System n = 6

Identified
System n = 4

Identified
System n = 2

7.2 ms 6.5 ms 7.0 ms 5.6 ms 14.5 ms

It can be concluded from the flux error signal that observer gains ensure damped
response. In case of poles calculated from linearized equations and poles of identified
systems for n = 6, dominant poles are real poles that confirm the expected lack of oscillations
in transient response. In the case of n = 4, dominant poles have a nonzero imaginary part
but the ratio of the real to imaginary part is big enough to expect a damped system. The
conclusions about system dynamics drawn from placement of the poles of identified
systems for n = 6 and n = 4 are close to the real properties of the system read from the
transient response.

Similar studies have been performed for an underdamped system (observer with
gains Kosc presented in Appendix B) with a longer settling time as shown in Figure 4 and
Table 2. In this case, the conclusions drawn from the placement of the dominant poles
of identified systems for n = 6 and n = 4 describe the dynamics of the transient response
properly, as previously, while for n = 2 the settling time is significantly longer. For that
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reason, it is advised to avoid using a low order system for identification in this application.
The system of order equal to the order of the system of equations of the observer, in this
case n = 6, as well as the reduced order of n = 4 yield sufficient results.
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Table 2. Comparison of settling times for observer gains providing underdamped transient response
read from the output signal and placement of the poles.

Transient
Response

Linearized
System

Identified
System n = 6

Identified
System n = 4

Identified
System n = 2

19.9 ms 17.4 ms 17.6 ms 18.3 ms 21.5 ms

6.2. Influence of the Number of Samples on System Identification

The influence of the length of the signal used for system identification is presented in
Figure 5. The study was performed for order of the system n = 6 and constant sampling
time Ts = 150 µs. Results for three signal lengths are discussed:

• A total of 3.75 ms (25 samples): period shorter than settling time not covering
steady state;

• A total of 15 ms (100 samples): period longer than settling time that covers transient
and steady state;

• A total of 75 ms (500 samples): period significantly longer than settling time.
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Figure 5. Signal length influence on observer dynamics identification: (a) impulse response of the system, (b) poles of the
linearized system, (c) poles of an identified system based on signal length of 3.75 ms (25 samples), (d) poles of an identified
system based on signal length of 15 ms (100 samples), (e) poles of an identified system based on signal length of 75 ms
(500 samples).

The signal covering the incomplete system response results in the poles of the iden-
tified system on the right side of the complex plane (Figure 5c) falsely suggesting its
instability. In case of sample numbers high enough to cover both the transient and steady
state, the system dynamics are properly identified, and results are reasonable even for very
long signals where over 85% of the signal covers the steady state (Figure 5e).

For the purpose of gains selection using the proposed fitness function, it is safe to
assume a high number of samples for system identification as a high share of steady state
in the signal does not have a high impact on the results while the signal containing an
incomplete transient state leads to wrong conclusions. On the other hand, gathering too
many samples increases the time needed to complete gains selection. The genetic algorithm
may evaluate fitness function thousands of times before the final gains set is found. Each
fitness function call requires performing a simulation of the whole system in order to obtain
the response signal used by the identification algorithm. Since the time needed to perform
the simulation dominates the time of the fitness function evaluation, the gains selection
algorithm is approximately proportional to the number of samples used for identification.
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6.3. Influence of Sampling Period on System Identification

The results of the identification algorithm may be affected by the sampling period of
the input signal. The influence of the sampling period is shown in Figure 6. The study was
performed with a constant signal length of 15 ms and the order of identified system n = 6.
The analyzed cases are Ts = 20 µs (750 samples), Ts = 150 µs (100 samples) and Ts = 500 µs
(30 samples). For the sampling periods 150 µs (Figure 6d) and 500 µs (Figure 6e), it is
possible to estimate the dynamics of the system based on the identified dominant poles.
In case of short a sampling time (Figure 6c) one of the poles is on the right side of the
complex plane that wrongly indicates instability. Reducing the sampling period too much
may therefore make the identification algorithm to fail. Using the least-squares estimation
to identify the system, it is required to gather the number of samples covering the transient
state higher than the multiplicity of the order of the system [26]; therefore, the maximum
sampling period is constrained by the shortest expected settling time of the observer.
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This study was repeated for the reduced order of the system n = 4. The results are
shown in Figure 7. In this case there is no falsely unstable identification, even for the low
sampling period. Since conclusions concerning the dynamic properties of the system based
on the placement of the dominant poles are valid, it may be advised to use a reduced order
of the identified system.
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6.4. Gains Selection

During the gains selection the order n = 4 of the system used for identification of the
dynamics of the observer was assumed as this is the lowest value that yields adequate
results. The expected settling time for an induction machine speed observer with properly
tuned gains is in range of a few milliseconds. The length of the signal processed by the
identification algorithm was therefore defined as 50 ms to fully cover the anticipated
solutions but also to be short enough to complete the gains selection in a reasonable
time. The sampling period of that signal is 500 µs; therefore, it consists of 100 samples.
The remaining parameters of the genetic algorithm and fitness function are presented in
Appendix C.

A part of simulation results during the 1st and 10th generation of gains selection is
shown in Figure 8. The impulse responses can be clearly seen for every newly evaluated
gains sets. Some of the solutions yield a damped response with the settling time of few
milliseconds while others deliver oscillations in an estimation error signal or even indicate
instability. With higher generations the number of stable solutions increases. As it can be
seen, in the 1st generation none of the gains sets yield stable observers while in the 10th
generation unstable results do not appear that often.
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As proposed in this study, the method was compared with the results acquired using
the fitness function based only on the placement of the poles computed from linearized
equations of the observer (6) which was described in detail in [21]. The convergence of the
genetic algorithm for the two methods is presented in Figure 9.
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Figure 9. Score of the best individual in function of generation number during gains selection
using genetic algorithms for: (a) fitness function based on linearized equations, (b) universal fitness
function proposed in this study.

The final gains sets found in one of the gains selection attempts for both methods are
presented in Appendix D. The comparison of the dynamics of the solutions is shown in
Figure 10. Both methods yield similar results with a damped response and settling time of
8 ms for fitness function based on linearized equations and 5 ms for the universal method
proposed in this study.
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error does not exceed 0.5% of the nominal speed, even in a field weaking region. 

Figure 10. Impulse response of the observer with gains found using: (a) method with fitness function
based on linearized equations, (b) universal method described in this study.

The results presenting the performance of the observer in a wide speed range (up to
double the nominal speed) are shown in Figure 11. The square wave load torque signal was
applied as a disturbance in order to enforce transient states of the observer in the whole
speed range. In case of gains set found using fitness function presented in [21] the impact
of the load torque change is higher and results in higher estimation errors than in case of
the gains set acquired using method proposed in the current study. It may be caused by
a faster response of the observer using the second gains set (as seen in Figure 10). In the
case of the gains acquired using the new method, the rotor speed estimation error does not
exceed 0.5% of the nominal speed, even in a field weaking region.
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The time needed to find observer gains using the proposed method is 13 min, com-
pared with 10 s using method described in [21] where the placement of the poles is
calculated from the matrix (6). In both cases the same number of generations and the same
population size were applied. The significantly longer time needed for completing the
gains selection in the case of the first method is caused by the necessity of performing a
simulation for every individual while performing a genetic algorithm.

7. Discussion

The studies presented in this study confirm that the proposed method can be success-
fully applied to find gains of the speed observer. The presented fitness function evaluated
by genetic algorithm is based only on the simulated output signal of the observer that
ensures the versatility of the method as no knowledge of observer implementation nor
prior preparation (such as linearization) is required. The system identification algorithm is
used in order to estimate dynamic properties of the observer.

Least-squares estimation was used as an identification algorithm. In order to perform
this algorithm three parameters must be defined: order of the system, sampling period,
and length of the signal used for the identification. As presented in the study, the studies
show that proper conclusions regarding the dynamics of the system can be drawn with
a minimum system order of n = 4. Higher order systems increase the time needed for
computation and tend to fail in the case of a low sampling period (high number of samples).
The length of the signal used for identification should be high enough to cover the full
transient state of the response as well as a part of the steady state. It is safe to assume that
longer signals as steady state signal do not affect the results much, but signals that cover
only the beginning of the transient state may lead to the wrong conclusions, and even
falsely suggest instability. The sampling time should be short enough to ensure that the
transient state includes at least n (order of the system) samples, preferably few times the
order of the system.

Results show that the proposed fitness function copes well with the gains selection
problem and the final solution yields similar properties as the solution found using the
fitness function based on the analytical approach using the linearization of the observer. The
main advantage of the proposed method is the lack of the need of analytical preparation,
e.g., linearization. For the analyzed observer to find the linearized state matrix required
for computing 36 partial derivatives of relatively complex equations and latter verification
is a time-consuming task. Another advantage of the proposed method is the possibility
of implementing quality indices based on a real system response, such as steady state
estimation error, or estimation error at the end of simulation in case the steady state was
not reached, e.g., due to instability. The linearized system is only an approximation, and it
is possible that the conclusions drawn from the placement of eigenvalues of the linearized
state matrix may be far from reality or the system may be reaching an equilibrium point
that does not provide zero estimation errors. The proposed fitness function is immune to
such conditions.

The main disadvantage of the method introduced in this study is that the length of
time needed to complete the gains selection is about 80 times longer than the method
based on the linearized system. The extra time needed to find the solution is caused by
performing multiple simulations of the system. The algorithm completes within 13 min
(on current personal computers) which is a reasonable period and makes up for the time
needed to linearize the equations and verify the results that can be hours of work for
qualified staff.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Appendix A

Table A1. Induction machine parameters.

Quantity Symbol Value

Nominal power Pn 5.5 kW
Nominal stator voltage Un 400 V
Nominal stator current In 11 A
Nominal rotor speed nn 1450 rpm
Nominal frequency fn 50 Hz

Stator resistance Rs 0.04870 p.u.
Rotor resistance Rr 0.02613 p.u.

Magnetizing inductance Lm 2.135 p.u.
Stator inductance Ls 2.224 p.u.
Rotor inductance Lr 2.224 p.u.

Appendix B

Table A2. Gains of the observer for system identification verification: Kdamped—damped response,
Kosc—underdamped response.

Gain Kdamped Kosc

k11 0.889978 2.239366
k12 5.938047 4.351908
k13 −6.506142 −3.005483
k14 1.193272 −3.282595
k21 0.389094 −3.643251
k22 −0.479801 0.313742
k23 −0.540533 3.917985
k24 −5.833852 −5.087842
k3 −6.970160 −7.118944
k32 −1.094788 2.276198
k33 −4.333440 −3.276865
k34 −4.045299 −6.515297

Appendix C

Table A3. Parameters of genetic algorithm.

Parameter Value

Population size 500
Max. number of generations gmax 25

Crossover probability 0.5
Mutation probability 0.2
Min. gains value kmin −10
Max. gains value kmax 10

Table A4. Parameters of the fitness function.

Parameter Value

σmax −12
σmin −0.001
ωmax 12

ar 10
ars 1000
ai 10
a 1
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Appendix D. Final Observer Gains

Table A5. Final gains of the observer obtained using method described in [21] (Klin) and obtained
using method proposed in this study (Kident).

Gain Klin Kident

k11 0.889978 2.239366
k12 5.938047 4.351908
k13 −6.506142 −3.005483
k14 1.193272 −3.282595
k21 0.389094 0.162513
k22 −0.479801 0.313742
k23 −0.540533 3.917985
k24 −5.833852 −5.087842
k3 −6.970160 −7.118944
k32 −1.094788 2.276198
k33 −4.333440 −3.276865
k34 −4.045299 −6.515297

References
1. Michna, M.; Kutt, F.; Sienkiewicz, Ł.; Ryndzionek, R.; Kostro, G.; Karkosiński, D.; Grochowski, B. Mechanical-level hardware-in-
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