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Abstract: A new trend in recent years for hydrographic measurement in water bodies is the use
of unmanned surface vehicles (USVs). In the process of navigation by USVs, it is particularly
important to control position precisely on the measuring profile. Precise navigation with respect to
the measuring profile avoids registration of redundant data and thus saves time and survey costs.
This article addresses the issue of precise navigation of the hydrographic unit on the measuring profile
with the use of a nonlinear adaptive autopilot. The results of experiments concerning hydrographic
measurements performed in real conditions using an USV are discussed.
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1. Introduction

The importance of hydrographic measurement in recent years has been growing constantly due to
the increasing use of water transport, including movements in restricted areas. A particular challenge is
shallow-water measurements near land or navigational obstacles where the use of larger hydrographic
units is impracticable or not justified economically. An important aspect in this respect is the desire to
shift loads from roads and motorways to waterways, which, by definition, are safer and transport is
more ecologically friendly and economical.

The process of conducting hydrographic measurements in land-restricted waterways requires
precise acquisition of the measurement profile, and a limit to the acquisition of redundant data on the
measurement strip tabs in the case of multi-beam echosounder (MBES) measurements and excessive
gaps between measurement profiles in the case of single-beam sonar measurements. The International
Hydrographic Organization (IHO) does not define the accuracy of maintaining the measuring unit
on the profile, but only determines the percentage of searching the bottom of the reservoir and the
accuracy of determining the position of the measuring unit. For instance, in the case of the most
restrictive special category, 100% coverage and an accuracy of 2 m with respect to determination of
position with a 95% confidence level is required [1].

Traditionally, for manned hydrographic units, the helmsman follows the position of the unit
on the profile on the monitor screen of the measurement system, adjusting the parameters of the
unit’s movement to the current weather conditions. Many measurement systems used throughout the
world provide the helmsman with an indicator which shows the current distance from the planned
measurement profile. Continuous tracking of the position of the measuring unit on the profile requires
a high degree of concentration and an appropriate response from the helmsman; this is a tedious and
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challenging task. It requires a relatively frequent change of the watch in the case of the helmsman
controlling the hydrographic unit.

A disadvantage of manual control is also the quite low accuracy of maintaining the measuring unit
on the profile and a moment of inattention or distraction may result in deviation from the measuring
profile thus requiring repetition of registration on the incorrectly registered profile. For this reason,
significant amounts of redundant data are recorded, which hamper the processing of the measurement
data. The issue of achieving precise control of the measurement profile on a hydrographic unit can be
solved by using an unmanned surface vehicle (USV) with an adaptive autopilot which realizes precise
control of both course and speed.

Generally, unmanned mobile platforms, including surface, aerial, and ground vehicles have been
increasingly employed for numerous operations. Currently, the unmanned platforms are widely
used around the world, giving rise to many new research opportunities. In this context, various
control schemes have been also developed to perform predefined tasks. Unmanned surface vessels
suffer from many uncertainties and unknown external disturbances like winds, waves, currents,
etc., which inevitably lead to a very challenging task [2] like accurate trajectory tracking within this
complex navigation environment [3]. Due to this, various advanced control techniques and schemes
for surface vehicles have been developed, and the following groups can be highlighted: backstepping
technique [4–7], chaos control approach [8–10], fuzzy control [2,3,11,12], neural control [13–18],
and finite-time control [19–21].

This paper considers the problems of precise control of the measurement profile on a hydrographic
unit using a nonlinear adaptive autopilot originally designed for unmanned aerial vehicles. The results
of experiments carried out under real conditions are presented.

2. Trajectory Tracking

Precise tracking of the trajectory during maneuvering is very important, especially for an
autonomous multi-purpose water platform [22,23] engaged in hydrographic survey missions of
restricted access areas like ports, embankments, anchorages, bays and lakes, and rivers. Generally,
in such areas, maneuvering requires execution of precise, previously planned track information.
Additionally, in any difficult navigational situation such as caused by recreational boats and other
traffic, precise execution of the planned or preplanned track becomes crucial.

The evaluated track following method, termed guidance logic, was designed originally for aerial
applications [24] and unmanned aerial vehicles (UAVs) and was successfully implemented in many UAV
applications [24–26]. This approach is also used by small unmanned surface vessels [27–29]; however,
the platforms applied in that research are significantly smaller than the platform used in the present work.
Studies on autonomous navigation algorithms and navigation strategies have been reported [30–32]
while interesting studies for an adaptive system for steering strategy are available [33–35]. Aspects on
the safety of vehicle navigation have been discussed [36–38] while actual problems concerning control
of trajectory tracking for marine vehicles have also been reported [2–21,39,40].

An outline of the steps and the computer programing methods used for trajectory tracking is
given in Figure 1. Implementation follows that of a previous study [41] and where the mission control
module is similar to a system described elsewhere [22].
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The update method uses, in order, the following methods: 
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that the vehicle should achieve (destination). 

• NLG controller—the method where the navigation process is implemented. The method, based 

on destination and vehicle origin, calculates the lateral acceleration.  

• Steering LA—the method, based on the PID (proportional–integral–derivative) controller, 

calculates the steering output.  

• Set Steering—the method converts the steering output to the appropriate navigation controller 

output signal. The output signal (PWM: Pulse-Width Modulation) is the electrical signal 

interpreted by the electric motor’s controller and the rudder’s linear actuator controller. 

All the methods enumerated above participate in trajectory tracking and have been tuned 

separately during the platform development and validation process. 
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Name: update method:
• Call: Steering WP
        Input: Mission Plan
        Output: destination
• Call: nonlinear guidance logic (NGL) controller
        Input: origin, destination
        Result: lateral acceleration
• Run: Steering LA (input: lateral acceleration)

Name: SteeringLA
• Call: Attitude Control (PID) 
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Figure 1. Trajectory tracking algorithm scheme.

This algorithm requires a frequency of 50 Hz (method name: update), meaning that the update
method is used 50 times per second. The method is activated only in automatic mode, meaning that
only the automatic modes Auto, Guided, Return to Dock (RTD), and Smart RTD use this method. The
automatic modes make use of all navigation sensors, and valid sensors readings are compulsory for
automatic mode activation. Any missing sensors’ data are unable to activate this function. Moreover,
the Auto mode requires a programmed route (route plan), the RTD mode requires a dock (home)
position and a saved travelled route to perform smart RTD, and the Guided mode requires a desired
point location. All data are provided in the form of geographical waypoints (WPs).

The update method uses, in order, the following methods:

• Steering WP—the basic route plan and vehicle destination. The method provides the location that
the vehicle should achieve (destination).

• NLG controller—the method where the navigation process is implemented. The method, based
on destination and vehicle origin, calculates the lateral acceleration.

• Steering LA—the method, based on the PID (proportional–integral–derivative) controller,
calculates the steering output.

• Set Steering—the method converts the steering output to the appropriate navigation controller
output signal. The output signal (PWM: Pulse-Width Modulation) is the electrical signal interpreted
by the electric motor’s controller and the rudder’s linear actuator controller.

All the methods enumerated above participate in trajectory tracking and have been tuned
separately during the platform development and validation process.

The guidance logic [24] selects the desired point on the planned trajectory and generates a lateral
acceleration (as) using this point, in accordance with following formula:

as = 2
V2

L1
sin η (1)
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where the desired point is on the planned track at distance L1 from the actual origin of the vehicle
(Figure 2). Knowing that:

L1 = 2R sin η (2)

where the lateral acceleration calculated by Equation (1) equals the centripetal acceleration required to
follow instantaneously a circular segment and as is the property used to track a circle of any radius R.
This characteristic predisposes the guidance logic to work faithfully with a curved path. Moreover, as
shown elsewhere [24], the method shows better capabilities than the PID controller when used on the
UAV in the presence of wind. In this research, the method will be examined on the unmanned surface
vessel (USV) using state-of-the-art geodetic grade measurements. The reference position of the USV
was measured using independently acquired GPS navigation data (GPS RTK (Real Time Kinematic)
geodetic receiver).Sensors 2020, 20, x FOR PEER REVIEW 4 of 16 
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Figure 2. Guidance logic trajectory tracking.

The original Equations (1) and (2) were modified [41] for USV navigation purposes.
The implementation required the addition of two parameters (L1 Damping Factor and L1 Period).
Therefore, for the new L1:

L1t =
1
π
ζTv (3)

ζ is the L1 Damping Factor, T is the L1 Period (s), and v is the speed of the unit. Finally, substituting
Equation (3) into Equation (1) can be written as:

ast =
k v2

L1t
sin(η1 − η2) (4)

where k is the L1 Control Gain, defined as:

k = 4ζ2 (5)

The cross-track error (XTE), corresponding to l⊥ on Figure 3 and defined as a distance between
actual USV position perpendicular to the intended (desired) track, can be approximated as a second
order differential equation [42]:

..
d + 2ζωn

.
d +ω2

nd = 0 (6)
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where the natural frequency ωn (natural frequency (eigenfrequency) is the frequency at which a
structure or system have the tendency to oscillate in the absence of any driving or damping forces), is
related to T:

ωn =
2π
T

(7)
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Figure 3. Guidance logic trajectory tracking for an unmanned surface vehicle (USV).

The dynamics of Equation (6) indicate that changing the values of ζ and ωn adjusts the control
response of XTE. The ζ and ωn values are specified by the user and, for this research, were adjusted
experimentally after long and extensive trials.

The parameter tuning requires some user experience regarding the USV’s parameters and the
response observations during the trials. As a general rule for tuning, the following instructions are
given. The L1 period T is given in seconds with a range from 1 to 60 (increments of 1) for the L1 tracking
loop and is the primary control parameter for aggressive turns in auto mode (Figure 1). This parameter
should be larger for less responsive USV platforms. For smaller and more maneuverable USVs a lesser
value can be set. The starting value was adjusted experimentally as 20 s. The L1 control damping ratio
ζ with range from 0.6 to 1 (increments of 0.05) should be increased if the USV overshoots the track
being followed.

Significant changes made to the original Equation (1) enable the length L1 to be calculated
dynamically by the navigation loop depending on the USV ground speed changes and enable the user
to specify a constant period for the tracking loop.

The L1 Control Gain was changed from a fixed value of 2 (Equation (1)) to be calculated based on
the ζ value set by the user. This enables additional damping to be specified to compensate for delays
in the velocity measurement and for the USV frame to respond.

Figure 4 presents all possible tracking movements. The current tracking mode depends on the
area where the USV is located in relation to the route plan. Figure 4 presents a simple survey plan
based on 6 WPs. When the vehicle is located in USV1, the first WP is acknowledged to be tracked
and vehicle i proceeds to point A. The point is considered to be reached when the unit is within the
WPRadius parameter. The WPRadius is the distance in meters from a WP when the algorithm considers
the WP has been reached and determines when the unit will proceed to the next WP. After reaching the
first WP, the unit starts the L1 tracking mode (positions USV2, USV4). In the L1 tracking mode a point
L is tracked and this point is dynamically located on the line between the last and next WP. The L point
is the intersection point between the track line and the circle with the radius equal to the distance L1

defined by the user. When point B is reached the next WP (C) is acknowledged to be tracked (Next WP
Tracking Area). The procedure is repeated until the unit reaches the last WP when it stops and waits
for the next command, either from the operator or the autonomous system.
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Figure 4. Tracking areas for USV hydrographic survey using L1 controller.

The L1 method calculates the lateral acceleration to be executed by the unit. The L1 acceleration is
translated to the motors and the steer command using the Steering LA and Motor Control methods
(Figure 1). The Steering LA method is based on a PID controller. The automatic (mission control)
algorithms, according to research [25] were demonstrated to control speed and course of the surface
vessel. The PID controller continuously attempts to minimize the error e(t) over time by adjustment
of a control variable u(t). The error value function e(t) is the difference between a desired set point
r(t) and the measured process variable y(t) (e(t) = r(t) − y(t)). Process variable is represented by
the value that is being controlled (e.g., actual speed or actual course). The PID controller can be
expressed as:

u(t) = Kpe(t) +
1
Ti

t∫
0

e(t)dt + Td
de(t)

dt
(8)

where Kp, Ki, and Kd are non-negative and denote the coefficients for the proportional, integral,
and derivative terms, respectively. The parameters were set experimentally during test trials. The PID
desired and the PID achieved were monitored and displayed and the coefficients can be adjusted to
achieve the appropriate object response and parameter (course and speed) stabilization.

3. System Specification

The steering system specification for the unit (Table 1) is based on a combination of skid steering
and a traditional rudder (Figure 5).

Table 1. USV technical specification.

Specification Data

Dimensions (L ×W × H) 4230 × 2080 × 1390 mm
Draft 500 mm
Weight 360 kg

Power supply 48 V 200 Ah lithium iron phosphate battery (LiFePO4) (16 cells) for
propulsion, 24 V lead-acid battery for electronics

Endurance 12 h (cruise speed)
Motors 2 × Torqeedo Cruise 4.0
Remote control range 40 km
Telemetry data range 50 km
Payload data range 6 km
Max speed 14 knots
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USV HydroDron during experiments (b).

Skid-Steering is a type of vehicle steering where rotation (yaw) is obtained by a difference in the
speeds of the left and right propellers (wheel) and is typical for vehicles with non-orientable propellers
(wheels). Electric motors installed on the platform and situated in the right hull are turned using a
linear actuator, therefore, maneuverability is enhanced, and the unit is more responsive to steering,
when compared to steering using only pure skid steering. Additionally, this USV uses pivot turns
when the angle of turn is greater than a specific angle (can be set in the Pivot Turn Angle parameter).
The pivot turn angle was selected as a result of extensive trials and was equal to 45◦.

The USV is equipped with an autopilot and the navigation position is calculated based on the
autopilot’s internal sensors: three magnetic compasses (nine MEMS magnetometers), an inertial
navigation system (INS) based on simple MEMS (microelectromechanical system) sensors consisting of
nine gyroscopes and nine accelerometers (compasses and INS embedded in autopilot) and an external
GNSS receiver based on an UBlox M8N module. In that configuration, the USV position is calculated
using an EKF (extended Kalman filter). The EKF is a 24-state extended Kalman filter and the autopilot’s
filter estimates the following states: altitude, velocity, position, gyro bias offsets, gyro scale factors,
Z accel. bias, Earth’s magnetic field, platform body magnetic field, and wind velocity. For calculations
in this study, the navigation autopilot used the EKF output position, which means that this was not a
pure GPS reading, but filtered and estimated based on other internal sensors. Only one GNSS module
based on the UBlox M8N module was used (Table 2).

Table 2. Navigation GPS specification.

Parameter Name Specification

Channels 72

Signal tracking:

GPS: L1C/A
SBAS: L1C/A
QZSS: L1C/A

GLONASS: L1OF
BeiDou: B1

Galileo: E1B/C2

Horizontal position accuracy 1 GPS and GLONAS: 2.5 m
SBAS: 2.0 m

Velocity accuracy 2 0.05 m/s

True heading accuracy 2 0.3◦

Operating limits
Altitude: 50,000 m
Velocity: 500 m/s
Acceleration: 4 g

Time to first fix Cold start: <26 s
Warm start: <1 s

Max output frequency 5 Hz
1 CEP, 50%, 24 h static, −130 dBm, >6 SVs; 2 50% at 30 m/s.
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The GPS RTK module readings are not used for navigation; the module is part of the hydrographic
equipment and additionally, the acquired RTK readings were used as a reference and as an independent
USV position registration. The GPS RTK receiver specifications are given in Table 3. The GPS RTK used
for position registration was a state-of-the-art survey grade receiver, embedded in the SPLITBOX-STD-T
hydrographic equipment and based on the Trimble GNSS receiver.

Table 3. GPS RTK specification.

Parameter Name Specification

Channels 220

Signal tracking

GPS: L1 C/A, L2E, L2C, L5
GLONASS: L1 C/A, L2 C/A, L2 P, L3 CDMA

Galileo: 1 BOC, E5A, E5B, E5AltBOC
Beidou B1, B2
SBAS, QZSS

L-Band OmniSTAR VBS, HP, XP

Horizontal position accuracy
(1 sigma)

SBAS/DGPS: 0.5 m/0.25 m
PPP: 10 cm

RTK: 0.8 cm + 1 ppm

Velocity accuracy 0.7 cm/s RMS

True heading accuracy 0.09 ◦ at 2 m baseline
0.05 ◦ at 1 0m baseline

Operating limits
Altitude: 18,000 m
Velocity: 515 m/s
Acceleration: 11 g

Time to first fix Cold start: <45 s
Warm start: <30 s

Signal reacquisition L1/L2/L5: <2.0 s

Max output frequency 50 Hz

4. Experiments

The experiments were divided into three phases. Phase one was data acquisition. In this phase
three different patterns were planned and executed. The patterns were planned to represent typical
hydrographic surveys based on the present unit (Pattern 1) (Figure 6) and the bottom object investigation
plan (Patterns 2 and 3) (Figure 6). All the profiles were numbered in accordance with their execution
order. Profiles 1 to 10 belong to pattern no. 1, profiles from 11 to 14 belong to pattern no. 2, and
profiles from 15 to 19 belong to pattern no. 3. All data were recorded within their typical hardware
configuration, meaning that no additional technical rearrangements of the unit were conducted. The
unit in this configuration was prepared to undertake surveys based on best knowledge and practice
including use of state-of-the-art hydrographic equipment, therefore, all equipment was calibrated, and
all GNSS and INS equipment offsets were measured, and data entered into all hardware units.

Phase two of the experiment concerned logged data filtration and preparation and evaluation
of navigation GPS accuracy in the dynamic measurements. To prepare for this evaluation, studies
described elsewhere [1] were used.

The approach used the PL-2000 system (ETRS89/Poland CS2000 zone 6) which afforded the
replacement of angular coordinates recorded by the GPS and RTK by Cartesian coordinates (in meters).
This conversion (from angular GPS coordinates to Cartesian) allowed the calculations to be simplified
and the results to be presented in meters. The PL-2000 coordinate system is Cartesian 2D coordinate
system with northing (x) and easting (y) axes with orientations fixed to north, east, and units of
measurement in meters.
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4.1. Data Synchronization

Navigation GPS maximal output frequency was declared as 5 Hz, which means that the GPS
position (pGPS) was reported a maximum of five times per second (Figure 7a). To compare both the
registered tracks, i.e., RTK and GPS, the data rate for both RTK and GPS should be the same (Figure 7b).
However, the RTK system reported position (pRTK) with a maximum of 50 points every second and in
fact both systems registered tracks at different rates.Sensors 2020, 20, x FOR PEER REVIEW 10 of 16 
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in our data set. This means that the interpolation function goes through the given data points. Given 

a new x∗, we can interpolate its function value using ŷ(𝑥 ∗) [43]. In the present study, a linear 
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Figure 7. Recorded GPS and RTK tracks (a) different frequency (b) interpolated GPS positions.

To align the track rates a linear interpolation was applied to the lower rate track, i.e., the GPS
track. All GPS positions (pGPS) were interpolated with the maximum number of points equal to that
for the RTK (pRTK).

Assuming a data set consisting of independent data values xi and dependent data values yi, where
x = 1, . . . , n, we can find an interpolation function ŷ(x) such that ŷ(xi) = yi for every point in our data
set. This means that the interpolation function goes through the given data points. Given a new x∗, we
can interpolate its function value using ŷ(x∗) [43]. In the present study, a linear interpolation was used.

The estimated positions are assumed to lie on the line joining the nearest registered positions of
the estimated track with nGPS registered positions. It is assumed, without loss of generality, that the

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Sensors 2020, 20, 832 10 of 16

GPS coordinates transformed to PL-2000 (XG and YG) are in ascending order, then new interpolated
position coordinates X̂Gi and ŶGi are calculated according to:

X̂Gi = XGi +

(
XGi+1 −XGi

)
(nR − nG)

(nG+1 − nG)
(9)

ŶGi = YGi +

(
YGi+1 −YGi

)
(nR − nG)

(nG+1 − nG)
(10)

where: nR represents the RTK measurement number, that is, nR = 1, . . . , nRTK, nG represents the GPS
measurement number, that is, nG = 1, 1 + r, . . . , nGPS, where r is a RTK to GPS measurement ratio
calculated according to the following equation:

r =
nRTK

nGPS
(11)

An example of a result for the GPS position interpolation is presented in Figure 6. In every case
the number of GPS measurements was increased and equals the number of RTK measurements.

4.2. System Offsets

The position of the unit for navigation purposes is taken from the navigation GPS placed on the
top of the mast located in the geometric center of the USV. The GPS antenna location is determined by
experience and typical recommendations for unmanned units; that is, the best place for navigations
system is the geometric center of the unit and at the highest possible place to diminish interference
with board electronics and ensure best satellite visibility. These actions were taken in the present study.

For the hydrographic equipment, this consisted of a multi beam echosounder (MBES), a precise
SGB IMU, and an RTK receiver. The best practice for that equipment localization is that the IMU
sensors and the MBES antenna should be as close as possible, if not, all offsets should be entered
into the system. In that case, the offsets represent coordinates in the local unit coordinate system
of all hydrographic equipment including the GPS, the RTK antennas, and the IMU unit, where the
IMU sensor is the coordinate system origin with the Y axis parallel to the unit long axis of symmetry
(Figure 8). The hydrographic equipment is calibrated, and offsets are entered into the hydrographic
system in accordance with values presented in Table 4. This means that the GPS RTK position was
already reported with offsets by the hydrographic system at the origin.
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∗  are the antenna coordinates of the GPS receiver in the national plane rectangular 

coordinate system, 𝑑x𝐺, 𝑑y𝐺  are the antenna offset values of the GPS antenna unit on the vehicle 

coordinate system, defined at the center of IMU(RTK) unit with the y axis being parallel to the unit 

symmetry axis, and the x axis being perpendicular to the y axis, and HDG is the vessel’s actual course 

reported by the hydrographic system (Figure 9). 

 

Figure 9. Example of corrected position for GPS at profile no. 10 (black dots). 

  

Figure 8. Measurement equipment location on the unit (a) and local unit coordinate system (b).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Sensors 2020, 20, 832 11 of 16

Table 4. Navigation equipment offsets.

dy dx dH |COGA1| |COGS1| Remarks

GPS −1.22 0.16 0.89
16.402

For Equations (12) and (13)
Origin 0 0 0

15.186Antenna RTK 1 −1.22 −0.64 0.89 In hydrographic system
Antenna RTK 2 −1.22 0.96 0.89 In hydrographic system

Given that the system navigation GPS is working out of the hydrographic system and for proper
evaluation a vector between the RTK and GPS readings has to be included. The corrected GPS position
was calculated from already interpolated GPS positions according to the following formula:

X̂
∗

Gi
= X̂Gi −

(
dxG cos(HDGi) − dyG sin(HDGi

)
) (12)

Ŷ
∗

Gi
= ŶGi − (dxG sin(HDGi) + dyG cos(HDGi) (13)

where X̂
∗

Gi
, Ŷ
∗

Gi
are the antenna coordinates of the GPS receiver in the national plane rectangular

coordinate system, dxG, dyG are the antenna offset values of the GPS antenna unit on the vehicle
coordinate system, defined at the center of IMU(RTK) unit with the y axis being parallel to the unit
symmetry axis, and the x axis being perpendicular to the y axis, and HDG is the vessel’s actual course
reported by the hydrographic system (Figure 9).
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4.3. GPS Evaluation

Having obtained all data at an equal rate, with the same coordinate system (PL-2000) and corrected
the coordinates using antenna offsets, the navigation GPS accuracy may be calculated. Initially a
Euclidean distance between the navigation GPS interpolated position (p̂GPS) and the RTK referenced
position was calculated, in accordance with following equation:

d
(
pGPS, pRTK

)
=

nR =nRTK∑
nR=1

√(
p̂GPSnR

− pRTKnR

)2
(14)

Consequently, the dynamic navigation GPS accuracy was calculated in accordance with formula
in [44].
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4.4. Cross Track Error

The cross track error (XTE) is defined as the distance between the planned sounding profile
(planned USV track) and the actual unit position. The sounding profiles are represented by a line
connecting two defined WPs. Figure 3 presents the XTE, which equals l⊥. Assuming that the sounding
profile is defined by two waypoints WPi

(
XWi , YWi

)
and the next waypoint WPi+1

(
XWi+1 , YWi+1

)
, and

the actual unit position is an interpolated GPS position with coordinates p̂GPSnR

(
X̂Gi , ŶGi

)
at the

measurement number nR, then the actual XTE can be calculated in accordance with the following
formula:

XTEnR =

∣∣∣∣(YWi+1 −YWi

)
X̂Gi −

(
XWi+1 −XWi

)
ŶGi + XWi+1YWi −YWi+1XWi

∣∣∣∣√(
YWi+1 −YWi

)2
+

(
XWi+1 −XWi

)2
(15)

5. Results

The final results represent the calculation process outlined above. Each profile was calculated
separately. Table 5 is a graphical example of the results for three representative profiles, np. 2, 6,
and 10. The coordinates difference graph represents differences for the X and Y coordinates between
the RTK and GPS registered positions along the selected profile. The Euclidean distance represents
the results of Equation (14) along selected profiles in meters. The XTE represents the cross track error
along selected profiles as a result of applying Equation (15).

Table 5. Graphical results for example profiles no. 2, 6, and 10.

Coordinate Differences Euclidean Distance XTE
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Table 6. Results for all profiles.
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13 0.1403 0.2244 0.2646 0.5293 0.2177 0.4528 0.3474
14 0.0591 0.1475 0.1589 0.3177 0.1245 0.2590 0.2315
15 0.2188 0.4595 0.5089 1.0179 0.4074 0.8475 0.3826
16 0.7284 0.2069 0.7572 1.5145 0.5362 1.1153 0.3218
17 0.5927 0.3553 0.6910 1.3821 0.5522 1.1486 1.5335
18 0.1795 0.3014 0.3508 0.7016 0.2874 0.5977 1.1249
19 0.1899 0.5650 0.5961 1.1922 0.4567 0.9499 0.4945

Table 7. Mean accuracy results for USV configuration.

σx σy DRMS 2DRMS CEP R95 Mean Unit XTE

Mean 0.2170 0.2166 0.3226 0.6452 0.2558 0.5321 0.3058

6. Discussion

Nonlinear guidance, originally designed for UAV trajectory tracking, has been adopted and used
for USV trajectory tracking. This method allows us to keep a low XTE during all sounding profiles’
tracking; more importantly, the USV course changes that keep to the track are very gentle, and do
not cause significant disturbances in hydrographic measurements. The trajectory tracking and the
USV response for the calculated course inputs depend on the correct PID tuning. As stated above,
PID tuning was carried out during extensive field tests. The configuration employed did not show
any oscillations, the course changes although robust were gentle, allowing us to keep track within
specified limits for the unit to weather conditions and wind direction. The correct PID tuning is very
important for course and track keeping. As mentioned elsewhere [28], the USV used in this research
showed a regular oscillation for track following, caused by not having ideal PID tuning, and this can
significantly affect the unit’s endurance and the quality of hydrographic measurement.

The position registered by the navigation GPS is not used directly by the USV for navigation.
The pure GPS position readings are filtered using EKF and the final navigation position is calculated
using all data available to the autopilot internal sensors. This technique is used widely within the
robotics community to estimate a robot’s position. Consequently, the position used for navigation,
as the results show, has good accuracy. The profile planned by the hydrographers, was followed
based on GPS position. If we take into account the antenna position (in the center of the unit) and the
offsets between the GPS antenna and the multibeam sonar (main hydrographic sensor) this causes
quite significant differences between the real unit track and the sonar antenna track. The displacement
differs and depends on the wind speed and direction. Practically, the profile is registered by the RTK
system with offsets, therefore, from the hydrographic point of view, all data are registered correctly,
however this difference can be diminished.
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7. Conclusions

As the results show, the accuracy of trajectory tracking based on nonlinear guidance logic is
suitable for hydrographic USV profile tracking, and the presented unit configuration permits very
precise track following with a mean XTE of around 30 cm. This is a very good result, if we compare
this performance with a traditional manned hydrographic vessel. In the authors’ opinion, trajectory
tracking based on nonlinear guidance logic for hydrographic measurements can be implemented on a
wide variety of USVs providing correct nonlinear guidance logic and PID parameters.

The difference between the track realized by the unit and the real sonar track can be significant
and depends on wind speed and direction. This difference can be diminished using either software
offsets or antenna physical displacement. The other approach is to use the RTK signal directly for
navigation during the hydrographic survey.
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