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a b s t r a c t 

We consider identification of sparse linear systems with a mix of static and time-varying parameters. 

Such systems are typical in underwater acoustics (UWA), for instance, in applications requiring identi- 

fication of the acoustic channel, such as UWA communications, navigation and continuous-wave sonar. 

The recently proposed fast local basis function (fLBF) algorithm provides high performance when identi- 

fying time-varying systems. In this paper, we further improve the performance of the fLBF algorithm by 

exploiting properties of the system. Specifically, we propose an adaptive time-invariance test to identify 

whether a particular system tap is static or time-varying and exploit this knowledge for choosing the 

number of basis functions. We also propose a regularization scheme that exploits the system sparsity 

and an adaptive technique for estimating the regularization parameter. Finally, a debiasing technique is 

proposed to reduce an inherent bias of fLBF estimates. The high performance of the fLBF algorithm with 

the proposed techniques is demonstrated in scenarios of UWA communications, using numerical and real 

experiments. 

© 2022 The Authors. Published by Elsevier B.V. 
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. Introduction 

There are many applications that require accurate estimation 

f parameters of time-varying linear systems with only a part of 

he parameters being time-varying. Such applications are typical 

n underwater acoustics (UWA) and include UWA communications, 

avigation, and sonar applications, which deal with estimation of 

he UWA channel often modelled as a time-varying linear sys- 

em [1–3] . The UWA channel is characterised by multipath prop- 

gation and often is described as a finite impulse response (FIR) 

lter, whose parameters are varying in time due to the Doppler ef- 

ect caused by the moving transmitter, receiver and/or the sea sur- 

ace [4] . The Doppler effect is known to be different for different 

ropagation paths [5] . 

In an UWA communication system, after correction of the dom- 

nant Doppler effect in the received signal, the signal paths not in- 
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eracting with the sea surface will typically be almost static (di- 

ect path and bottom reflections), whereas the sea surface reflec- 

ions will be fast time-varying [6] . In addition, there will be re- 

ections from objects that may appear/disappear or change their 

peed in the vicinity of the transducer (fish, vessel, etc.). Therefore, 

he channel contains a mix of static and time-varying multipaths. 

Our special attention will be payed to full-duplex (FD) UWA 

ommunications [7,8] , where the transceiver simlultaneously trans- 

its and receives signal in the same frequency bandwidth. In FD 

WA systems, apart from the weak signal from the far-end user, 

he near-end reciever will receive a strong self-interference (SI) 

rom the near-end transmitter within the same transceiver. To al- 

ow FD operation, the SI signal should be accurately recovered and 

emoved from the received signal. This requires high-precision SI 

hannel estimates. The SI channel may include reflections from the 

ea surface; even if the SI sea-surface signal components are of a 

ow power (tens of decibels lower than the signal components due 

o the line-of-sight propagation), they still need to be estimated 

ith a high precision to achieve a level of SI cancellation required 

or the FD operation (at least 60 dB). Therefore, the channel esti- 

ation should deal with a mix of static and time-varying param- 

ters. In this paper, we show how this property of linear systems 

an be exploited to improve the identification performance. 
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For identifying time-varying systems, adaptive filters are widely 

sed [9,10] . Classical least-mean square and affine projection adap- 

ive filters have slow convergence. A faster convergence is provided 

y the classical recursive least squares (RLS) based algorithms. Al- 

hough they are of high complexity when directly implemented, 

heir fast versions are also available [10,11] . Sparse RLS adaptive 

lgorithms [12–14] are widely used for estimating UWA channels, 

hus exploiting the fact that most of the channel coefficients are 

lose to zero. The Time-Updated RL S (TU-RL S) algorithm is consid- 

red as the state-of-the-art algorithm for time-varying UWA chan- 

el estimation as it takes into account both the delay and Doppler 

pread [15] , i.e., the fact that propagation paths may have differ- 

nt speed of variation in time. However, the RLS algorithms might 

till be limited in their tracking performance due to the predictive 

causal) nature: for their operation, only current and past signal 

amples are used. There are multiple applications, such as UWA 

pplications discussed above, which allow the use of interpolating 

non-causal) adaptive filters. For example, in communications, it is 

ormally accepted that there exists a delay (latency) in the channel 

stimation. In such scenarios, non-causal estimators are preferable 

ince they can provide a better tracking performance, which is es- 

ential for fast-varying channels. 

The local basis function (LBF) principle [16–19] exploits the 

on-causality and thus can provide a high identification accuracy 

hen estimating (tracking) parameters of nonstationary systems 

channels). However, LBF adaptive algorithms are very complicated. 

he fast LBF (fLBF) approach has recently been proposed to reduce 

he complexity [17,18] . The fLBF approach divides the estimation 

rocedure in two steps: preestimation and postfiltering. This al- 

ows dealing with the regressors and basis functions separately at 

hese two steps, respectively, thus reducing the complexity. The es- 

ential feature of the preestimator is that it provides an unbiased 

stimate, although with a high variance. The preestimator based on 

he exponentially weighted least squares (EWLS) algorithm with 

nverse filtering provides approximately unbiased estimates and it 

llows a high performance of fLBF algorithms [17,18] . 

As we discussed above, there are scenarios where only some 

f the system parameters (channel taps) are time-varying, whereas 

he others are static. We will be focusing on these scenarios. 

herefore, we re-formulate the LBF estimation problem taking this 

odel into account. We call the corresponding estimators oracle 

e.g., oracle fLBF estimator) since they exploit the perfect knowl- 

dge of the time-varying or time-invariant nature of the estimated 

arameters. In practice, such knowledge is not available, therefore 

n adaptive algorithm is proposed to identify the static or time- 

arying nature of parameters based on counting sign changes in 

he appropriately centered preestimates; this simple for implemen- 

ation algorithm shows remarkably good performance. In order to 

urther improve the fLBF performance when the system parame- 

ers are sparse, we propose a regularization scheme with adaptive 

stimation of the regularization parameter. A debiasing approach 

s further proposed to compensate for the bias introduced at the 

reestimation step of the fLBF algorithms. 

The contributions of the paper are as follows. 

1. We formulate the problem of adaptive estimation of parame- 

ters of a time-varying linear system, in which only a part of 

the parameters are time-varying, while the other parameters 

are static. 

2. An adaptive technique (statistical test) is proposed for deciding 

on each parameter if it is static or time-varying. 

3. A regularized fLBF (fRLBF) algorithm is proposed, which allows 

an improved performance when estimating sparse systems. 

4. An adaptive estimator of the optimal regularization parameter 

is proposed. 
2 
5. A debiasing technique is proposed, which significantly improves 

the performance of the fLBF algorithms. 

6. The proposed techniques are evaluated in underwater acoustic 

communication scenarios numerically and using experimental 

data. 

Part of the materials from this paper was presented at the 2022 

EEE International Conference on Acoustics, Speech and Signal Pro- 

essing (ICASSP). In addition to the techniques proposed in the 

CASSP paper (contributions 1, 2 and 5), we also propose a regu- 

arization scheme that exploits the system sparsity and an adap- 

ive technique for estimating the optimal regularization parameter, 

hich leads to the regularized fLBF algorithm (contributions 3 and 

). The debiasing procedure is applied to the regulaized fLBF esti- 

ates to further improve the identification performance. The pro- 

osed techniques are evaluated in underwater acoustic communi- 

ation scenarios numerically and using experimental data. 

The paper is organised as follows. In Section 2 , we formu- 

ate the estimation problem. Section 3 describes the LBF and 

LBF approaches in the context of the perfect knowledge of the 

ime-varying or time-invariant nature of the estimated parame- 

ers. Section 4 introduces the adaptive statistical test for deciding 

n the time variability of parameters. In Section 5 , we introduce 

he regularization scheme and consider practical issues of its im- 

lementation. Section 6 introduces the new debiasing technique. 

ection 8 presents results of numerical simulation and experimen- 

al investigation of the proposed algorithms in UWA communica- 

ion scenarios. Finally, Section 9 presents conclusions. 

Notation: We use the following notation. The symbol ∗ stands 

or complex conjugate and H - complex conjugate transpose (Her- 

itian transpose). We denote by I m 

an m × m identity matrix; 

 S = card { S} denotes the cardinality of a set S; Re {·} and Im {·} are

he real and imaginary parts of a complex number, respectively. A 

lock diagonal matrix F ( j) is denoted as bl diag { F 1 ( j) , . . . , F n ( j) } ,
here the main-diagonal blocks are vectors F 1 ( j) , . . . , F n ( j) and all 

ff-diagnaol blocks are zeros. The determinant of a matrix A is de- 

oted by | A | . 
. Problem statement 

Many nonstationary systems, such as communication channels 

terrestrial, underwater) can be well approximated by a time- 

arying FIR model of the form Stojanovic and Preisig [4] , Tsatsanis 

nd Giannakis [20] 

 (t) = 

n ∑ 

i =1 

θ ∗
i (t) u (t − i + 1) + e (t) = θH (t ) ϕ (t ) + e (t) , (1)

here t = . . . , −1 , 0 , 1 , . . . denotes discrete (normalized) time, y (t)

he complex-valued system output (a received signal in a com- 

unication system), ϕ (t) = [ u (t) , . . . , u (t − n + 1)] T the regression

ector made up of past samples of the complex-valued (transmit- 

ed) signal u (t) , θ(t) = [ θ1 (t) , . . . , θn (t)] T is the vector of system

arameters (e.g., channel taps), and e (t) denotes a measurement 

oise. The sequence { θi (t) } can be interpreted as a time-varying 

mpulse response of the channel to be estimated. 

We will assume that: 

(A1) { u (t) } are zero-mean independent and identically dis- 

tributed circular random variables with variance σ 2 
u ; 

(A2) { e (t) } is a zero-mean circular white noise, independent of 

{ u (t) } , with variance σ 2 
e ; 

(A3) { θ(t) } is a sequence independent of { u (t) } and { e (t) } . 
The LBF principle is based on the assumption that in a lo- 

al analysis interval T k (t) = [ t − k, t + k ] of length K = 2 k + 1 , cen-

ered at t , system parameters can be expressed as linear combina- 

ions of a certain number of linearly independent complex-valued 
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unctions of time f 1 ( j) , . . . , f m 

( j) , j ∈ I k = [ −k, k ] , further referred

o as basis functions. Without any loss of generality we will as- 

ume that the basis functions are orthonormal, namely by denot- 

ng f ( j) = [ f 1 ( j ) , . . . , f m 

( j )] T we have 

k ∑ 

j= −k 

f ( j) f H ( j) = I m 

. (2) 

In this paper, we adopt the complex exponential basis set of the 

orm (see Tsatsanis and Giannakis [20] , Sayeed and Aazhang [21] , 

akharov and Kodanev [22] for a physical justification of such a 

hoice) 

 f 1 ( j) , . . . , f m 

( j) , j ∈ I k } = 

{
1 √ 

K 

e i jω 1 , . . . , 
1 √ 

K 

e i jω m , j ∈ I k 

}
, (3) 

here i = 

√ −1 , ω 1 = 0 , m = 2 m 0 + 1 , and 

 2 l = −2 π l 

K 

, ω 2 l+1 = 

2 π l 

K 

, l = 1 , . . . , m 0 . 

t is straightforward to check that the basis (3) is orthonormal. We 

ill denote f 0 = f 1 ( j) = 1 / 
√ 

K , j ∈ I k . 

Unlike [16–19] , we will assume that only some of the estimated 

arameters θi (t) in (1) vary in the local analysis interval T k (t) , 

hile the remaining parameters are constant. 

Denote by S the set indicating, within � = { 1 , . . . , n } , positions

f time-invariant taps, and by S̄ = � − S the set of time-varying 

aps. Furthermore, let n S = card { S} , n S̄ = card { ̄S } , then n S + n S̄ = n ,

nd denote � = n S + mn S̄ . In the sequel we will adopt the following

ixed-mode model of local parameter variation within the interval 

 k (t) : 

i (t + j) = 

{
f 0 a i 1 (t) if i ∈ S ∑ m 

l=1 f 
∗
l 
( j) a il (t) if i ∈ S̄ 

j ∈ I k , i = 1 , . . . , n. 

(4) 

In agreement with the local estimation paradigm, estimation 

f parameter trajectories, based on the hypermodel (4) , will be 

arried out independently for each location of the analysis inter- 

al T k (t) , i.e., it will be performed in the sliding window manner.

herefore, even though system hyperparameters (expansion coeffi- 

ients) a il are assumed to be constant in the interval [ t − k, t + k ] ,

heir values are allowed to change along with the position of the 

nalysis window. For this reason they are written down as func- 

ions of t . 

The hypermodel (4) can be expressed in a more compact form 

(t + j) = F ( j) α(t) , j ∈ I k , (5) 

here α(t) is an � -dimensional vector of hyperparameters, 

α(t) = [ αT 
1 (t) , . . . , αT 

n (t)] T , 

i (t) = 

{ 

a i 1 (t) if i ∈ S 

[ a i 1 (t) , . . . , a im 

(t)] T if i ∈ S̄ 

nd F ( j) denotes the n × � matrix, 

F ( j) = bl diag { F 1 ( j) , . . . , F n ( j) } 
 i ( j) = 

{
f 0 if i ∈ S 

f H ( j) if i ∈ S̄ 

sing (5) , the system model (1) in the local analysis interval T k (t)

an be written in the form 

 (t + j) = αH (t ) ψ (t , j) + e (t + j) , j ∈ I k , (6) 

here ψ (t, j) = F H ( j ) ϕ (t + j ) denotes the generalized regression

ector. 

The LBF approach allows estimating the vector α(t) , and, con- 

equently, the vector θ(t) . 
3

. Oracle LBF and f LBF estimators 

By oracle estimation algorithms we will mean algorithms ex- 

loiting the perfect knowledge of the support sets S and S̄ . In 

ection 4 , we will propose an adaptive estimator capable of iden- 

ifying the support sets. 

The LBF estimator has the form Nied ́zwiecki and Ciołek [16] 

 

LBF (t) = arg min α

∑ k 
j= −k | y (t + j) − αH ψ (t , j) | 2 = R 

−1 (t ) r (t ) , 

 θ
LBF 

(t) = F 0 ̂  αLBF (t) , 

(7) 

here 

 (t) = 

k ∑ 

j= −k 

ψ (t, j) ψ 

H 
(t, j) , 

r (t) = 

k ∑ 

j= −k 

ψ (t, j) y ∗(t + j) , (8) 

nd F 0 = F (0) . Unfortunately, the computation of the matrix R (t) 

nd its inversion at every instant t requires a high computa- 

ional load; the direct computation may result in O(Kn 2 m 

2 ) and 

(n 3 m 

3 ) arithmetic operations, respectively. 

As shown in Nied ́zwiecki et al. [17] , 23 ], under assumptions 

A1)-(A3), the LBF estimates ̂ αLBF (t) and 

̂ θ
LBF 

(t) can be approxi- 

ated by the fLBF estimates 

 

fLBF (t) = arg min 

α

k ∑ 

j= −k 

|| ̃  θ(t + j) − F ( j ) α|| 2 = 

k ∑ 

j= −k 

F H ( j ) ̃  θ(t + j ) , 

 θ
fLBF 

(t) = F 0 ̂  αfLBF (t) , (9) 

here { ̃  θ(t) } denotes a sequence of preestimated system param- 

ters and we denote || x || 2 = x H x . The fLBF estimates can be ob-

ained in a significantly more computationally efficient way than 

he LBF estimates, thus the word ‘fast’. The preestimation step re- 

uires O(n 2 ) or O(n ) arithmetic operations per time instance if 

he classical EWLS algorithm or its fast versions are used, respec- 

ively, whereas the complexity of the postfiltering step is O(mnK) 

n general case. For the exponential basis used in this paper, the 

LBF estimates can be computed recursively using a diagonal tran- 

ition matrix [18] as 

 ( j) = �f ( j + 1) , � = diag 
{

1 , e −i ω 2 , . . . , e −i ω m 
}
, 

hich leads to the following recursive formula 

 

fLBF 
i (t + 1) 

= 

{ ̂ αi 
fLBF (t) − ˜ θi (t − k ) f 0 + ̃

 θi (t + k + 1) f 0 if i ∈ S 

�
[ ̂ αfLBF 

i (t) − ˜ θi (t − k ) f (−k ) 
] 

+ ̃

 θi (t + k + 1) f (k ) if i ∈ S̄ 

ince the matrix � is diagonal, fLBF estimates can be obtained at 

 cost of 12 mn S̄ + 4 n S real-valued multiply and accumulate (MAC) 

perations per time update. Importantly, this cost does not depend 

n the width of the analysis window K. Preestimates are raw esti- 

ates of parameter trajectories - approximately unbiased (no mat- 

er how system parameters change over time) but with a high vari- 

nce. Therefore, to obtain statistically meaningful results preesti- 

ates must be further processed (postfiltered). 

Fast LBF estimators can be rewritten in a decomposed form as 

ollows. For i ∈ S, we have 

 

fLBF 
i (t) = f 0 

k ∑ 

j= −k ̃

 θi (t + j) , 

̂ θ fLBF 
i (t) = f 0 ̂  αfLBF 

i (t) = 

1 

K 

k ∑ 

j= −k ̃

 θi (t + j) , (10) 
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1 As remarked by Geary [26] , since the sum of residuals in the interval T k (t) is - 

by construction - zero, the value q R 
i 
(t) = 0 is inadmissible. 
nd, for i ∈ S̄ , 

 

fLBF 
i (t) = 

k ∑ 

j= −k ̃

 θi (t + j) f ( j) , 

̂ θ fLBF 
i (t) = f H 0 ̂

 αfLBF 
i (t) = 

k ∑ 

j= −k 

h ( j ) ̃  θi (t + j ) , (11) 

here f 0 = f (0) and 

 ( j) = f H 0 f ( j) , j ∈ I k , (12) 

enotes the impulse response of an FIR filter associated with the 

BF estimator. 

The preestimates proposed in Nied ́zwiecki and Kłaput [24] and 

urther developed in Nied ́zwiecki et al. [17] , 23 ] can be obtained,

or every time instant t , by ‘inverse filtering’ of estimates yielded 

y the EWLS algorithm [9,10] 

 

EWLS 
(t) = arg min 

θ

t ∑ 

j=1 

λt− j | y ( j) − θ
H 
ϕ ( j) | 2 = G 

−1 (t ) g (t ) , (13)

here λ, 0 < λ < 1 , is a forgetting factor and 

 (t ) = 

t ∑ 

j=1 

λt− j ϕ ( j) ϕ 

H ( j) , 

g (t) = 

t ∑ 

j=1 

λt− j ϕ ( j) y ∗( j) . (14) 

he effective width M(t) of the exponential window can be evalu- 

ted using 

(t) = 

t ∑ 

i =1 

λt−i = λM(t − 1) + 1 (15) 

ith the initial condition M(0) = 0 . The forgetting factor λ should 

e “as small as possible”, thus keeping the EWLS estimation mem- 

ry also small, to maximize the estimation bandwidth, i.e., the 

requency range in which system parameters can be tracked suc- 

essfully. It is recommended that λ ≥ 0 . 9 since for smaller values 

f λ the EWLS algorithm may behave in an erratic way due to 

he possible poor conditioning of the exponentially weighted re- 

ression matrix G (t) . On the other hand, λ should not be “too 

mall”to guarantee that the number of system parameters is not 

reater than the steady-state equivalent number of observations 

 ∞ 

= (1 + λ) / (1 − λ) ∼= 

2 / (1 − λ) used for their estimation (differ-

nt from the effective number of observations [25] ) - otherwise 

he estimation results would be questionable from the statistical 

iewpoint. This leads to the following recommendation 

= max { 0 . 9 , 1 − 2 

n 

} . (16) 

or the numerical simulations in this paper, λ = 1 − 2 
n is used as 

he number of channel coefficients is higher than 20, which is typ- 

cal for UWA channels. 

The inverse filtering derived and analysed in Nied ́zwiecki et al. 

17] is given by 

 (t) = M(t ) ̂  θ
EWLS 

(t ) − λM(t − 1) ̂  θ
EWLS 

(t − 1) . (17) 

or large values of t , when M(t ) reaches its steady-state value 

 ∞ 

= 1 / (1 − λ) , (17) can be replaced with 

 (t) = 

1 

1 − λ

[ ̂ θ
EWLS 

( t) − λ̂ θ
EWLS 

(t − 1) 
] 
. (18) 

s shown in Nied ́zwiecki et al. [17] , when the sequence { ϕ (t) }
s (locally) stationary with exponentially decaying autocorrelation 

unction, the preestimates are approximately unbiased, i.e. 

[ ̃  θ(t)] ∼= 

θ(t) , (19) 
4 
here the expectation is over { e (t) } and { ϕ (t) } . Under assump-

ions (A1)–(A3), the preestimation noise z (t) = ̃

 θ(t) − θ(t) is ap- 

roximately white. 

. Adaptive time-invariance test 

A clear advantage of the preestimation approach is that it al- 

ows the system dynamics to be ‘X-rayed’ prior to its formal iden- 

ification. We will use this property to adaptively decide, at each 

ime instant t , which parameters can be regarded as time-invariant 

nd which are time-varying. 

To assess existence of a trend in the sequence of preestimates 

which justifies choosing m > 1 ), one can use the classical ap- 

roach based on counting the number of sign changes amongst 

esiduals [26] . When the system parameter θi (t) is constant in the 

nalysis interval T k (t) , the residual noise defined as 

 i (t + j| t) = ̃

 θi (t + j) − θ̄i (t) , j ∈ I k , (20) 

here 

ī (t) = 

1 

K 

k ∑ 

j= −k ̃

 θi (t + j) , 

s approximately equal to the preestimation noise z i (t) = ̃

 θi (t + 

j) − θi (t) , which is zero-mean and white, ε i ( • | t) denotes elements

f the residual noise vector computed at t . 

Consider the real part of the residual noise: 

 

R 
i (t + j| t) = Re { ε i (t + j| t) } . 
et 

p R i (t + j| t) = β[ ε R i (t + j − 1 | t)] β[ ε R i (t + j| t)] , 

here j ∈ [ −k + 1 , k ] , p R 
i 
(t + j| t) ∈ {−1 , 1 } and 

[ x ] = 

{
1 if x > 0 

−1 if x ≤ 0 

. 

inally, denote by 

 

R 
i (t) = card {Q 

R 
i (t) } ∈ { 1 , . . . , K − 1 } , 

here Q 

R 
i 
(t) = { j ∈ [ −k + 1 , k ] : p R 

i 
(t + j| t) = −1 } , the number of

ign changes of ε R 
i 
(·| t) observed in the analysis interval T k (t) . By

 

I 
i 
(t) we will denote the analogous count for ε I 

i 
(t + j| t) = Im { ε i (t +

j| t) } . 
For a real-valued white noise sequence, the sign change can be 

bserved on average every second sample. Hence, when the num- 

er of sign changes is smaller than some threshold, one has to as- 

ume that the parameter trajectory is not constant inside the anal- 

sis window. 

Consider the following null hypothesis: 

H 

R 
0 (t) : { ε R 

i 
(t + j| t) , j ∈ I k } is a sequence of independent random

ariables obeying the condition 

 

(
ε R i (t + j| t) > 0 

)
= P 

(
ε R i (t + j| t) ≤ 0 

)
, ∀ j ∈ I k , 

here P (·) is a probability. Note that this hypothesis is true when 

he sequence { ε R 
i 
(·| t) } is uncorrelated, zero-mean and Gaussian, 

ut the requirements are in fact much weaker. Note also, that for 

he null hypothesis H 

R 
0 
(t) to be true there is no need to assume 

hat random variables ε R 
i 
(·| t) have the same variance, or even that 

heir variance exists (is well defined). 

If the null hypothesis is true, q R 
i 
(t) is a discrete random vari- 

ble with an “almost 1 binomial” distribution characterized by the 

robability of success 0.5: 

 (q R i (t) = q |H 

R 
0 (t)) = 

(K − 1)! 

(2 

K−1 − 1) q !(K − 1 − q )! 
. (21) 
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urthermore, for any q 0 ∈ [1 , K − 1] it holds that 

 (q R i (t) ≤ q 0 |H 

R 
0 (t)) = 

q 0 ∑ 

q =1 

(K − 1)! 

(2 

K−1 − 1) q !(K − 1 − q )! 
= η0 . (22) 

he sign statistic q R 
i 
(t) can be used to verify the null hypothesis 

or a given probability of Type I error η0 : 

accept H 

R 
0 (t) if q R 

i 
(t) > q 0 

reject H 

R 
0 (t) if q R 

i 
(t) ≤ q 0 

(23) 

he exemplary thresholds evaluated for the significance level η0 = 

 . 05 are q 0 = 87 , 183 and 376 for K = 2 k + 1 = 201 , 401 and 801 ,

espectively. 

The same analysis can be carried out for the imaginary compo- 

ents of the residuals ε I 
i 
(·| t) . Combining both inferences, one ar- 

ives at the following decision rule, which can be used to deter- 

ine whether a given parameter θi (t) should be regarded as con- 

tant or time-varying in the analysis interval T k (t) : 

i (t) ∈ S(t) if q R 
i 
(t) > q 0 and q I 

i 
(t) > q 0 

i (t) ∈ S̄ (t) otherwise 
(24) 

emark 1. At each time instant t the proposed time-invariance 

est is based on the number of sign changes evaluated for the se- 

uence of residuals 

 i (t) = { ε i (t − k | t) , . . . , ε i (t + k | t) } . 
hen the parameter trajectory is already decided to be locally 

onstant and k 
 10 , one can use a simplified approach. Assuming 

hat θ̄i (t) ∼= 

θ̄i (t − 1) , one arrives at 

 i (t + j| t) ∼= 

ε i (t + j + 1 | t − 1) , j = −k, . . . , k − 1 . 

enote by κ(·) the operator which removes the first element from 

he list of arguments, namely 

[ E i (t)] = { ε i (t − k + 1 | t) , . . . , ε i (t + k | t) } , 
nd define the set of modified (approximate) residuals in the re- 

ursive form as follows. If i (t − 1) ∈ S(t − 1) , then ˜ 

 i (t) = { κ[ ̃  E i (t − 1)] , ε i (t + k | t) } . 
f i (t − 1) ∈ S̄ (t − 1) , then ˜ 

 i (t) = E i (t) , 

ith the initial condition 

˜ E i (1) = E i (1) . Since evaluation of the 

tatistics q R 
i 
(t) and q I 

i 
(t) for the modified set ˜ E i (t) can be per-

ormed recursively using the results obtained for ˜ E i (t − 1) , for large 

alues of k the computational savings can be substantial. To pre- 

ent long-term discrepancy between results based on analysis of 
 

 i (t) and those based on analysis of E i (t) , a periodic resetting is 

ecommended in the form 

˜ E i ( jt 0 ) = E i ( jt 0 ) , j = 1 , 2 , . . . where t 0 
enotes the resetting period (e.g. t 0 = k ). 

. Regularized f LBF estimators 

It is well known that the accuracy of parameter estimates can 

e improved by means of regularization. The idea is to add to the 

inimized cost function a term, called regularizer, which reduces 

 norm of the solution. Regularization allows one to reach a better 

ias-variance compromise which results in smaller mean-square 

arameter estimation errors [27] . While regularization is a well es- 

ablished technique in system identification, most of the existing 

ork in this area is focused on identification of time-invariant sys- 

ems [28] , [29] . The recently published papers [18,19] are an ex- 

eption to this rule. In [18] , where estimation is carried out for 

ime-varying systems using the LBF/fLBF approach, the L 2 regular- 

zation is applied, penalizing excess values of the squared norm of 
5 
(t) . Since the ultimate goal of identification is estimation of the 

ector of system parameters θ(t) (estimation of hyperparameters 

s only a means to achieve this goal), similar to Nied ́zwiecki et al.

19] , in this paper we will use a different strategy involving penal- 

zation of norm of θ(t) . Unlike [16] , where the main purpose of 

egularization was to impose some soft smoothness constraints on 

he estimated impulse response (which is not the case for chan- 

el identification due to the lack of correlation between taps), our 

ain goal here is to reduce the values of estimates of coefficients 

hat can be regarded as statistically insignificant. 

.1. Fast regularized LBF (fRLBF) algorithm 

In this approach, for each position of the analysis window, we 

ill penalize the weighted norm of θ(t) using the weights γi = 

 /σ 2 
i 
, σ 2 

i 
= var [ θi (t)] , which reflect the known power delay profile 

 σ 2 
i 
} , i = 1 , . . . , n , of the channel. The corresponding regularizer has

he form 

n ∑ 

i =1 

| θi (t) | 2 
σ 2 

i 

= μ|| θ(t) || 2 � = μ|| α(t) || 2 �, (25) 

here � = diag { γ1 , . . . , γn } , μ > 0 denotes the regularization pa- 

ameter, � is the � × � regularization matrix 

= F H 0 �F 0 = bl diag { �1 , . . . , �n } , (26) 

nd 

i = 

{
γi f 

2 
0 if i ∈ S 

γi f 0 f 
H 
0 if i ∈ S̄ . 

uch regularization will make the identification algorithm focus 

ore on the estimation of “large” parameters and less on estima- 

ion of “small”, potentially insignificant, ones. 

The regularized fLBF estimators can be defined as: 

 

fRLBF (t) = arg min 

α

{ k ∑ 

j= −k 

|| ̃  θ(t + j) − F ( j) α|| 2 + μ|| α|| 2 �
} 

= [ I � + μ�] −1 ̂ αfLBF (t) , 

 θ
fRLBF 

(t) = F 0 ̂  αfRLBF (t) , (27) 

eading, for i ∈ S, to 

 

fRLBF 
i (t) = 

̂ αfLBF 
i 

(t) 

1 + μγi f 
2 
0 

, 

̂ θ fRLBF 
i (t) = 

̂ θ fLBF 
i 

(t) 

1 + μγi f 
2 
0 

, (28) 

nd, for i ∈ S̄ , to 

 

fRLBF 
i (t) = [ I m 

+ μγi f 0 f 
H 
0 ] 

−1 ̂ αfLBF 
i (t) , 

̂ θ fRLBF 
i (t) = 

̂ θ fLBF 
i 

(t) 

1 + μγi f 
H 
0 

f 0 
. (29) 

.2. Optimization of the regularization parameter 

Minimization of the quadratic norm in (27) is equivalent to 

aximization of 

xp 

{ 

− 1 
σ 2 

z 

∑ k 
j= −k || ̃  θ(t + j) − F ( j) α|| 2 

} 

× exp 

{ 

− μ
σ 2 

z 
|| α|| 2 �

} 

, 

(30) 

here σ 2 
z is the variance of the preestimation noise. The expres- 

ion (30) can be given a probabilistic interpretation. Such proba- 
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ilistic embedding of the original deterministic optimization prob- 

em is usually referred to as the empirical Bayes approach [30] . 

Assuming that the preestimation noise is circular white Gaus- 

ian and cov [ z (t)] = σ 2 
z I n , the first term in (30) can be attributed

o the conditional data distribution (likelihood) 

p(�(t) | α, σ 2 
z ) = 

1 

(πσ 2 
z ) 

Kn 

×exp 

{ 

− 1 

σ 2 
z 

|| α|| 2 + 

1 

σ 2 
z 

αH ̂ αfLBF (t) + 

1 

σ 2 
z 

[ ̂  αfLBF (t)] H α − c 

} 

, 

(31) 

here �(t) = { ̃  θ(t + j) , j ∈ I k } and 

 = 

1 

σ 2 
z 

k ∑ 

j= −k 

|| ̃  θ(t + j) || 2 . 

he second term in (30) corresponds to a prior (complex singular 

aussian) distribution of α, 

( α| �, σ 2 
z , μ) = 

μ� | �| + 
(πσ 2 

z ) 
� 

exp 

{
− μ

σ 2 
z 

αH �α

}
, (32) 

here | �| + denotes the pseudodeterminant of the matrix � (the 

roduct of all nonzero eigenvalues of �): 

 �| + = 

n ∏ 

i =1 

| �i | + = 

( ∏ 

i ∈ S 
γi f 

2 
0 

) ( ∏ 

i ∈ ̄S 
γi f 

H 
0 f 0 

) 

. 

he likelihood for the unknown parameters �, σ 2 
z and μ can be 

btained from 

 ( �, σ 2 
z , μ) = 

∫ 
C � 

p(�(t) | α, σ 2 
z ) π( α| �, σ 2 

z , μ) d α. (33) 

y using the relationship (e.g., see Baronkin et al. [31] ) 
 

C � 

exp 

{ 

αH b + b 

H α − αH A 

−1 α
} 

d α = (π ) � | A | exp 

{ 

b 

H Ab 

} 

, (34) 

hich holds for any positive-definite matrix A and vector b 

f proper sizes, after replacement A = σ 2 
z (I � + μ�) −1 and b = 

 

fLBF (t) , we arrive at 

 ( �, σ 2 
z , μ) = 

(πμ) � | �| + 
(πσ 2 

z ) 
M | I � + μ�| exp 

{
−ζ (t;�, μ) 

σ 2 
z 

}
, (35) 

here M = Kn + � and 

(t;�, μ) = 

k ∑ 

j= −k 

|| ̃  θ(t + j) || 2 − [ ̂  αfLBF (t)] H [ I � + μ�] −1 ̂ αfLBF (t) 

(36) 

enotes the residual sum of squares. Good [32] referred to the 

aximization of (35) as a type II maximum likelihood (ML) 

ethod, but recently it has been more frequently referred to as 

mpirical Bayes approach [28,30] . 

Since the ML estimate of the variance σ 2 
z found from (35) is 

iven by ̂ σ 2 
z = ζ (t;�, μ) /M, the optimal value of the regulariza- 

ion parameter μ can be obtained by maximizing the concentrated 

ikelihood function L ( �, ̂  σ 2 
z , μ) , or equivalently by minimizing the 

uantity 

log L ( �, ̂  σ 2 
z , μ) = const + M log ̂  σ 2 

z − � log μ + log | I � + μ�| . 
(37) 

ote that 

 I � + μ�| = 

( ∏ 

i ∈ S 
(1 + μγi f 

2 
0 ) 

) ( ∏ 

i ∈ ̄S 
(1 + μγi f 

H 
0 f 0 ) 

) 

, 
γ

6 
hich leads to the following estimate of the optimal regularization 

arameter μ: 

̂ (t) = arg min 

μ

{ 

M log ζ (t;�, μ) − � log μ + 

∑ 

i ∈ S 
log (1 + μγi f 

2 
0 ) 

+ 

∑ 

i ∈ ̄S 
log (1 + μγi f 

H 
0 f 0 ) 

} 

. (38) 

emark 2. The regularization described in Section 5.1 is based on 

he knowledge of the power delay profile { σ 2 
i 
} for i = 1 , . . . , n . In

ractice, such information is usually unavailable. However, when 

erforming the regularization according to (28) and (29) , the fLBF 

stimates ̂ θ fLBF 
i 

(t) are available, and we can use | ̂  θ fLBF 
i 

(t) | 2 for ap- 

roximation of σ 2 
i 

. Since the regularization matrix � in (26) is now 

ata-dependent, the decision rule which parallels (38) can only be 

egarded as “pseudo-Bayesian”. 

The modified scheme described above bears some resemblance 

o the LASSO (least absolute shrinkage and selection operator) ap- 

roach [33] . The well-known property of LASSO estimators, which 

re based on the L 1 regularization, is their ability to discard 

shrink to zero) insignificant components of the estimated vec- 

or of parameters. Although the proposed fRLBF scheme does not 

hare this property with LASSO, it makes a step in this direc- 

ion - note that very small values of the estimates ̂ θ fLBF 
i 

(t) make 

he weights γi (t) = 1 / | ̂  θ fLBF 
i 

(t) | 2 in � = diag { γ1 , . . . , γn } very large,

hich shrinks the corresponding fRLBF estimates towards zero. 

emark 3. Evaluation of ζ (t;�, μ) is not computationally de- 

anding. Observe that 

(t;�, μ) = 

n ∑ 

i =1 

ζi (t;�, μ) 

nd, for i ∈ S̄ , 

i (t;�, μ) = 

k ∑ 

j= −k 

| ̃  θi (t + j) | 2 − | ̂  αfLBF 
i 

(t) | 2 
1 + μγi f 

2 
0 

, (39) 

hereas, for i ∈ S̄ , 

i (t;�, μ) = 

k ∑ 

j= −k 

| ̃  θi (t + j) | 2 − [ ̂  αfLBF 
i (t)] H [ I m 

+ μγi f 0 f 
H 
0 ] 

−1 ̂ αfLBF 
i (t) . 

(40) 

inally note that, using the matrix inversion lemma, the second 

erm on the right hand side of (40) can be rewritten in the form 

ore suitable for implementation: 

 ̂

 αfLBF 
i (t)] H [ I m 

+ μγi f 0 f 
H 
0 ] 

−1 ̂ αfLBF 
i (t) 

= [ ̂  αfLBF 
i (t)] H 

[
I m 

− μγi f 0 f 
H 
0 

1 + μγi f 
H 
0 

f 0 

]̂ αfLBF 
i ( t) 

= || ̂  αfLBF 
i (t) || 2 − μγi 

1 + μγi f 
H 
0 

f 0 
| ̂  θ fLBF 

i ( t) | 2 . (41) 

emark 4. So far we assumed that the same regularization pa- 

ameter μ is applied to all system parameters. However, with the 

reestimation, there is more freedom to choose the way the reg- 

larization is carried out. For example, if the regularization is re- 

tricted only to parameters that vary with time, i.e., to parameters 

hat belong to the set { θi (t) , i ∈ S̄ } , the optimization rule for the

egularization parameter can be easily deduced from the general 

ule, and it takes the form 

̂ (t) = arg min 

μ

{ 

M log ζ (t;�, μ) + 

∑ 

i ∈ ̄S 
log 

1 + μγi f 
H 
0 f 0 

μ

} 

, (42) 

here M = (K − m + 1) n S̄ , ζ (t;�, μ) = 

∑ 

i ∈ ̄S ζi (t;�i , μ) and �i =
i f 0 f 

H . 

0 
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Finally, we note that the regularization can also be carried out 

ndependently for each system parameter. In this case, one can 

elect γ1 = . . . = γn = 1 (since relative weighting does not apply), 

hich leads to the following decentralized optimization rule ̂ i (t) = arg min 

μ
J i (t;μ) , (43) 

here 

 i (t;μ) = 

⎧ ⎨ ⎩ 

K log ζi (t; f 2 0 , μ) + log 
1+ μ f 2 0 

μ if i ∈ S 

(K − m + 1) log ζi (t; f 0 f 
H 
0 , μ) if i ∈ S̄ 

+ log 
1+ μf H 0 f 0 

μ

(44) 

emark 5. So far we assumed that the number of basis functions 

 and the analysis window width K were set prior to identifica- 

ion. Since the choice of these parameters may have a strong in- 

uence on identification/tracking results, they should be selected 

ith caution. In general, better performance can be expected for 

arger values of m at the expense of increased decision delay (la- 

ency) k . For the UWA channels considered in this paper, we use 

 ≈ 150 m + 1 . 

The optimal values of m and K depend on the type and speed of 

arameter variations. For each analysis window location, optimiza- 

ion of m and K can be carried out using the parallel estimation 

pproach described in [15]. In this framework, several identifica- 

ion algorithms, equipped with different settings, are run concur- 

ently yielding competitive fLBF estimates. At each time instant t

he best-fitting estimate is chosen using the cross-validation de- 

ision rule proposed in [15]. The selected estimate may then be 

egularized in the way described above. 

. Debiasing 

It was observed that the estimated parameter trajectory, ob- 

ained using the fLBF approach, lags behind the true parameter 

rajectory, and that the size of this delay depends on the forget- 

ing factor λ used in the preestimation stage. This effect, which 

ecomes pronounced as λ approaches 1 (this is the case when 

he number of estimated parameters becomes large) is evidently 

aused by the estimation delay feature of the EWLS algorithm used 

o generate preestimates. As shown in Nied ́zwiecki [25] , when the 

equence { ϕ (t) } is stationary and persistently exciting, the mean 

ath of the steady-state EWLS estimates can be approximately 

iewed as an output of a linear time-invariant lowpass filter of the 

orm 

 EWLS (z −1 ) = 

1 − λ

1 − λz −1 

xcited by the process { θ(t) } . The consequence of this fact is that

hen system parameters vary slowly with time, the mean path of 

WLS estimates can be considered, to some extent, a delayed ver- 

ion of the true trajectory, i.e., 

 

[ ̂ θ
EWLS 

(t) 
] 

∼= 

θ(t − �) , 

here 

= int 

[
λ

1 − λ

]
enotes the nominal (low-frequency) delay of the filter H EWLS (z −1 ) , 

nd the expectation is taken with respect to { ϕ (t) } and { e (t) } ;
nt [ x ] denotes the integer closest to x . 

Since the time shift between 

̂ θ
EWLS 

(t) and θ(t) , which is “in- 

erited” by the fLBF scheme, depends on the frequency distribu- 

ion of { θ(t) } (usually unknown), the nominal delay � is only an 

pproximation of the true delay. Additionally, the true delay may 
7 
ary with time should the spectral content of { θ(t) } change. For 

his reason we propose a simple adaptive scheme for minimiza- 

ion of the time shift between ̂

 θ
fLBF 

(t) and θ(t) . The search will be 

arried out around �. 

Let 

 δ(t) = y (t) − [ ̂  θ
fLBF 

(t + δ)] H ϕ (t) (45) 

nd D = [� − δ0 , � + δ0 ] . Define the exponentially weighted sum 

f squares of ε δ (t) evaluated recursively for every t and every δ ∈ 

 

(t, δ) = λ0 J(t − 1 , δ) + | ε δ(t) | 2 , 0 < λ0 < 1 . 

he (approximately) debiased fLBF estimates can be obtained using 

he formula 

 

dfLBF 
(t) = ̂

 θ
fLBF 

(t + d(t)) , (46) 

here 

(t) = arg min 

δ∈ D 
J(t, δ) . (47) 

ote that time-shifting fLBF estimates by a constant amount of 

ime δ does not affect the variance of the mean-square parameter 

stimation error E[ || ̂  θ
fLBF 

(t + δ) − θ(t) || 2 ] . This means that the pro-

osed debiasing procedure can reduce the bias of fLBF estimates 

ithout increasing their variance (which, by the way, is quite un- 

sual in system identification). Hence, application of this procedure 

an only improve the MSE score of the corrected estimates. This 

ebiasing procedure can also be applied to the regularized fLBF es- 

imates to further improve the identification performance. 

. Complexity of proposed algorithms 

The complexity of the EWLS and proposed fLBF algorithms at 

very sample are summarized in Table 1 , where n d = 2 δ0 is the

umber of delays included in the delay search, n μ is the number 

f μ values considered in the range of search for the regularization 

arameter, n S̄ and n S are the cardinality of S̄ and S, respectively. For 

he numerical simulations in this work, we use the classical recur- 

ive EWLS algorithm which has a complexity of O(n 2 ) MACs. Note 

hat the EWLS algorithm can also be implemented by fast transver- 

al filtering (FTF) algorithm [9] , which offers a lower complexity of 

(n ) MACs. If the FTF algorithm is used, the complexity of the fLBF 

lgorithm will be reduced to O(mn ) MACs. 

In Section 8 , we will perform quantitative analysis and show 

he complexity in number of real-valued MAC operations for spe- 

ific UWA communication scenarios. 

. Numerical and experimental results 

In this section, we consider the following UWA communication 

xperiments: 

• Numerical full-duplex (FD) experiment; 
• Real FD experiment; 
• Two numerical experiments with communication between a 

static transmitter and a static/moving receiver. 

.1. Numerical UWA FD experiment 

Here, we investigate the mean square deviation (MSD) perfor- 

ance of the following fLBF algorithms: 

• fLBF : the original fLBF algorithm, when all taps are assumed to 

be time-varying; 
• Oracle fLBF : the fLBF algorithm as described in Section 3 , i.e., 

with perfect knowledge of taps being static or time-varying; 
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Table 1 

Complexity of the adaptive filters per sample (analytical expressions). 

Algorithm MAC Division log (·) 
EWLS 7 n 2 + 12 n 1 

fLBF 7 n 2 + 16 n + 16 mn 1 

Adaptive fLBF 7 n 2 + 16 n + 16 mn S̄ + 8 n S 1 

Adaptive fLBF with debiasing 7 n 2 + (16 + 4 n d ) n + 16 mn S̄ + 8 n S 2 

Adaptive fRLBF with debiasing 7 n 2 + (18 + 4 n d ) n + (18 m + 3) n S̄ + 13 n S + 2 n μ 2 n + 1 n μn 
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Table 2 

The best MSD performance of the EWLS, TU-RLS and fLBF algorithms in the 

numerical FD experiment. 

Algorithm MSD, dB 

m = 3 m = 5 m = 7 

EWLS −49.4 

TU-RLS −49.4 

fLBF −55.2 −55.4 −55.5 

Adaptive fLBF −57.0 −57.6 −57.9 

Oracle fLBF −57.2 −57.9 −58.2 

Table 3 

The best MSD performance of the adaptive fLBF and adaptive fRLBF algorithms 

with ‘optimal’ and adaptive regularization in the numerical FD experiment. 

Algorithm MSD, dB 

m = 3 m = 5 m = 7 

Adaptive fLBF −57.0 −57.6 −57.9 

Adaptive fRLBF (‘optimal’ μ) −57.5 −57.8 −58.1 

Adaptive fRLBF (adaptive μ) −57.5 −57.8 −58.1 
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• Adaptive fLBF : the fLBF algorithm with adaptive selection of 

static/time-varying taps as described in Section 4 ; 
• Adaptive fRLBF : regularized version of the adaptive fLBF algo- 

rithm with optimal regularization parameter μ in (28) - (29) , ob- 

tained via numerical search or with μ adaptively estimated ac- 

cording to (38) ; 
• Adaptive dfLBF and Adaptive dfRLBF (recommended) : fLBF algo- 

rithms with debiasing according to (46) , adaptive selection of 

static/time-varying taps according to (24) , and (in the case of 

the dfRLBF algorithm) adaptive tuning of μ using (38) . 

The algorithms were chosen so as to demonstrate the rate of 

mprovement provided by different components of the final (rec- 

mmended) solution, namely: adaptive selection of static/time- 

arying taps, adaptive regularization, and debiasing. Our inten- 

ion was also to show how adaptive procedures compare with the 

ground truth” based ones (known localization of static taps, opti- 

ally chosen regularization gain). The adaptive dfRLBF algorithm, 

hich combines all techniques mentioned above, constitutes the 

ain result of this paper. 

The MSD performance of the EWL S and TU-RL S algo- 

ithms [15] are used as benchmarks for comparison with the per- 

ormance of the fLBF algorithms, where the TU-RLS algorithm is 

onsidered as the state-of-the-art channel estimator in UWA com- 

unications [15,34] . 

The MSD at time instant t is defined as: 

SD (t) = 

|| ̂  θ(t) − θ(t) || 2 
|| θ( t) || 2 , (48) 

here ̂  θ(t) is an estimate of θ(t) . The MSD in (48) is then averaged

n time (in this experiment, over an interval of 50 0 0 samples, i.e., 

 s for the assumed sampling rate 1 kHz) and over 50 simulation 

rials. In every simulation trial, new realizations of the channel im- 

ulse response, noise and regressor are used. 

Fig. 1 shows the SI channel impulse response measured in the 

eal FD experiment (see Section 8.2 for details). To mimick the 

hannel impulse response in our numerical FD experiment, the SI 

hannel is modelled as follows. The SI channel length is n = 80 . It

ontains strong taps, which are slowly varying in time; these are 

eflections from stationary parts of the experimental equipment 

nd the lake bottom. It also contains fast-varying taps associated 

ith reflections from the lake surface. Based on the analysis of the 

xperimental impulse response, we defined the power delay profile 

f the SI channel as shown in Fig. 2 . Most of the channel taps are

tatic, but there are 5 taps, which are time-varying with the high- 

st frequencies in their spectra also shown in Fig. 2 . In the simu-

ation trials, the time-varying taps are modelled as realizations of 

ndependent random Gaussian processes with uniform power spec- 

ral densities within the frequencies shown in Fig. 2 . The complex 

mplitudes of the static taps are random Gaussian variables inde- 

endent for different taps. The tap variances are defined by the 

ower delay profile in Fig. 2 . In this experiment, the transmitted 

aseband signal is a sequence of independent zero-mean complex- 

alued Gaussian random numbers of a unit variance. The signal 

self-interference) to noise ratio is around 60.4 dB, the same as in 

he real experiment described in Section 8.2 . 
8 
It was found that for the FD scenario, the best MSD perfor- 

ance provided by the EWLS and TU-RLS algorithms is −49 . 4 dB, 

hich is achieved at λ = 0 . 96 and a step size of η = 10 −5 (for the

U-RLS algorithm). For preestimation in fLBF algorithms, the for- 

etting factor is λ = 1 − 2 /n = 0 . 975 in agreement with (16) . Fig. 3

hows the performance of the fLBF algorithms against the length K

f the analysis window and the number of basis functions m . 

he MSD performance of the original fLBF algorithm ( −55 . 2 dB, 

55 . 4 dB, −55 . 5 dB for m = 3 , 5 , 7 , respectively) is about 6 dB bet-

er than the performance of the EWLS and TU-RLS algorithms. Al- 

hough the performance of the original fLBF algorithm improves 

hen using a higher number of basis functions, the improvement 

s not significant. Note that a higher m requires a higher K for op- 

imal performance (for a given m , K opt ≈ 150 m + 1 ), and thus the

omplexity of the implementation increases. It can be seen that 

aking into account the fact that only a few taps are time-varying, 

he oracle fLBF algorithm outperforms the original fLBF algorithm 

y about 2 dB, 2.5 dB and 2.7 dB for m = 3 , 5 , 7 , respectively. The

daptive fLBF algorithm with the time-invariance test proposed in 

ection 4 closely approaches the performance of the oracle fLBF 

lgorithm. For the FD scenario, a high estimation accuracy is re- 

uired. Therefore, we use a relatively small significance level η0 

or the time-invariance test to reduce the possibility of identifying 

 time-varying path as a static path. It is found that η0 = 0 . 005

orks very well in this scenario. Based on this value η0 and using 

22) , the parameter q 0 is computed as shown in captions of Fig. 3 ,

s well as Figs. 4 and 5 below. It can be concluded that the adap-

ive time-invariance test works very well and the adaptive fLBF al- 

orithm significantly improves the MSD performance compared to 

he EWLS and TU-RLS algorithms (about 8.4 dB for m = 7 ). 

Fig. 4 shows the performance of the adaptive fLBF algorithm 

nd adaptive fRLBF algorithm with ‘optimal’ and adaptive regular- 

zation. The ‘optimal’ regularization scheme uses a fixed value of μ

shown in the legend of Fig. 4 ), which was found to minimise the 

SD. It can be seen that the adaptive fLBF algorithms with regular- 
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Fig. 1. Normalized amplitude (in dB) of the impulse response measured in the real FD experiment. 

Fig. 2. The power delay profile and tap highest frequencies used in the numerical FD experiment. 

Table 4 

The best MSD performance of adaptive fLBF and adaptive fRLBF algorithms with 

the debiasing in the numerical FD experiment. 

Algorithm MSD, dB 

m = 3 m = 5 m = 7 

Adaptive dfLBF −60.6 −62.4 −63.4 

Adaptive dfRLBF (adaptive μ) −62.0 −63.2 −63.9 
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Table 5 

Complexity of the adaptive filters per sample . 

Algorithm MACs 

EWLS 4 . 6 × 10 4 

fLBF and Adaptive fLBF 5 . 5 × 10 4 

Adaptive fLBF with debiasing 7 . 5 × 10 4 

Adaptive fRLBF with debiasing 7 . 6 × 10 4 
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8

a

zation (either ‘optimal’ or adaptive) provide further improvement 

f the MSD performance against the adaptive fLBF algorithm. An- 

ther conclusion is that similar MSD performance is achieved with 

oth ‘optimal’ and adaptive regularization. This demonstrates the 

ffectiveness of the proposed adaptive regularization scheme. 

We now show that the debiasing technique proposed in 

ection 6 allows significant improvement in the performance of 

he fLBF algorithms. Fig. 5 shows the MSD performance of the de- 

iased adaptive fLBF (adaptive dfLBF) and debiased adaptive fRLBF 

lgorithms (adaptive dfRLBF). By comparing these results with re- 

ults shown in Fig. 4 , it can be seen that the debiasing significantly

mproves the performance of the adaptive fLBF and adaptive fRLBF 

lgorithms (when m = 7 ) by 5.5 dB and 5.8 dB, respectively. 
9 
With the parameters used in this scenario (for m = 7 ), the com-

lexity of the proposed algorithms per sample are summarized in 

able 5 . For the algorithms with adaptive identification of static 

nd time-varying parameters, we consider the worst-case scenario 

y assuming that all the parameters in the channel are time- 

arying. It can be seen that the complexity of the (most compli- 

ated) adaptive fRLBF algorithm with debiasing is not much higher 

han that of the original fLBF algorithm. 

.2. Real UWA FD experiment 

In the real FD experiment, the true impulse response is un- 

vailable. We therefore investigate the SI cancellation (SIC) perfor- 
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Fig. 3. The MSD performance of the oracle fLBF and adaptive fLBF algorithms against the window length K and the number of basis functions m in the numerial FD 

experiment. Simulated version of channel in the FD experiment; SNR = 60 . 4 dB; λ = 0 . 975 . For the adaptive invariance test, we set q 0 = 0 . 43 K , 0 . 45 K , 0 . 46 K for m = 3 , 5 , 7 , 

respectively. The best MSD performance achieved by the aforementioned algorithms is summarized in Table 2 . 

Fig. 4. The MSD performance of the adaptive fLBF and adaptive fRLBF algorithms with ‘optimal’ and adaptive regularization in the numerical FD experiment; SNR = 60 . 4 dB; 

λ = 0 . 975 . For the adaptive invariance test, we set q 0 = 0 . 43 K , 0 . 45 K , 0 . 46 K for m = 3 , 5 , 7 , respectively. The range of search for the adaptive regularization parameter [ is 

{ 10 (−6+0 . 2 a ) , a = 0 , 1 , . . . , 10 } . The best MSD performance achieved by the adaptive fLBF algorithms with ‘optimal’ and adaptive regularization is summarized in Table 3 . 
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ance measured using the SIC factor, which shows how much the 

ignal-to-interference ratio (SIR) at the output of the SI canceller 

s reduced compared to the SIR at the input of the canceller; the 

ethodology of measuring the SIC factor is described in Shen et al. 

7] . We consider the following fLBF algorithms: 

• fLBF ; 
• Adaptive fLBF ; 
• Adaptive fRLBF ; 
• Adaptive dfLBF and Adaptive dfRLBF (recommended) . 

The FD experiment was conducted in a lake of depth 8 m. The 

istance between the near-end transmitter and receiver, both po- 

itioned at a depth of 4 m, is 7 cm. We are interested in the
10 
ear-end SIC performance, and the far-end transmission is not con- 

idered in this experiment. In the experiment, binary-shift keying 

BPSK) symbols are transmitted with a rate of 10 0 0 symbols/s at 

he carrier frequency 32 kHz; a root raised cosine filter with a roll- 

ff factor of 0.2 is used for the pulse shaping [35] . The received sig- 

al after analog-to-digital conversion is down shifted in frequency, 

ow-pass filtered and down sampled to the sampling rate 1 kHz. 

hese samples are applied to the adaptive filter as the desired sig- 

al. The same operation is performed on the analogue signal ap- 

lied to the transmit antenna [36] ; these samples are used as the 

egressor in the adaptive filter. 

In the experiment, the self-interference to noise ratio is 60.4 dB. 

he SIC factor is computed over a 10 s interval after the conver- 
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Fig. 5. The MSD performance of the adaptive fLBF and adaptive fRLBF algorithms with the debiasing in the numerical FD experiment; SNR = 60 . 4 dB; λ = 0 . 975 . For the 

adaptive invariance test, we set q 0 = 0 . 43 K , 0 . 45 K , 0 . 46 K for m = 3 , 5 , 7 , respectively. The range of search for the adaptive regularization parameter [ is { 10 (−6+0 . 2 a ) , a = 

0 , 1 , . . . , 10 } . The corresponding nominal delay is equal to � = 39 , λ0 was set to 0.98 and δ0 = 30 . The best MSD performance achieved by the adaptive fLBF algorithms with 

debaising is summarized in Table 4 . 

Fig. 6. The SIC performance of the proposed fLBF algorithms in cancelling the self-interference in the real UWA FD experiment. For the adaptive invariance test, we set 

q 0 = 0 . 45 K for m = 3 , 5 . The range of search for the adaptive regularization parameter μ is { 10 (−6+0 . 2 a ) , a = 0 , 1 , . . . , 10 } . The corresponding nominal delay is equal to � = 39 , 

λ0 was set to 0.98 and δ0 = 30 . The best SIC performance achieved by the EWLS, TU-RLS, and proposed fLBF algorithms is summarized in Table 6 . 
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Table 6 

The best SIC performance of the EWLS, TU-RLS 

and fLBF algorithms in the real UWA FD experi- 

ment. 

Algorithm SIC, dB 

m = 3 m = 5 

EWLS 50.9 

TU-RLS 50.9 

fLBF 53.8 53.9 

Adaptive fLBF 55.8 55.8 

Adaptive fRLBF 56.9 57.3 

Adaptive dfLBF 57.8 58.1 

Adaptive dfRLBF 59.0 59.3 
ence of the adaptive filter (see more details on the procedure 

n Shen et al. [7] ). The SIC factor is measured as the improvement

n the signal-to-interference (SIR) ratio due to the SI cancellation. 

ote that for the FD operation, the higher SIC factor the better. 

When applying the EWLS algorithm to the experimental data, 

he highest achievable SIC factor is 50.9 dB. Similar performance is 

chieved by the TU-RLS algorithm at λ = 0 . 975 and a step size of

= 10 −4 . Fig. 6 shows the SIC factor achieved by the fLBF adap-

ive algorithms. The original fLBF algorithm provides a SIC factor 

f 53.8 dB and 53.9 dB for m = 3 , 5 , respectively. When using the

daptive selection of time-varying taps (adaptive fLBF), the SIC fac- 

or increases to 55.8 dB for m = 3 , 5 . The regularization scheme
11
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Fig. 7. The normalized magnitude of the time-varying impulse response in the 

UWA communication scenario with static transmitter and receiver. 

Fig. 8. The MSD performance of the fLBF algorithms ( m = 3 ) in the UWA commu- 

nication scenario with static transmitter and receiver in the Korean Sea environ- 

ment; SNR = 20 dB; λ = 0 . 975 . For the adaptive invariance test, we set q 0 = 0 . 46 K . 

The range of search for the adaptive regularization parameter μ is { 10 (−2+0 . 25 a ) , a = 

0 , 1 , . . . , 10 } . The corresponding nominal delay is equal to � = 39 , λ0 was set to 

0.98 and δ0 = 30 . The best MSD performance of the EWLS, TU-RLS and fLBF algo- 

rithms in the UWA communication scenario with static transmitter and receiver is 

summarized in Table 7 . 
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Fig. 9. The normalized magnitude of the time-varying impulse response in the 

UWA communication scenario with a static transmitter and moving receiver. 
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ith adaptive computation of the regularization parameter μ fur- 

her increases the SIC factor to 56.9 dB and 57.3 dB for m = 3 , 5 ,

espectively. When the debiasing scheme is applied, the SIC fac- 

or is increased to 58.1 dB and 59.3 dB (for m = 5 ) for the adap-

ive fLBF and fRLBF algorithms, respectively. It is interesting that 

ith a higher number of basis functions m the optimal window 

ength K is reduced. This happens because such processing shifts 

he balance between the bias (approximation error) and variance 

noise error) of the estimate towards being dominated by the bias. 

ith the same basis functions (the same m ), the bias is reduced 

or smaller K due to better local approximation [8] . 

Thus, we can conclude that the proposed techniques, specifi- 

ally the adaptive time-invariance test, adaptive regularization, and 

ebiasing allow significant improvement in the SI cancellation per- 

ormance in this FD lake experiment. 

.3. Numerical UWA communication experiments 

The UWA communication scenario is implemented using the 

aymark simulator [2,37] , which models the acoustic signal trans- 

ission between a transmitter and receiver moving underwater. 
12 
he propagation channel is represented as a time-varying linear 

lter, whose impulse response at every time instant is computed 

sing the ray tracing implemented with the acoustic toolbox BELL- 

OP [38] . As a by-product, the Waymark simulator produces the 

ime-varying baseband impulse response of the propagation chan- 

el with the Doppler correction corresponding to the dominant 

oppler effect caused by the motion; this Doppler correction is 

ypical at the front-end of UWA modems. We are using this time- 

arying impulse response for FIR filtering of a communication sig- 

al, which is modelled as a sequence of independent zero-mean 

omplex-valued Gaussian random numbers of a unit variance, as- 

umed to be transmitted at a carrier frequency of 12 kHz. 

.3.1. Static transmitter and receiver 

For this experiment, we consider an acoustic environment of a 

hallow sea (the sea depth is 20 m), where both the transmitter 

nd receiver are static and placed at a depth of 10 m. The distance 

etween the transmitter and receiver is 50 m. The generation of 

he time-varying surface waves is performed by the WAFO soft- 

are toolbox [39] using the Pierson–Moscowitz spectrum [40] for 

 wind speed of 10 m/s. For our numerical experiment, we are us- 

ng the acoustic environment of the test case ‘Korean Sea’ in Porter 

38] . The duration of the transmission is 15 s. The symbol rate of 

he transmitted signal is 4 kHz and the signal is sampled at the 

ymbol rate. 

The time-varying channel impulse response of the communi- 

ation scenario is shown in Fig. 7 . The channel contains 80 taps, 

hich is equivalent to a delay interval of 20 ms. It can be seen 

hat there are two static paths, corresponding to the direct path 

nd the bottom reflection. The rest of the multipath components 

re time-varying due to the moving sea surface. 

The SNR in this scenario is 20 dB. As before, we use the per- 

ormance of EWLS and TU-RLS algorithms as benchmarks. In this 

cenario, the best MSD performance of the EWLS algorithm is 

10 . 9 dB, which is achieved at λ = 0 . 965 . The best MSD perfor-

ance of the TU-RLS algorithm is −14 . 8 dB, and is achieved with

= 0 . 945 and η = 0 . 007 ; thus, the TU-RLS algorithm significantly

utperforms the EWLS algorithm in this scenario. Fig. 8 shows the 

erformance of the fLBF algorithms. As the improvement with a 

igher number of basis functions is not significant, we only show 

he results for three basis functions ( m = 3 ). The original fLBF al-

orithm provides an MSD of −16 . 9 dB. As the SNR is not high in

his scenario, a significance level of η0 = 0 . 05 is used for the time-

nvariance test. Based on this value η0 and using (22) , the param- 

ter q is computed as shown in captions of Figs. 8 and 11 be-
0 
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Fig. 10. The magnitude, real part and imaginary part of the 13th channel tap in the UWA communication scenario with static transmitter and moving receiver. 

Table 7 

The best MSD performance of 

the EWL S, TU-RL S and fLBF al- 

gorithms in the UWA communi- 

cation scenario with static trans- 

mitter and receiver in the Korean 

Sea environment. 

Algorithm MSD, dB 

EWLS −10.9 

TU-RLS −14.8 

fLBF −16.9 

Adaptive fLBF −17.8 

Adaptive fRLBF −18.6 

Adaptive dfLBF −20.1 

Adaptive dfRLBF −21.5 
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Fig. 11. The MSD performance of the fLBF algorithms ( m = 3 ) in the UWA com- 

munication scenario with static transmitter and moving receiver in the Korean 

Sea environment; SNR = 15 dB; λ = 0 . 96 . For the adaptive invariance test, we set 

q 0 = 0 . 46 K . The range of search for the adaptive regularization parameter μ is 

{ 10 (−2+0 . 25 a ) , a = 0 , 1 , . . . , 10 } . The corresponding nominal delay is equal to � = 24 , 

λ0 was set to 0.98 and δ0 = 20 . The best MSD performance of the EWLS, TU-RLS 

and fLBF algorithms in this scenario is summarized in Table 8 . 
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1

ow. With the adaptive selection of static and time-varying taps, 

he MSD is reduced to −17 . 8 dB. It further reduces to −18 . 5 dB

hen adaptive regularization is used. Finally, with the debiasing, 

he MSD of the adaptive dfLBF and adaptive dfRLBF algorithm is 

urther reduced to −20 . 1 dB and −21 . 5 dB, respectively. It can be

oncluded that the identification performance is significantly im- 

roved when using the debiased adaptive fRLBF algorithm, with 

0.4 dB and 5.7 dB of improvement against the EWLS and TU-RLS 

lgorithms, respectively. 

.3.2. Static transmitter and moving receiver 

For this experiment, we consider a scenario with the receiver 

oving at a speed of 2.5 m/s away from the transmitter, starting 

rom the distance 50 m. A flat sea surface is considered. The rest 

f the experimental setup is the same as in the previous experi- 

ent with the static transmitter and receiver. The duration of the 

ransmission is 30 s. The symbol rate of the transmitted signal is 

 kHz and the signal is sampled at the symbol rate. 

Fig. 9 shows the time-varying impulse response in this UWA 

ommunication scenario. It contains 50 taps, which is equivalent 

o a delay interval of 50 ms. It can be seen that the channel is

ery dynamic, in particular new multipath components appear as 
13 
he receiver moves in the channel. It is also seen that the delays 

taps) of multipath components vary in time, i.e., a tap moves into 

 neighbour tap, which is typical for UWA channels with mov- 

ng transmitter/receiver. However, this plot does not reveal the real 

peed of the channel fluctuations. Fig. 10 shows the magnitude of 

he 13th channel tap and its real and imaginary parts. It can be 

een that the real speed of the channel variation (in fact, the real 

nd imaginary parts of the tap are estimated) is much faster than 

an be assumed from Fig. 9 . Note that, in this scenario, there are

o clear static multipaths. 

In this scenario, we set the SNR in the received signal to SNR =
5 dB. It was found that, in this scenario, the best EWLS perfor- 
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Table 8 

The best MSD performance of 

the EWL S, TU-RL S and fLBF al- 

gorithms in the UWA communi- 

cation scenario with static trans- 

mitter and moving receiver in 

the Korean Sea environment. 

Algorithm MSD, dB 

EWLS −6.8 

TU-RLS −16.5 

fLBF −13.1 

Adaptive dfLBF −16.1 

Adaptive dfRLBF −17.6 
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ance is MSD = −6 . 8 dB, which is achieved at λ = 0 . 938 . The TU-

LS algorithm achieves an excellent performance of −16 . 5 dB with 

= 0 . 96 and η = 0 . 002 . Fig. 11 shows the performance of fLBF al-

orithms with three basis functions ( m = 3 ). The original fLBF al-

orithm provides an improvement of about 6.3 dB compared to the 

WLS algorithm, and thus approaches the TU-RLS performance. An 

xtra 3 dB improvement in the performance can be observed when 

e combine the adaptive selection of static and time-varying taps 

ith the debiasing (adaptive dfLBF algorithm). Finally, we apply 

he debiasing to the adaptive fLBF algorithm with adaptive regu- 

arization, thus arriving at the adaptive dfRLBF algorithm, and ob- 

ain an extra improvement of 1.5 dB. Note that the adaptive dfRLBF 

lgorithm outperforms the TU-RLS algorithm by 1.1 dB ( Table 8 ). 

. Conclusions 

We have considered the problem of identifying linear systems 

ith a mix of time-invariant (or slowly varying) and time-varying 

arameters. We have further developed adaptive algorithms built 

n the LBF principle, in particular, its fast version, the fLBF algo- 

ithm. We have proposed an fLBF algorithm, which exploits the 

act that only a part of the system parameters are time-varying. 

e have also proposed a simple statistical test to identify whether 

 particular parameter is static or time-varying. We have further 

roposed a regularized fLBF algorithm to exploit the sparsity in the 

arameters and an adaptive technique for estimation of the regu- 

arization parameter. Finally, we have proposed a debiasing tech- 

ique that allows further improvement in the fLBF performance. 

he performance of the proposed techniques has been investigated 

n scenarios of UWA communications, using numerical and real ex- 

eriments. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan- 

ial interests or personal relationships that could have appeared to 

nfluence the work reported in this paper. 

RediT authorship contribution statement 
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