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Abstract 
 

In this paper an adaptive neural voltage controller (ANVC) for 
turbogenerator, with tunable activation function gain is developed. It 
combines both traditional neural model and neural model with activation 
gain depending on the operating conditions of the plant. Simulation results 
evaluating the performance of the ANVC under different operating 
conditions and disturbances are presented. These results are compared to 
that obtained with a fixed activation gain neural controller (the traditional 
one) and to that obtained with conventional (analog) controller. 
 
Keywords: turbogenerator, adaptive neural voltage controller (ANVC), 
activation gain. 
 
Adaptacyjny neuronowy regulator napięcia  
z nastrojonym współczynnikiem  
wzmocnienia funkcji przynależności 

 
Streszczenie 

 
W artykule przedstawiono model adaptacyjnego neuronowego regulatora 
napięcia dla turbogeneratora z nastrojonym współczynnikiem wzmocnienia 
funkcji przynależności. Ten model jest kombinacją klasycznego neurono-
wego modelu i neuronowego modelu z współczynnikiem wzmocnienia 
funkcji przynależności zależnym od warunków pracy obiektu. Przedsta-
wiono, także wyniki symulacji mające na celu badania efektywności 
proponowanego regulatora dla różnych zakłóceń i różnych warunków pracy 
turbogeneratora. Te wyniki porównano z wynikami uzyskanymi z regula-
torem o stałym współczynnikiem wzmocnienia funkcji przynależności oraz  
z wynikami uzyskanymi z regulatorem analogowym. 
 
Słowa kluczowe: Turbogenerator, adaptacyjny neuronowy regulator 
napięcia, współczynnik wzmocnienia aktywacji. 
 
1. Introduction 
 

The increasing complexity of electric power systems and the 
demands of economic and operational requirements emphasize the 
need for continuing improvements in power plant and control. 

Turbogenerators are major components in electric power 
systems, and their performance is directly related to security and 
stability of power system operations. A turbogenerator is a highly 
nonlinear system, subject to large changes of operating conditions. 
Conventional controllers with fixed parameters cannot provide the 
most effective plant and system control under these circumstances. 
Consequently, there has been a growing interest in adaptive 
control. Since more than one decade numerous studies [1, 2, …, 
14] on the using neural networks in control field have been made 
and demonstrated that adaptive neural control is particularly 
suitable for controlling highly uncertain, nonlinear, and complex 
systems. 

In the design of neural network controller a multilayer 
feedforward structure, with nonlinear outputs of  the neurons, is 
the most utilized [2, 3, …, 6]. In general, we use the logistic or the 
hyperbolic tangent functions to introduce the nonlinearities of the 
used neurons (fig. 1), and during the training process, the weights 

between neurons are tunable while the activation function gain is 
fixed. In this paper it is demonstrated that a neural model with 
fixed activation function gain is obviously a simplified one. Its 
capability is limited. To tune just the neurons weights is 
insufficient to give satisfactory results. In the proposed neural 
voltage controller, besides tuning weights, the activation function 
gain is made depending on the operating conditions of the 
synchronous generator. 

 
2. Design of the proposed neural voltage 

controller 
 

The architecture of the proposed controller is shown in fig. 2. 
The controller uses the indirect adaptive control method [13]. It 
consists of three subnetworks: the neural identifier (NI) which 
identifies the plant, the adaptive neural voltage controller (ANVC) 
which provides the necessary control of the excitation system, and 
the third subnetwork named TAG (tunable activation gain) which 
defines the gain value α of the activation functions. Each of the 
three subnetworks is a feed-forward three-layer network. All the 
neurons in the subnetworks are with sigmoid non-linearity (fig. 1). 
The controller ANVC has five inputs based on the deviation 
between the synchronous generator voltage Ug and the reference 
voltage Vr. However, the neuro-identifier NI has ten inputs, based 
on the generator voltage and on the control signal Uc. The inputs 
of the TAG subnetwork are the components of the vector X: the 
active power Pg, the reactive power Qg and the terminal voltage 
Ug.. All these components represent synchronous generator 
quantities which are used to detect the generator operating 
conditions. On the basis of this information the subnetwork TAG 
selects the activation function gain α. The output of the TAG 
subnetwork is filtered through a first order inertial element which 
provides the activation gain. 
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Fig. 1.  Example of used neuron activation functions [17] 
Rys. 1.  Przykład stosowanych funkcji przynależności neuronów [17] 

 
The plant represents a nonlinear system which can be expressed 

by [14] 
 

))(),...,1(),(),(),...,1(),(()1( nkUkUkUmkYkYkYfkY ccc −−−−=+        
(1) 

 
where f is the unknown nonlinear function to be estimated by the 
neural subnetwork NI, Y(k) is the scalar output of the plant, and m 
and n are the known structure orders of the system. The purpose 
of the used control algorithm is to select a control signal Uc(k), 
such that the output system Y(k) is made as close as possible to  
a prespecified set point Vr. Since the input to the subnetwork NI is 
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The neuro model for the unknown system (1) can be expressed as 
 

))(),...,1(),(),(),...,1(),((ˆ)1(ˆ mkUkUkUnkYkYkYfkY ccc −−−−=+        
(3) 

 
where  is the output of the subnetwork NI and f the 
estimate . 

)1(ˆ +kY
f̂

For a voltage controller, Y represents the generator voltage Ug. 
Using the backpropagation algorithm [15,16] the NI, the ANVC 

and the TAG have been initially trained off-line, over a wide range 
of operating conditions and a wide spectrum of possible 
disturbances. The neuron weights were updated as follows [15, 16]: 
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Fig. 2.  Neural control system structure 

ANVC- adaptive neural voltage controller 
NI- neuro identifier 

Rys. 2.  Struktura neuronowego układu regulacji 
NVC- neuronowy regulator napięcia 
NI- neuronowy identyfikator 

 
where η is a prespecified learning rate. The performance function 
E for training the neural network is defined as 
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where d is the desired output and u the output of the neural 
controller, p is the number of training samples and q is the number 
of the neurons in the output layer. 

After this training stage, all three subnetworks NI, ANVC and 
TAG are hooked up in the system shown in fig. 3. On line, during 
the control process, the subnetworks are trained further in each 
sampling period. To update the neuron weights is used:  
• for the neuro-identifier NI, the deviation between the generator 

voltage and the output signal of NI. 
• for the controller ANVC and for the TAG subnetwork, the 

deviation between the generator voltage and the reference 
voltage. In the case of the TAG training the value of the 
learning rate η must be very small. 

 
3. Simulation studies 

 
A number of simulation experiments have been performed to 

investigate the effectiveness of the proposed neural controller. The 

neural controller has been tested on a turbogenerator unit (fig. 3) 
which consists of a synchronous generator, a static exciter,  
a turbine and a governor. The generator is connected, via  
a transformer unit and transmission line, to an infinite bus power.  

Two variants of neural controllers have been considered : 
- in the first variant ANVC1 the gain of the neuron activation 

function is maintained constant; 
- in the second one ANVC2, this gain is made dependant on the 

generator load. 
The responses of the system with the both neural model 

variants, and the conventional controller have been compared for 
various disturbances and various operating conditions. For the 
sake of brevity, results of only a representative set of studies are 
presented in this paper. 
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Fig. 3.  Schematic diagram of turbogenerator unit 
Rys. 3.  Schemat blokowy turbozespołu 

 
With the synchronous generator operating at the nominal set 

point, Pg=Pgn=0.85, Qg=Qgn=-0.53, a 5% increase of the infinite 
bus voltage was applied at time t=0s. After 5s, when the steady 
state is restored, a 5% decrease of the same voltage is simulated. 
The responses illustrating the dynamic behavior of the tested 
system are presented in fig. 4 and fig. 5. These results, obtained 
with the described above two neural model variants, are compared 
to that obtained with a conventional controller. After the first 
perturbation, the responses of the three controllers are close to 
each other, and the terminal voltage as well as the active power 
get back to their reference values when the transient state is 
achieved. However, after the second perturbation, which was 
applied under different value of the reactive power (Qg≠Qgn), in 
the case of the neural controller with a fixed activation gain the 
terminal voltage does not rise to a reference voltage. To tune just 
the network weights proves to be insufficient to restore the desired 
voltage. However, the ANVC with updated activation gain 
restores the generator voltage exactly to its  reference value. It 
demonstrates the importance of the activation gain α. Its tuning 
ensures a better control. 

 
 

 
 
Fig. 4.   +5% and -5%  step changes in infinite bus voltage  

Pg=Pgn=0.85; Qg=Qgn=-0.53 
Rys. 4. Odpowiedzi na +5% i -5% skoków napięcia systemu  

elektroenergetycznego Pg=Pgn=0.85; Qg=Qgn=-0.53 
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Fig. 5.   +5% and -5% step changes in infinite bus voltage  

Pg=Pgn=0.85; Qg=Qgn=-0.53 
Rys. 5.  Odpowiedzi na +5% i -5% skoków napięcia systemu  

elektroenergetycznego Pg=Pgn=0.85; Qg=Qgn=-0.53 
 

Further tests have been performed under other operating 
conditions, at Pg=Pgn=0.85 and Qg=0.2 (capacitive). The same 
perturbations as above were applied. The obtained results are 
presented in fig. 6 and fig. 7. Under such operating conditions 
(Qg>0), in the case of a step increase of the infinite bus voltage, 
the proposed ANVC2 is the one controller which could restore the 
steady state. Neither the traditional ANVC1 nor the conventional 
controller could avoid the synchronism loss.  

 
 

 
 
Fig. 6.   +5% and -5% step changes in infinite bus voltage  

Pg=Pgn=0.85; Qg=0.2 
Rys. 6.  Odpowiedzi na +5% i -5% skoków napięcia systemu  

elektroenergetycznego Pg=Pgn=0.85; Qg=Qgn=0.2 
 
 
 

 
 
Fig. 7.   +5% and -5% step changes in infinite bus voltage  

Pg=Pgn=0.85; Qg=0.2 
Rys. 7.  Odpowiedzi na +5% i -5% skoków napięcia systemu  

elektroenergetycznego Pg=Pgn=0.85; Qg=Qgn=0.2 
 

 
4. Conclusions 
 

In this paper an adaptive voltage controller for turbogenerator 
using on-line trained neural network with tunable activation 
function gain is presented. It has following interesting properties: 
• The proposed algorithm does not require the mathematic model 

of the plant. 
• The controller considers the non-linear nature of the plant. 

• The controller is adapted in an on-line mode to reduce the 
output error. 
The performance of the proposed model has been evaluated 

under various operating conditions and disturbances. The 
simulation results demonstrated that the proposed controller 
provides a better control voltage and ensures a larger stability 
margin than a fixed activation gain model and than a conventional 
controller. 
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