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Abstract—The aim of this paper is to present a novel model
order reduction (MOR) algorithm for fast finite-element (FEM)
frequency-domain simulations of microwave two-port structures.
The projection basis used to construct the reduced-order model
(ROM) comprises two sets: singular vectors and regular vectors.
The first set is composed of the eigenvectors associated with the
poles of the FEM state-space system, while the second one is
made up from the eigenvectors corresponding to the zeros of
the diagonal elements of the matrix-valued immittance transfer
function. Importantly, just one LU factorization of the FEM
system is required to construct the projection basis during the
reduction process, due to the application of a new formulation
based on the Schur complement. The sets of eigenvectors that are
used in the basis are independent of one another, which makes
the new technique better suited for parallel computing compared
to previously developed methods, which are sequential in nature.
The reliability and accuracy of the proposed scheme is compared
to that of the standard MOR technique, namely, the reduced-
basis method (RBM), and verified through the analysis of three
microwave structures: an eighth-order dual-mode waveguide
filter, a dielectric resonator filter, and a folded waveguide filter.

Index Terms—Computer-aided engineering, design automa-
tion, finite-element method, microwave circuits, model order
reduction, reduced-basis methods.

I. INTRODUCTION

ONE of the most popular numerical techniques for sim-
ulating passive high frequency electronic devices of

complex shape is the finite-element method (FEM) [1]. Un-
fortunately, when the goal of the simulation is to compute the
network parameters, like the scattering matrix of the consid-
ered structure over a wide frequency band, FEM analysis tends
to be time consuming.

The frequency domain FEM simulations can be signifi-
cantly sped up using the so-called fast-frequency sweep (FFS)
algorithms. They rely on the assumption that the transfer
function of a structure can be approximated using the results
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of computations obtained in a selected subset of frequency
points. There are two main classes of algorithms used for the
aforementioned computations. For the first one, the transfer
function of a structure is approximated by a rational function,
using the data gathered at the frequency points that are selected
adaptively [2]–[5]. However, such an approach allows one to
gain insight into the electromagnetic field distribution only for
the selected frequencies.

For the second class of FFS algorithms, called model order
reduction (MOR) methods, it is assumed that the FEM full-
order model (FOM) can be replaced by a much smaller
reduced-order model (ROM), which approximates the original
model with sufficient accuracy in the specified frequency
band. Historically, in the electromagnetic community, two
main MOR approaches have been used. The first, called the
reduced-basis method (RBM) [6]–[10], is based on the fact
that in most frequency-domain simulations, the distribution
of the electromagnetic field does not vary significantly in
the frequency band. Thus, the field distribution in the entire
band can be represented as a linear combination of a few
field solutions of the original FEM system of equations,
computed at properly selected frequencies. This reasoning
leads to the construction of a ROM, which is then used to
quickly calculate the approximate transfer function of the
system (see [9] for a more detailed discussion). The other
MOR approach uses the concept of moment matching (MM)
[11], where the values of the original and reduced transfer
functions and their subsequent derivatives are matched at a
single [12]–[17] or a few frequency points [18]–[20]. In this
case, the field distribution can be obtained for any frequency
using the reduced-order state vector and the projection basis.

Recently, a new strategy for the construction of ROMs has
been proposed in [21], resulting in two new MOR algorithms:
the compact reduced basis method (CRBM) [21] and the
subspace-splitting moment matching model order reduction
technique (SS-MM MOR) [22]. This strategy is based on
the observation that the electric field distribution can be
decomposed into a singular and a regular part in the system
transfer function. The first one corresponds to the natural
oscillating dynamics of the electric field in the computational
domain, whereas the second part spans whatever else is
required to approximate the electric field accurately enough in
the specified frequency band. Following this observation, the
projection basis used to generate a ROM can be split into a
so-called singular and a so-called regular set of vectors, which
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give rise to the singular and regular part of the system transfer
function, respectively. The first (singular) set is made up of
the eigenvectors found in the band of analysis, by solving
the generalized eigenproblem derived from the FOM. These
eigenvectors correspond to the poles of the transfer function
for the FEM state-space system. The second set, which spans
the regular part of the frequency response, is computed using
either RBM [21], or a moment-matching technique based on
SAPOR (the second-order Arnoldi method for passive order
reduction), as shown in [22].

In this paper, a novel MOR approach is proposed. Here, sim-
ilarly as in CRBM and SS-MM MOR [21], [22], the singular
part of the projection basis is composed of the eigenvectors of
the FEM matrix corresponding to in-band immittance poles.
However, unlike in [21], [22], the regular part is not computed
from snapshots or moments, but comprises a new class of
eigenvectors associated with the element zeros of the matrix-
valued transfer function (depending on the FEM formulation
used, it can be impedance or admittance). Thus, the proposed
technique is called the zero-pole model order reduction (ZP-
MOR) method. It combines the most beneficial features of the
state-of-the-art MOR methods used in computational electro-
magnetics and offers new attractive features, namely:

• It can be applied to wideband simulations (like algorithms
[6], [8], [19], [21], [22]).

• Typically, it requires only one LU factorization of the
FEM system matrix to construct ROM (as algorithms
[14], [22] do), which reduces the cost of extracting the
ROM.

• It generates compact ROMs (as algorithms [6], [8], [21]
do), which translates into low-cost frequency sweeps.

• It is inherently parallel by definition since the sets of
eigenvectors for poles and zeros are independent of each
other.

• It produces ROMs that do not suffer from spurious in-
band poles that manifest themselves in spikes in the
reduced order model frequency response [23], [24], as
it will be later discussed in detail.

It should be noted that, to the best of our knowledge, no single
MOR method has been developed [6]–[9], [14]–[17], [19]–
[22], [25] that includes all the features highlighted above.
Moreover, the computation of the projection basis in prior-
art model order reduction algorithms is a sequential process;
the next vector can be computed only after the computation
of the previous vectors has been completed. In the proposed
approach, this problem is not present, as the eigenproblems
for immittance poles and zeros can be solved in parallel.
Achieving the above is made possible by:

• replacing snapshots or moments with the electromagnetic
field at immittance zeros, which allows one to accurately
represent the regular part of the transfer function over
the entire frequency band, while keeping the size of the
reduced basis very compact, and

• applying the Schur complement to solve the required
eigenproblems for zeros using a single system matrix
factorization.

In the following sections, a detailed description of the

ZP-MOR construction procedure and numerical validation of
the reliability and accuracy of ZP-MOR for three complex
microwave structures is provided.

II. FEM FORMULATION

Let us consider a source-free computational domain Ω
bounded by perfect electric conductor (PEC) walls and cross-
sections of np waveguide ports denoted by SE and Sk

W ,
respectively, for k = 1, . . . np (in the discussion below, we
assume np = 2). The distribution of the electric field E⃗ in Ω
is described by the frequency-domain boundary value problem
(BVP) [18], [26]:

∇× (µr
−1∇× E⃗)− k20ϵrE⃗ = 0 in Ω,

E⃗ × n̂ = 0 on SE ,

n̂× [(∇× E⃗)× n̂] + jk0η0h⃗k = 0 on Sk
W ,

(1)

where k0 is the wavenumber, j is the imaginary unit, n̂ is the
outward unit vector, ϵr and µr are the relative permittivity and
permeability, respectively, η0 is the characteristic impedance
of free space, and h⃗k is the frequency-dependent normalized
pattern of the tangential magnetic field at the k-th port.

Applying FEM discretization [1] with n degrees of freedom
to the weak form of (1) leads to the following n-dimensional
linear system of equations:

(Γ+ s2C)E(s) = sBi,

u = BTE(s).
(2)

where Γ and C ∈ Cn×n are FEM system matrices, B ∈ Cn×2

is the excitation matrix, E(s) ∈ Cn×2 is the unknown vector
with elements, dependent on frequency, being the amplitudes
of the basis functions which determine the electric field. u,
i ∈ C2×2 contain the amplitudes of voltage and current waves,
respectively, and s = jk0 is the normalized complex fre-
quency. Note that we have assumed the number of waveguide
ports np = 2.

The goal of the simulation is to compute the scattering
parameters and the field distribution for the analyzed structure,
for a sequence of frequency points: s ∈ {s1, s2, . . . snF

}. To
this end, one has to first compute the impedance matrix:

Z(s) = BT (Γ+ s2C)−1sB. (3)

at each frequency point si. Next, the scattering parameters
S(s) can easily be found using the formula:

S(s) = 2(ID + Z(s)−1)−1 − ID, (4)

where ID is the identity matrix and Z(s),S(s) ∈ C2×2.
Alternatively, an analogous formulation can be derived for the
admittance matrix.

The above frequency sweep is very time consuming when
the size of the problem n and/or the number of considered
frequency points nF is large, due to the high numerical cost
of factorizing the matrices (Γ+ s2iC) at each frequency point
si.
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III. MOR-BASED FAST FREQUENCY SWEEP

To lower the cost associated with repetitive matrix factor-
izations, the original state-space system (2) is approximated
with a reduced-order model (ROM):

(ΓR + s2CR)ER(s) = sBRi,

u = BT
RER(s),

(5)

giving rise to the corresponding transfer function:

ZR(s) = BT
R(ΓR + s2CR)

−1sBR. (6)

This reduced order model is then used to compute the approx-
imate scattering matrix:

SR(s) = 2(ID + ZR(s)
−1)−1 − ID. (7)

Reduced-order matrices in (5) and (6) are obtained using
Galerkin projection: ΓR = VTΓV ∈ Cr×r, CR = VTCV ∈
Cr×r, BR = VTB ∈ Cr×2, where r is the dimension of
the reduced-order space, and V ∈ Cn×r is the so-called
projection basis. The frequency sweep using the ROM is much
faster, since r ≪ n. In the MOR-based sweep, an approximate
distribution of the electromagnetic field can be recovered at
each frequency s ∈ {s1, s2, . . . snF

} using the expression:

E(s) ≈ VER(s). (8)

The choice of projection basis V differentiates the MOR
techniques mentioned in the previous section. For RBM
[6]–[10], the projection basis consists of field distributions
(snapshots) E(s), which are solutions of (2) at frequencies
ŝ1, ŝ2, ..., ŝnR

:

V = [E(ŝ1),E(ŝ2), ...,E(ŝnR
)] . (9)

The frequencies ŝ1, ŝ2, ..., ŝnR
, where nR ≪ nF , are selected

using a greedy algorithm, where the next snapshot is computed
at the frequency for which the current reduced model exhibits
the largest estimated error [6], [7], [9], [27]. This approach
allows one to achieve the desired accuracy of the model in the
frequency band of interest, yet it involves factorizing the full-
order model (FOM) system matrix at each frequency point,
which may lead to a high computational cost in extracting the
ROM.

To address this computational cost issue associated with
RBM methods, moment-matching MOR algorithms are often
used. These methods construct a projection basis V, which
ensures that the values of the transfer functions for the
FOM (3) and the ROM (6) and their subsequent derivatives
are matched at a single [13], [14] or at a few frequency
points [18]–[20]. The advantage of this approach is that the
ROM construction process requires fewer FOM system matrix
factorizations, compared to the RBM method, but at the cost
of a larger projection basis.

As observed in [21], [22], a significant contribution to the
field distribution comes from the so-called singular part of the
system transfer function, associated with the pole frequencies.
Therefore, obtaining a good accuracy of the reduced-order
models around the poles of the system has been one of the key
issues. However, traditional RBM or moment-matching MOR

methods do not explicitly ensure that the electromagnetic
field at pole frequencies can be accurately represented by
the ROMs, and consequently additional snapshots need to be
computed, or additional moments need to be matched, which
increases the size of the reduced models, and accounts for extra
computational cost. To address this issue, it has been proposed
in CRBM and SS-MM MOR ( [21], [22], respectively) to use a
projection basis that includes the following two sets of vectors:

V = [VE ,VM ]. (10)

where VE corresponds to the electric field related to the
singular part of the system transfer function. These are the
eigenmodes of the device under analysis and, as a result, VE

is composed of the eigenvectors of the following generalized
eigenproblem derived from the FOM (2):

ΓVE = −CVEΛE . (11)

where the diagonal matrix ΛE contains the eigenvalues cor-
responding to the square of the resonant frequencies of the
system in the band of interest. These resonances are the poles
of the transfer function Z(s), whereas the vectors in VE

are modal fields at the system resonances. The second set of
vectors: VM is composed of field contributions related to the
regular part of the system transfer function, and is computed
using RBM in [21] or a moment-matching technique (SAPOR
[14]) in [22].

Note that the process of constructing the projection basis is
essentially sequential. In RBM-like techniques, a subsequent
snapshot is added at the frequency point that is determined
from the a posteriori error estimator, evaluated based on
the ROM constructed from previous samples. In moment-
matching techniques, in order to achieve a numerically stable
algorithm, new moments have to be orthogonal to the previous
moments, so the moments cannot be computed concurrently.
This is a drawback of prior-art MOR techniques in the context
of the fact that computer hardware more and more evolves
into parallel architectures (clusters or multicore/manycore sys-
tems).

IV. EIGENVECTORS AS PROJECTION BASIS

In [21], [22]), it was shown that using a projection ba-
sis that includes eigenvectors of the FEM matrix associated
with the FOM poles brings accuracy benefits and produces
very compact models. Furthermore, the singular part of the
ROMs themselves can be effectively generated, thanks to
robust and efficient eigenvalue solvers, which have also been
developed for cluster architectures [28], [29]. However, the
approximation of the field contribution to the regular part of
the system transfer function in the cited methods was still
based on RBM snapshots (in CRBM [21]) and/or transfer
function moments (in SS-MM MOR [22]), with no special
attention drawn to ensure the accuracy of the reduced model
around the frequencies corresponding to the impedance zeros.
Following these observations, it has been proposed in this work
to consider in the projection basis not only the eigenvectors
associated with poles, but also those corresponding to zeros of
impedance (or admittance) elements, which could allow one
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to more compactly and accurately represent the electric field
contributing to the regular part of the system transfer function.
As a matter of fact, this new approach eventually exploits
the efficiencies associated with generating the basis vectors
by solving eigenproblems, instead of computing snapshots or
moments of the system transfer function.

The rationale behind including fields associated with zeros
in the projection basis stems from the pole-zero representa-
tion of the transfer function for Linear Time Invariant (LTI)
systems [30]. The matrix entries in the matrix-valued transfer
function Z(s) defined in (3) can be represented as rational
functions:

zij(s) =
Nij(s)

D(s)
= Kij

(s− zij1 )(s− zij2 ) . . . (s− zijn+1)

(s− p1)(s− p2) . . . (s− pn)
(12)

where Nij(s) and D(s) are the numerator and denominator
polynomials, respectively, and Kij is a constant. The roots of
Nij(s), denoted by zijk , are the zeros of the impedance matrix
element zij(s), whereas the roots of D(s), are the system
poles pk. The set of poles is common for all elements in the
matrix-valued transfer function: zij(s). If one assumes that the
problem analyzed is passive, lossless, reciprocal, and has two
ports, the set of input/output zeros (Nij(s) for i = j) and
the set of poles of the system D(s) are sufficient to represent
all entries in the matrix Z(s) in the specified frequency band,
since the transmission zeros (Nij(s) for i ̸= j) for the two-
port structures can be computed using the Feldtkeller equation
[31].

As shown in Section III, the poles pk can be found by
solving the generalized eigenproblem (11). (More precisely,
the poles are the square roots of the eigenvalues, located on the
diagonal of ΛE .) In order to compute the zeros of the diagonal
component of the transfer function associated with ith-port
(zii(s), for i ∈ {1, 2}), and the corresponding electromagnetic
field, one considers system (2) restricted to a single excitation
vector bi, which means that the excitation is applied only to
the i-th port:

(Γ+ s2C)ei = sbiii,

ui = bT
i ei. (13)

where ei is the vector of unknowns, and ui, ii are the
amplitudes of the voltage and current waves, respectively. By
definition of a zero: ui = 0. This means that the excitation
applied to the i-th port results in the amplitude of voltage
wave equal to zero at that port. By grouping the correspond-
ing components from (13), the system transforms into the
following nonsymmetric, but skew-Hamiltonian generalized
eigenproblem:

[
Γ −bi

bT
i 0

] [
Vi

M

ii

]
= −

[
C 0
0 0

] [
Vi

M

ii

]
Λi

M (14)

where the diagonal of Λi
M contains the eigenvalues which

are squares of the zeros of zii(s) and finally Vi
M

1 are the
eigenvectors associated with the zeros of zii(s). Once the

1Note that vectors ei in (13) and Vi
M in (14) are equivalent, however Vi

M
is used to preserve the notation from (10).

Fig. 1. Dielectric resonator filter: geometry and scattering characteristics
(computed using FOM). All dimensions of the filter can be found in [32].

zeros of zii(s) and the poles have been found, the remaining
elements of the matrix-valued transfer function (zij(s) for
i ̸= j) can be calculated using the Feldtkeller equation [31].

If one is interested in finding the elements of the impedance
matrix (12) in a particular frequency band, it is typically
enough to consider the poles and zeros located inside and,
optionally, near the band. An approximation of (12) is obtained
by removing the factors associated with the zeros and poles
located far enough from the band of interest from the numer-
ator and denominator, respectively, of the rational function
(12). The accuracy of the approximation is determined by
the distance between the band of interest and the sets of
omitted poles and zeros. The omitted poles and zeros closest
to the band have the most impact on the accuracy of the
approximation, and can be used to estimate the approximation
error.

To illustrate how the approximation of the impedance matrix
transfer function based on the in-band poles and zeros works
in practice, we have analyzed a dielectric resonator filter, the
geometry and scattering parameters of which are shown in
Fig. 1. Impedance poles and zeros for the diagonal elements
located inside the frequency band of interest were computed
by solving the eigenproblems described above, and then used
to construct rational functions approximating (12). Figures 2
and 3 show the impedance parameters |z11(s)| and |z21(s)|
computed using the full FEM model (3) and the approximate
rational functions. It can be seen that these two sets of
characteristics match with good accuracy. This illustrates that
the zero-pole-based approximation can be used to efficiently
compute the characteristics of microwave structures.

Yet, the goal of this work is also to efficiently find the
distributions of the electromagnetic field in the frequency band
of interest, and not just the Z or S parameters. To this end, one
needs to construct a reduced-order model in the form of (5)
and to do this, the projection subspace has to be constructed.

The results of the test described above show that the set
of in-band poles and zeros is sufficient to retrieve the transfer
function with high accuracy. This observation suggests that a
good projection basis to construct a ROM could be composed
of two sets of vectors: VE and VM (similarly as in [21] and
[22]).

• The column vectors [vE1, vE2, . . . ,vEp] in matrix VE ,
where p is the number of in-band poles, represent the
electric field distribution associated with the poles of
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the transfer function, i.e., the eigenmodes; thus, they
correspond to the natural oscillating dynamics of the field.

• Matrix VM is composed of block column submatri-
ces [V1

M ,V2
M ] in a two-port device. Each submatrix

Vi
M contains column vectors [vi

M1, v
i
M2, . . . ,v

i
Mmi

]
that correspond to the regular part of the electric field
distribution, associated with the zeros of the diagonal
entries of the matrix-valued transfer function zii(s). Here
mi is the number of in-band zeros for zii(s).

The first set of vectors (VE) is computed using the general-
ized eigenproblem defined in (11), while the second set (VM )
is computed using (14). The eigenvectors are subsequently
used to construct the projection basis:

V = [VE ,V
1
M ,V2

M ], (15)

where the columns of V are subject to orthogonalization. The
final step is the regularization of the reduced order model. The
remaining steps of the proposed ZP-MOR approach follow
the standard procedure described in Section III. The obtained
ROM has the form given by (5) and can be used to perform a
fast frequency sweep using (6) and (7), respectively. Moreover,
the corresponding approximate field distribution of the electric
field in the band of interest can be recovered using (8). It
should be remarked upon the fact, that ZP-MOR is given
for the impedance setting, but the foregoing derivation can
be applied for the admittance formulation. In this case, the
starting point is the weak formulation for the wave equation
for the magnetic field, and the projection basis is spanned by
the eigenvectors related to zeros and poles of the admittance
matrix elements.

A. Regularization

As discussed in [23], [24], ROMs constructed in systems
with poles may exhibit nonphysical spikes in the frequency
response. These spikes are due to spurious poles that may
appear inside the band of interest when the projection is
applied to the FOM. This is an artifact of the MOR process, of-
ten overlooked in prior-art literature on MOR. Regularization
removes these spurious poles, resulting in ROMs with a clean
frequency response. These spurious poles can be identified and
then removed using the technique proposed in [24]. However,
since in ZP-MOR the location of actual poles is determined
while computing the singular part of the basis, any extra in-
band poles that are revealed after the projection has been

3.5 4 4.5 5

frequency (GHz)

-50

0

50

100

|z
1

1
| 
(d

B
)

Finite Element Method

Zero Pole representation

Fig. 2. Impedance characteristic |z11| of the dielectric resonator filter
computed using the full FEM model and the zero-pole representation (12).

applied, have to be nonphysical and therefore they can easily
be detected and deflated. This procedure is described next.

The projection basis has to be orthogonal in order to provide
a well-conditioned system of equations (5). The standard
procedure is to compute the singular value decomposition of V
or orthogonalize the columns of V using the modified Gram-
Schmidt procedure. As a result, we get:

VHV = ID.

However, for the generalized eigenvalue problems that de-
fine the projection basis, the eigenvectors are C-orthogonal
by definition. This orthogonality is ensured for each set of
eigenvectors separately (VE ,V

1
M , or V2

M ). It is beneficial to
orthogonalize the final set of vectors to ensure that the C-
orthogonality property holds for all vectors

VHCV = ID.

To this end, matrix C has to be taken into account in the
modified Gram-Schmidt process. Note that it is sufficient to
C-orthogonalize each vector vi

M against VE since, as noted
above, vectors in VE are eigenvectors of (11) and therefore are
C-orthogonal. Once done, it becomes possible to completely
decouple the singular and regular parts of ROM (16) [22].

ΓR =

[
ΛE 0
0 ΓZ

]
,

CR =

[
ID 0
0 ID

]
.

(16)

Matrix ΛE is a diagonal matrix with the in-band eigenvalues
of the FOM (eigenvalues of (11)), so it is related to the
true poles. Any spurious pole has to be due to the in-band
eigenvalues of matrix ΓZ . Regularization is the process of
detection and removal of spurious poles. It is performed by
means of the eigendecomposition of the matrix ΓZ . This
eigendecomposition reveals the location of additional poles.
Next, the eigenvalues related to the in-band poles in this
diagonalized submatrix associated with the regular part are
set to zero, thus effectively removing them from the response
of the constructed ROM.

V. EFFICIENT COMPUTATION OF THE PROJECTION BASIS

To generate the projection basis (15) for a two-port device,
one has to solve three eigenproblems. This process can be
time consuming, particularly when the size of the FEM

3.5 4 4.5 5

frequency (GHz)

-100

-50

0

50

|z
2
1
| 
(d

B
)

Finite Element Method

Zero Pole representation

Fig. 3. Impedance characteristic |z21| of the dielectric resonator filter
computed using the full FEM model and zero-pole representation (12).
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system is large. In this section, we would like to describe
the method which allows one to generate the projection basis
with reduced numerical effort. In general, eigenvectors are
computed using the Arnoldi iteration with a shift-and-invert
preconditioner [33]. In order to explain how it can be used
for the computation of the projection basis, let us consider the
generalized eigenvalue problem (11) with a single eigenpair
(λE ,vE):

(Γ+ λEC)vE = 0. (17)

To compute the eigenpair associated with the considered
frequency band, we first perform the spectral transformation,
which pushes these eigenvalues to the end of the eigen-
spectrum. To this end, (17) is transformed into the standard
eigenproblem:

TvE = γEvE , (18)

where γE = (λE − σ)−1 and σ ̸= λE is a frequency
shift, usually corresponding to the central frequency of the
considered band. Matrix T is defined as follows:

T = (Γ+ σC)−1C. (19)

In effect, the eigenvalues of (19) that are the largest in
magnitude correspond to the eigenvalues of (17) which are
the closest to the specified σ (central frequency of the band).
Then, the Arnoldi process [33] is applied to compute the
eigenpair: γE and vE . The most time-consuming step is the
LU factorization of the matrix A = (Γ + σC). However,
usually (in standard microwave engineering simulations) only
one factorization is required to compute all eigenpairs from
the considered frequency band, giving rise to the component
VE in the basis (15).

In order to compute the electromagnetic field at the
impedance zeros ([V1

M ,V2
M ]) associated with the eigenvalues

from the considered frequency band, one can follow the same
procedure for poles, however, this time matrix T (derived from
(14)) has a more complex, nonsymmetric form:

T =

([
Γ −bi

bT
i 0

]
+ σ

[
C 0
0 0

])−1 [
C 0
0 0

]
. (20)

Using the shift-and-invert method directly in this case would
require factorizing the nonsymmetric matrix twice (for each
port), which would significantly increase the computational
effort. To speed up the computations, we propose applying
the Schur complement [34] technique, which leads to the for-
mulation which requires just one factorization of a symmetric
matrix. Substituting A = Γ+σC, the inversion of the matrix
from (20) can be computed as follows:

[
A −bi

bT
i 0

]−1

=[
A−1 − β(bT

i β)
−1bT

i A
−1 β(bT

i β)
−1

−(bT
i β)

−1bT
i A

−1 (bT
i β)

−1

]
,

(21)

where β = A−1bi. As can be seen, the whole process requires
just one LU factorization of a full FEM system matrix A,
which is used both in (19) and (21) to compute poles and zeros,
together with the associated electromagnetic field distribution,
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Fig. 4. Eighth-order dual-mode waveguide filter structure and scattering
parameters. Dimensions can be found in [8].
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Fig. 5. Eighth order dual-mode filter. Actual reduction-error as a function
of ROM size, where q is the number of FOM eigenvectors associated with
impedance zeros in the projection basis. The number of poles in the projection
basis is 10.

respectively. It is worth mentioning that the LU factorization
of the FEM system matrix is the most time-consuming stage
of the proposed reduction algorithm.

The remaining steps of the reduction process proceed in the
same way as described in formulas (5)-(7).

VI. NUMERICAL TESTS

In order to validate the accuracy of the presented ZP-MOR
approach, we have analyzed three microwave structures: an
eighth-order dual-mode waveguide filter, a dielectric resonator
filter, and a folded waveguide filter. All numerical tests were
performed on an Intel Core i5-7400 with 32 GB RAM
workstation. The code has been written in Matlab.

The first numerical example focuses on the eighth-order
dual-mode waveguide filter [8], fed by two WR-90 waveguide
ports, assuming a single-mode excitation. The purpose of the
simulation was to compute the filter scattering parameters at
201 equidistantly distributed points in the 11–13 GHz band,
using the standard FEM formulation [36], where the FEM
system of equations had 198878 degrees of freedom. The
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Fig. 6. Dielectric resonator filter. Actual reduction-error as a function of ROM
size, where q is the number of FOM eigenvectors associated with impedance
zeros in the projection basis. The number of poles in the projection basis is
4.
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Fig. 7. Folded waveguide filter: geometry and scattering parameters. Dimen-
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resulting scattering characteristics and the geometry of the
structure are shown in Fig. 4.

The same structure was then analyzed using the proposed
MOR method. To this end, we computed the eigenvectors of
the eigenproblems (11) and (14), respectively. Note that only
one LU factorization of the FEM system matrix is carried out
during this computation. Also, it should be noted that only
in-band poles and zeros (that is, the poles and zeros which lie
in the 11 to 13 GHz band) were considered. The computed
eigenvectors have been used to construct the projection basis
(15), and finally to construct the ROM in the form of (5). Fig.
4 shows the scattering parameters of the structure computed
using the full FEM model and the reduced order model,
respectively, and it can be seen that the characteristics are
indistinguishable. To compare these results more precisely, we
introduce the following actual error definition:

EACT (s) = ∥S(s)− SR(s)∥2, (22)

where the scattering parameters S(s) and SR(s) were com-
puted using (4) and (7), respectively. The actual error plots
for five cases are shown in Fig. 5. In each of these cases the
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Fig. 8. Folded waveguide filter. Actual reduction-error as a function of ROM
size, where q is the number of FOM eigenvectors associated with impedance
zeros in the projection basis. The number of poles in the projection basis is
6.

projection basis is composed of all 10 in-band pole eigenvec-
tors and q ∈ {0, 5, 10, 15, 18} eigenvectors associated with
the impedance matrix element zeros. The number of all in-
band input/output zeros of the FOM is 9. As a result, q = 18
corresponds to all eigenvectors associated with the zeros in the
diagonal entries of the matrix-valued transfer function since
this is a two-port device. Finally, the total number of vectors
in the projection basis for all in-band zeros and poles is 28.
It can be seen that the basis composed of all relevant in-
band eigenvectors for both zeros and poles guarantees that the
actual error is below 10−8, whereas the basis which includes
only the in-band poles (i.e., q = 0) leads to a very poor
reduced model with the maximum accurate error above 0.1.
The quality of the model increases rapidly as more and more
eigenvectors for impedance zeros are added (q increases).
Thus, the proposed technique significantly increases the ROM
accuracy. The second plot shows the maximum in-band error
level as a function of the number of vectors in the basis. In
the initial phase of building the reduced model, the maximum
reduction error across the band is at a similar high level. This
is due to the fact that the initial basis vectors reduce the error
only in selected parts of the frequency band, while in the rest
of the band the error is still at a high level. The same plot also
shows the results for the RBM method. It can be seen that the
quality of the ROM generated using the proposed MOR is
slightly better compared to the ROM generated using RBM
(which generates the almost optimum-size projection basis).
Note that in the proposed approach only one LU factorization
of the FEM system matrix is carried out, whereas this is not the
case for RBM, where multiple LU factorizations are needed.

In the second numerical test, we considered a dielectric
resonator filter [32], which was analyzed in Section IV. Here,
the goal of the simulation was to compute the scattering
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parameters at 2001 equidistantly distributed points in the 3.5-
5 GHz band. Firstly, a full-order FEM model with 198878
variables has been constructed. Next, we constructed an ROM
using the proposed MOR scheme. To this end, all relevant in-
band eigenvectors have been computed, resulting in the ROM
of size r = 10 (six in-band eigenvectors for zeros and four
for in-band poles, respectively). The actual error plots can be
seen in Fig. 6. Similar to the first numerical test, the ROM is
characterized with high accuracy with respect to the FOM (the
actual error is below 10−6 in the entire considered frequency
band).

The last test deals with a folded waveguide filter shown
in Fig. 7. This filter is analyzed using a FOM with 864958
degrees of freedom in the 14-15 GHz band. As can be seen,
the reduced model of size r = 18 (twelve eigenvectors for
zeros and six for poles) provides an accuracy below 10−11,
which is detailed in Fig. 8.

VII. DISCUSSION

In order to better assess the potential of the proposed ZP-
MOR method and compare it to other MOR techniques, in
this section, we will discuss a few aspects that affect the
numerical efficiency of the model order reduction process. The
comparison will be qualitative rather than quantitative. This is
because the quantitative comparison in terms of runtime or
memory usage would be meaningful only if the numerical
implementation of each algorithm were optimized in terms of
performance. The performance of numerical code for MOR
depends on many factors such as the hardware used for tests,
linear algebra libraries used for the solution of linear systems
of equations and eigenproblems, the degree of parallelization
applied at the level of code or the algorithm, and simulation
parameters (required accuracy, bandwidth, size of the problem,
the number of right-hand side vectors, etc.). Finding an optimal
combination of test problems and tuning the numerical code
for each method goes beyond the scope of this paper. We
used Matlab for rapid prototyping and proving the validity
of the proposed algorithm, so the code is neither efficient
nor it exploits the inherently parallel nature of ZP-MOR
that results from the independence between computing the
eigenvectors for poles and impedance element zeros. However,
the efficiency of the proposed ZP-MOR method compared
to sweeps based on other MOR techniques can be assessed
by qualitatively analyzing the workload related to the various
steps required in each algorithm to generate a ROM. Besides
ZP-MOR, in the following discussion, we shall consider four
ROM techniques: two classical methods, namely, RBM [8] and
SAPOR [14], as well as two techniques that employ splitting
the field solutions into their singular and regular contributions
to the system transfer function, that is, CRBM [21] and SS-
MM MOR [22]. For all MOR algorithms compared, the most
time-consuming portion of the reduced-order model generation
is associated with computing LU factorizations for full-order
system matrices. The RBM method requires multiple factor-
izations (for instance, RBM needed 14, 5, 9 LU factorizations
to calculate results for test cases 1–3 above, respectively),
while moment-matching-based algorithms such as SAPOR,

need fewer factorizations (just one in the case of a single-
point expansion, which is enough for some applications). For
the methods which include pole eigenvectors in the projection
bases (SS-MM MOR [22] and CRBM [21]) the number of
factorizations required is typically smaller than in RBM. It can
be as small as one for SS-MM MOR and a few for CRBM.
In the case of the proposed ZP-MOR method, only a single
factorization is performed, so in this regard the new technique
is equivalent to SAPOR and SS-MM MOR. However, it should
be noted that there is also an additional cost of using just one
factorization in the ZP-MOR that is related to inverting the
matrix with the Schur complement technique, as seen in (21).

Another noteworthy aspect of ROM generation is the ability
to parallelize this process. Methods which employ greedy
strategies, namely, RBM and multipoint MM algorithms, as
well as numerically stable moment matching schemes, are
inherently hard to parallelize since vectors constituting the
projection basis have to be computed sequentially. Methods
which involve solving eigenproblems may take advantage of
the available efficient parallel solvers (for instance, SLEPc [29]
or P ARPACK [28] developed for clusters). The proposed ZP-
MOR method offers yet another parallelization opportunity:
in the proposed approach, the projection basis is found from
three independent eigenproblems. These eigenproblems are
most often solved by means of a single LU factorization of
the system matrix. Once the factorization has been carried
out, each of the eigenproblems can be solved individually in
parallel. This means that the proposed ZP-MOR algorithm
shows the highest potential for parallelism, not offered by
prior-art methods.

Another important issue is associated with the size of the
projection basis. The orthogonalization process may be time-
consuming, especially when the number of columns in the
MOR projection basis V is large (which is often the case
in moment-matching based methods, such as SAPOR). Com-
pared to SAPOR or, to some extent, also to SS-MM MOR,
the proposed technique generates more compact models, thus
reducing the number of times orthogonalization is performed
and additionally avoiding a lengthy orthogonalization process
involving a large number of vectors.

The size of the ROMs, for any reduction method applied,
is obviously much smaller compared to the size of the initial
model, and hence the time required to compute the approx-
imate system response in the frequency band of interest is
greatly reduced. If only a single frequency sweep is performed,
then the runtime needed for ROM generation dominates the
computational cost, and differences in the size of ROMs
generated by different methods do not significantly impact the
overall frequency-sweep cost. By the same token, in case the
field distribution is needed at each frequency point, we can still
use the same ROM (extracted once). However, RBM, pole-
based CRBM, and the proposed ZP-MOR approach typically
generate ROMs with smaller sizes, compared to moment-
matching based algorithms, which yields some performance
gains in this case.

It should also be pointed out that the proposed approach
does not rely on the a posteriori error estimator [7], [9], [27] to
assess the accuracy of the ROM, as well as to select subsequent
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TABLE I
QUALITATIVE PERFORMANCE COMPARISON OF DIFFERENT MOR

TECHNIQUES: RBM, MOMENT-MATCHING-BASED (SAPOR), MOR WITH
POLE EIGENVECTORS (CRBM/SS-MM MOR), AND THE PROPOSED

METHOD (ZP-MOR). SYMBOLS ’–’, ’-’, ’+’, ’++’ ARE THE NOTES FROM
THE WEAKEST TO THE BEST, RESPECTIVELY, AND (1) MEANS THAT

METHOD REQUIRES JUST ONE FACTORIZATION.

RBM SAPOR CRBM/ ZP-MOR
SS-MM

No. of factorizations - - ++ (1) -/++ (1) ++ (1)
Parallelizable - - - +/+ + +
ROM size + + - - ++ + +
Error estimation - - - - - +
Orthogonalization + - - +/- + +

expansion points (as it is the case in RBM and CRBM). It is
assumed that all in-band impedance zeros and poles guarantee
high accuracy in the ROM with respect to FOM. Thus, the
time needed to monitor the error behavior within the entire
frequency band, performed each time the projection basis is
augmented and is typically present in prior-art algorithms, is
saved.

The qualitative performance comparison of MOR tech-
niques, summarizing the above observations, is given in Ta-
ble I. We used notes from the weakest to the best, in order:
’–’, ’-’, ’+’, ’++’, respectively. It can be seen that the proposed
method obtained the highest notes almost in all categories.

Finally, as far as the shortcomings of the proposed technique
are concerned, the inversion of a matrix using the Schur
complement involves several extra solves that have to be
applied when a new Krylov space vector is computed while
searching the eigenvalues and eigenvectors. Moreover, at this
stage, we do not have a good error bound estimate showing
the impact of out-of-band poles and zeros on the accuracy of
ROM. Future work may include the derivation of error bounds
as well as the extension of the proposed technique to antennas
and systems with conductor loss and frequency-dependent
materials (lossy dielectrics with complex permittivity can be
handled in the same way as proposed in [22]). A possible
extension of this work can be related to using the state zero
directions of the matrix-valued transfer function zeros [37]
(rather than the eigenvectors associated with the zeros of its
elements as it is proposed in this work).

VIII. CONCLUSIONS

This paper has presented a novel model-order reduction
technique called ZP-MOR to perform fast frequency sweeps
of frequency-domain finite-element method simulations of
microwave structures. The projection basis used to construct
the reduced-order model is composed of the eigenvectors
associated with the poles and zeros of selected entries of
the matrix-valued transfer function computed from the FEM
equations. Special emphasis has been made in keeping the
computational cost low reducing the number of LU factoriza-
tions of the FEM matrix system to one, as well as, allowing
for MOR projection basis build parallelization. Numerical tests
of three microwave structures have demonstrated the reliability
and accuracy of the proposed technique.
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