An upper bound for the double outer-independent domination number of a tree

Marcin Krzywkowski* ${ }^{*}$
marcin.krzywkowski@gmail.com

Abstract

A vertex of a graph is said to dominate itself and all of its neighbors. A double outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G is dominated by at least two vertices of D, and the set $V(G) \backslash D$ is independent. The double outer-independent domination number of a graph G, denoted by $\gamma_{d}^{o i}(G)$, is the minimum cardinality of a double outer-independent dominating set of G. We prove that for every nontrivial tree T of order n, with l leaves and s support vertices we have $\gamma_{d}^{o i}(T) \leq(2 n+l+s) / 3$, and we characterize the trees attaining this upper bound. Keywords: double outer-independent domination, double domination, tree. $\mathcal{A}_{\mathcal{M S}}$ Subject Classification: 05C05, 05C69.

1 Introduction

Let $G=(V, E)$ be a graph. By the neighborhood of a vertex v of G we mean the set $N_{G}(v)=\{u \in V(G): u v \in E(G)\}$. The degree of a vertex v, denoted by $d_{G}(v)$, is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex is strong (weak, respectively) if it is adjacent to at least two leaves (exactly one leaf, respectively). The path on n vertices we denote by P_{n}. We say that a subset of $V(G)$ is independent if there is no edge between any two vertices of this set.

[^0]A vertex of a graph is said to dominate itself and all of its neighbors. A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of G is dominated by at least one vertex of D, while it is a double dominating set of G if every vertex of G is dominated by at least two vertices of D. The domination (double domination, respectively) number of G, denoted by $\gamma(G)\left(\gamma_{d}(G)\right.$, respectively), is the minimum cardinality of a dominating (double dominating, respectively) set of G. Double domination in graphs was introduced by Harary and Haynes [4], and further studied for example in $[1,3]$. For a comprehensive survey of domination in graphs, see $[5,6]$.

A subset $D \subseteq V(G)$ is a double outer-independent dominating set, abbreviated DOIDS, of G if every vertex of G is dominated by at least two vertices of D, and the set $V(G) \backslash D$ is independent. The double outer-independent domination number of a graph G, denoted by $\gamma_{d}^{o i}(G)$, is the minimum cardinality of a double outer-independent dominating set of G. A double outer-independent dominating set of G of minimum cardinality is called a $\gamma_{d}^{o i}(G)$-set. The study of double outer-independent domination in graphs was initiated in [7].

A 2-dominating set of a graph G is a set D of vertices of G such that every vertex of $V(G) \backslash D$ has at least two neighbors in D. The 2-domination number of G, denoted by $\gamma_{2}(G)$, is the minimum cardinality of a 2-dominating set of G. Blidia, Chellali, and Favaron [2] proved the following upper bound on the 2domination number of a tree. For every nontrivial tree T of order n with l leaves we have $\gamma_{2}(T) \leq(n+l) / 2$. They also characterized the extremal trees.

We prove the following upper bound on the double outer-independent domination number of a tree. For every nontrivial tree T of order n, with l leaves and s support vertices we have $\gamma_{d}^{o i}(T) \leq(2 n+l+s) / 3$. We also characterize the trees attaining this upper bound.

2 Results

Since the one-vertex graph does not have a double outer-independent dominating set, in this paper, by a tree we mean only a connected graph with no cycle, and which has at least two vertices.

We begin with the following two straightforward observations.
Observation 1 Every leaf of a graph G is in every $\gamma_{d}(G)$-set.
Observation 2 Every support vertex of a graph G is in every $\gamma_{d}(G)$-set.
We show that if T is a nontrivial tree of order n, with l leaves and s support vertices, then $\gamma_{d}^{o i}(T)$ is bounded above by $(2 n+l+s) / 3$. For the purpose of characterizing the trees attaining this bound we introduce a family \mathcal{T} of trees $T=T_{k}$ that can be obtained as follows. Let T_{1} be a path P_{3} with leaves labeled x and z, and the support vertex labeled y. Let $A\left(T_{1}\right)=\{x, y, z\}$. Let H_{1} be a path P_{2}
with vertices labeled u and v. Let finally H_{2} be a path P_{3} with leaves labeled u and w, and the support vertex labeled v. If k is a positive integer, then T_{k+1} can be obtained recursively from T_{k} by one of the following operations.

- Operation \mathcal{O}_{1} : Attach a vertex, say z, by joining it to a support vertex of T_{k}. Let $A\left(T_{k+1}\right)=A\left(T_{k}\right) \cup\{z\}$.
- Operation \mathcal{O}_{2} : Attach a vertex, say z, by joining it to a leaf of T_{k} adjacent to a strong support vertex. Let $A\left(T_{k+1}\right)=A\left(T_{k}\right) \cup\{z\}$.
- Operation \mathcal{O}_{3} : Attach a copy of H_{1} by joining the vertex u to a vertex of T_{k} which is not a leaf and is adjacent to a support vertex. Let $A\left(T_{k+1}\right)$ $=A\left(T_{k}\right) \cup\{u, v\}$.
- Operation \mathcal{O}_{4} : Attach a copy of H_{2} by joining the vertex u to a leaf of T_{k} adjacent to a weak support vertex. Let $A\left(T_{k+1}\right)=A\left(T_{k}\right) \cup\{v, w\}$.

We now prove that for every tree T of the family \mathcal{T}, the set $A(T)$ defined above is a DOIDS of minimum cardinality equal to $(2 n+l+s) / 3$.

Lemma 3 If $T \in \mathcal{T}$, then the set $A(T)$ defined above is a $\gamma_{d}^{o i}(T)$-set of size $(2 n+l+s) / 3$.

Proof. We use the terminology of the construction of the trees $T=T_{k}$, the set $A(T)$, and the graphs H_{1} and H_{2} defined above. To show that $A(T)$ is a $\gamma_{d}^{o i}(T)$-set of cardinality $(2 n+l+s) / 3$ we use the induction on the number k of operations performed to construct the tree T. If $T=T_{1}=P_{3}$, then $(2 n+l+s) / 3$ $=(6+2+1) / 3=3=|A(T)|=\gamma_{d}^{o i}(T)$. Let $k \geq 2$ be an integer. Assume that the result is true for every tree $T^{\prime}=T_{k}$ of the family \mathcal{T} constructed by $k-1$ operations. For a given tree T^{\prime}, let n^{\prime} denote its order, l^{\prime} the number of its leaves, and s^{\prime} the number of support vertices. Let $T=T_{k+1}$ be a tree of the family \mathcal{T} constructed by k operations.

First assume that T is obtained from T^{\prime} by operation \mathcal{O}_{1}. We have $n=n^{\prime}+1$, $l=l^{\prime}+1$ and $s=s^{\prime}$. The vertex to which is attached z we denote by x. Let y be a leaf adjacent to x and different from z. By Observation 2 we have $x \in A\left(T^{\prime}\right)$. It is easy to see that $A(T)=A\left(T^{\prime}\right) \cup\{z\}$ is a DOIDS of the tree T. Thus $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+1$. Now let D be any $\gamma_{d}^{o i}(T)$-set. By Observations 1 and 2 we have $z, y, x \in D$. It is easy to see that $D \backslash\{z\}$ is a DOIDS of the tree T^{\prime}. Therefore $\gamma_{d}^{o i}\left(T^{\prime}\right) \leq \gamma_{d}^{o i}(T)-1$. We now conclude that $\gamma_{d}^{o i}(T)=\gamma_{d}^{o i}\left(T^{\prime}\right)+1$. We get $\gamma_{d}^{o i}(T)=|A(T)|=\left|A\left(T^{\prime}\right)\right|+1=\left(2 n^{\prime}+l^{\prime}+s^{\prime}\right) / 3+1=(2 n-2+l-1+s) / 3+1$ $=(2 n+l+s) / 3$.

Now suppose that T is obtained from T^{\prime} by operation \mathcal{O}_{2}. We have $n=n^{\prime}+1$, $l=l^{\prime}$ and $s=s^{\prime}+1$. The leaf to which is attached z we denote by x. By y we denote the neighbor of x other than z. By Observation 1 we have $x \in A\left(T^{\prime}\right)$.

It is easy to see that $A(T)=A\left(T^{\prime}\right) \cup\{z\}$ is a DOIDS of the tree T. Thus $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+1$. Now let D be any $\gamma_{d}^{o i}(T)$-set. By Observations 1 and 2 we have $z, x, y \in D$. It is easy to see that $D \backslash\{z\}$ is a DOIDS of the tree T^{\prime}. Therefore $\gamma_{d}^{o i}\left(T^{\prime}\right) \leq \gamma_{d}^{o i}(T)-1$. We now conclude that $\gamma_{d}^{o i}(T)=\gamma_{d}^{o i}\left(T^{\prime}\right)+1$. We get $\gamma_{d}^{o i}(T)=|A(T)|=\left|A\left(T^{\prime}\right)\right|+1=\left(2 n^{\prime}+l^{\prime}+s^{\prime}\right) / 3+1=(2 n-2+l+s-1) / 3+1$ $=(2 n+l+s) / 3$.

Now assume that T is obtained from T^{\prime} by operation \mathcal{O}_{3}. We have $n=n^{\prime}+2$, $l=l^{\prime}+1$ and $s=s^{\prime}+1$. The vertex to which is attached P_{2} we denote by x. Let y be a support vertex adjacent to x, and let z be a leaf adjacent to y. Obviously, $A(T)=A\left(T^{\prime}\right) \cup\{u, v\}$ is a DOIDS of the tree T. Thus $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+2$. Now let D be any $\gamma_{d}^{o i}(T)$-set. By Observations 1 and 2 we have $v, z, u, y \in D$. If $x \in D$, then it is easy to see that $D \backslash\{u, v\}$ is a DOIDS of the tree T^{\prime}. Now suppose that $x \notin D$. Let a denote a neighbor of x other than u and y. The set $V(T) \backslash D$ is independent, thus $a \in D$. Let us observe that now also $D \backslash\{u, v\}$ is a DOIDS of the tree T^{\prime} as the vertex x is still dominated at least twice. Therefore $\gamma_{d}^{o i}\left(T^{\prime}\right) \leq \gamma_{d}^{o i}(T)-2$. We now conclude that $\gamma_{d}^{o i}(T)=\gamma_{d}^{o i}\left(T^{\prime}\right)+2$. We get $\gamma_{d}^{o i}(T)=|A(T)|=\left|A\left(T^{\prime}\right)\right|+2=\left(2 n^{\prime}+l^{\prime}+s^{\prime}\right) / 3+2=(2 n-4+l-1+s-1) / 3+2$ $=(2 n+l+s) / 3$.

Now assume that T is obtained from T^{\prime} by operation \mathcal{O}_{4}. We have $n=n^{\prime}+3$, $l=l^{\prime}$ and $s=s^{\prime}$. The leaf to which is attached P_{3} we denote by x. By Observation 1 we have $x \in A\left(T^{\prime}\right)$. It is easy to see that $D^{\prime} \cup\{v, w\}$ is a DOIDS of the tree T. Thus $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+2$. Now let us observe that there exists a $\gamma_{d}^{o i}(T)$-set that does not contain the vertex u. Let D be such a set. By Observations 1 and 2 we have $w, v \in D$. Observe that $D \backslash\{v, w\}$ is a DOIDS of the tree T^{\prime}. Therefore $\gamma_{d}^{o i}\left(T^{\prime}\right) \leq \gamma_{d}^{o i}(T)-2$. We now conclude that $\gamma_{d}^{o i}(T)=\gamma_{d}^{o i}\left(T^{\prime}\right)+2$. We get $\gamma_{d}^{o i}(T)=|A(T)|=\left|A\left(T^{\prime}\right)\right|+2=\left(2 n^{\prime}+l^{\prime}+s^{\prime}\right) / 3+2=(2 n-6+l+s) / 3+2$ $=(2 n+l+s) / 3$.

We now establish the main result, an upper bound on the double outerindependent domination number of a tree together with the characterization of the extremal trees.

Theorem 4 If T is a tree of order n, with l leaves and s support vertices, then $\gamma_{d}^{o i}(T) \leq(2 n+l+s) / 3$ with equality if and only if $T \in \mathcal{T}$.

Proof. If $\operatorname{diam}(T)=1$, then $T=P_{2}$. We have $\gamma_{d}^{o i}(T)=2<(4+2+2) / 3$ $=(2 n+l+s) / 3$. Now suppose that $\operatorname{diam}(T) \geq 2$. Thus the order n of the tree T is at least three. The result we obtain by the induction on the number n. Assume that the theorem is true for every tree T^{\prime} of order $n^{\prime}<n$, with l^{\prime} leaves and s^{\prime} support vertices.

First suppose that some support vertex of T, say x, is strong. Let y and z be leaves adjacent to x. Let $T^{\prime}=T-y$. We have $n^{\prime}=n-1, l^{\prime}=l-1$ and $s^{\prime}=s$. Let D^{\prime} be any $\gamma_{d}^{o i}\left(T^{\prime}\right)$-set. By Observation 2 we have $x \in D^{\prime}$. It is easy to see
that $D^{\prime} \cup\{y\}$ is a DOIDS of the tree T. Thus $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+1$. We now get $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+1 \leq\left(2 n^{\prime}+l^{\prime}+s^{\prime}\right) / 3+1=(2 n-2+l-1+s) / 3+1=(2 n+l+s) / 3$. If $\gamma_{d}^{o i}(T)=(2 n+l+s) / 3$, then obviously $\gamma_{d}^{o i}\left(T^{\prime}\right)=\left(2 n^{\prime}+l^{\prime}+s^{\prime}\right) / 3$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{1}. Thus $T \in \mathcal{T}$. Henceforth, we can assume that every support vertex of T is weak.

We now root T at a vertex r of maximum eccentricity $\operatorname{diam}(T)$. Let t be a leaf at maximum distance from r, and let v be the parent of t in the rooted tree. If $\operatorname{diam}(T) \geq 3$, then let u be the parent of v. If $\operatorname{diam}(T) \geq 4$, then let w be the parent of u. If $\operatorname{diam}(T) \geq 5$, then let d be the parent of w. By T_{x} let us denote the subtree induced by a vertex x and its descendants in the rooted tree T.

First suppose that $d_{T}(u) \geq 3$. Assume that among the children of u there is a support vertex, say x, different from v. The leaf adjacent to x we denote by y. Let $T^{\prime}=T-T_{v}$. We have $n^{\prime}=n-2, l^{\prime}=l-1$ and $s^{\prime}=s-1$. Let D^{\prime} be any $\gamma_{d}^{o i}\left(T^{\prime}\right)$-set. Obviously, $D^{\prime} \cup\{v, t\}$ is a DOIDS of the tree T. Thus $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+2$. We now get $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+2 \leq\left(2 n^{\prime}+l^{\prime}+s^{\prime}\right) / 3+2$ $=(2 n-4+l-1+s-1) / 3+2=(2 n+l+s) / 3$. If $\gamma_{d}^{o i}(T)=(2 n+l+s) / 3$, then $\gamma_{d}^{o i}\left(T^{\prime}\right)=\left(2 n^{\prime}+l^{\prime}+s^{\prime}\right) / 3$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{3}. Thus $T \in \mathcal{T}$.

Now assume that some child of u, say x, is a leaf. Let $T^{\prime}=T-t$. We have $n^{\prime}=n-1, l^{\prime}=l$ and $s^{\prime}=s-1$. Let D^{\prime} be any $\gamma_{d}^{o i}\left(T^{\prime}\right)$-set. By Observation 1 we have $v \in D^{\prime}$. It is easy to see that $D^{\prime} \cup\{t\}$ is a DOIDS of the tree T. Thus $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+1$. We now get $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+1 \leq\left(2 n^{\prime}+l^{\prime}+s^{\prime}\right) / 3+1$ $=(2 n-2+l+s-1) / 3+1=(2 n+l+s) / 3$. If $\gamma_{d}^{o i}(T)=(2 n+l+s) / 3$, then $\gamma_{d}^{o i}\left(T^{\prime}\right)=\left(2 n^{\prime}+l^{\prime}+s^{\prime}\right) / 3$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{2}. Thus $T \in \mathcal{T}$.

If $d_{T}(u)=1$, then $T=P_{3}=T_{1} \in \mathcal{T}$. By Lemma 3 we have $\gamma_{d}^{o i}(T)=(2 n$ $+l+s) / 3$. Now consider the case when $d_{T}(u)=2$. First assume that there is a child of w other than u, say k, such that the distance of w to the most distant vertex of T_{k} is three. It suffices to consider only the possibility when T_{k} is a path P_{3}. Let $T^{\prime}=T-T_{u}$. We have $n^{\prime}=n-3, l^{\prime}=l-1$ and $s^{\prime}=s-1$. Let us observe that there exists a $\gamma_{d}^{o i}\left(T^{\prime}\right)$-set that does not contain the vertex k. Let D^{\prime} be such a set. The set $V\left(T^{\prime}\right) \backslash D^{\prime}$ is independent, thus $w \in D^{\prime}$. It is easy to observe that $D^{\prime} \cup\{v, t\}$ is a DOIDS of the tree T. Thus $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+2$. We now get $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+2 \leq\left(2 n^{\prime}+l^{\prime}+s^{\prime}\right) / 3+2=(2 n-6+l-1+s-1) / 3+2$ $=(2 n+l+s) / 3-2 / 3<(2 n+l+s) / 3$.

Now suppose that w is adjacent to a leaf. Let $T^{\prime}=T-T_{u}$. We have $n^{\prime}=n-3$, $l^{\prime}=l-1$ and $s^{\prime}=s-1$. Let D^{\prime} be any $\gamma_{d}^{o i}\left(T^{\prime}\right)$-set. By Observation 2 we have $w \in D^{\prime}$. It is easy to observe that $D^{\prime} \cup\{v, t\}$ is a DOIDS of the tree T. Thus $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+2$. We now get $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+2 \leq\left(2 n^{\prime}+l^{\prime}+s^{\prime}\right) / 3+2$ $=(2 n-6+l-1+s-1) / 3+2=(2 n+l+s) / 3-2 / 3<(2 n+l+s) / 3$. Henceforth, we can assume that w is not adjacent to any leaf.

Now suppose that there is a child of w, say k, such that the distance of w to the most distant vertex of T_{k} is two. It suffices to consider only the possibility when k is a support vertex of degree two. The leaf adjacent to k we denote by l. Let $T^{\prime}=T-T_{u}-l$. We have $n^{\prime}=n-4, l^{\prime}=l-1$ and $s^{\prime}=s-1$. Let D^{\prime} be any $\gamma_{d}^{o i}\left(T^{\prime}\right)$-set. By Observations 1 and 2 we have $k, w \in D^{\prime}$. It is easy to observe that $D^{\prime} \cup\{v, t, l\}$ is a DOIDS of the tree T. Thus $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+3$. We now get $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+3 \leq\left(2 n^{\prime}+l^{\prime}+s^{\prime}\right) / 3+3=(2 n-8+l-1+s-1) / 3+3$ $=(2 n+l+s) / 3-1 / 3<(2 n+l+s) / 3$.

If $d_{T}(w)=1$, then $T=P_{4}$. We have $T \in \mathcal{T}$ as it can be obtained from P_{3} by operation \mathcal{O}_{2}. By Lemma 3 we have $\gamma_{d}^{o i}(T)=(2 n+l+s) / 3$. Now consider the case when $d_{T}(w)=2$. Let $T^{\prime}=T-T_{u}$. Let D^{\prime} be any $\gamma_{d}^{o i}\left(T^{\prime}\right)$-set. By Observation 1 we have $w \in D^{\prime}$. It is easy to see that $D^{\prime} \cup\{v, t\}$ is a DOIDS of the tree T. Thus $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+2$. First suppose that d is adjacent to a leaf. We have $n^{\prime}=n-3, l^{\prime}=l$ and $s^{\prime}=s-1$. We now get $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+2$ $\leq\left(2 n^{\prime}+l^{\prime}+s^{\prime}\right) / 3+2=(2 n-6+l+s-1) / 3+2=(2 n+l+s) / 3-1 / 3<(2 n+l+s) / 3$.

Now assume that no neighbor of d is a leaf. Let $T^{\prime}=T-T_{u}$. We have $n^{\prime}=n-3, l^{\prime}=l$ and $s^{\prime}=s$. We now get $\gamma_{d}^{o i}(T) \leq \gamma_{d}^{o i}\left(T^{\prime}\right)+2 \leq\left(2 n^{\prime}+l^{\prime}\right.$ $\left.+s^{\prime}\right) / 3+2=(2 n-6+l+s) / 3+2=(2 n+l+s) / 3$. If $\gamma_{d}^{o i}(T)=(2 n+l+s) / 3$, then $\gamma_{d}^{o i}\left(T^{\prime}\right)=\left(2 n^{\prime}+l^{\prime}+s^{\prime}\right) / 3$. By the inductive hypothesis we have $T^{\prime} \in \mathcal{T}$. The tree T can be obtained from T^{\prime} by operation \mathcal{O}_{4}. Thus $T \in \mathcal{T}$.

References

[1] M. Atapour, A. Khodkar and S. Sheikholeslami, Characterization of double domination subdivision number of trees, Discrete Applied Mathematics 155 (2007), 1700-1707.
[2] M. Blidia, M. Chellali and O. Favaron, Independence and 2-domination in trees, Australasian Journal of Combinatorics 33 (2005), 317-327.
[3] X. Chen and L. Sun, Some new results on double domination in graphs, Journal of Mathematical Research and Exposition 25 (2005), 451-456.
[4] F. Harary and T. Haynes, Double domination in graphs, Ars Combinatoria 55 (2000), 201-213.
[5] T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[6] T. Haynes, S. Hedetniemi and P. Slater (eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
[7] M. Krzywkowski, Double outer-independent domination in graphs, to appear in Ars Combinatoria.

[^0]: *Research fellow at the Department of Mathematics, University of Johannesburg, South Africa.
 ${ }^{\dagger}$ Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland. Research supported by the Polish Ministry of Science and Higher Education grant IP/2012/038972.

