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1. Introduction

This work is a continuation and extension of the approach presented in our previous papers
[1, 2]. The new idea proposed herein is the application of model order reduction (MOR) tech-
nique to guided wave propagation problems. Model order reduction has originally been devel-
oped for acceleration of numerical analysis of dynamical systems for which one evaluates the
transfer function by inverting a system matrix (or solving a system of equations) at many fre-
quency points [3]. The general idea is to reduce the complexity of the problem (i.e. decrease
the number of states which translates in a smaller matrix to be inverted at each frequency point)
while preserving (within a limited frequency band) its input-output behavior. Among various
techniques that have been developed for linear time invariant systems one can mention projec-
tion based methods such as the PVL (Pade via Lanczos) [4], PRIMA (Passive Reduced-Order
Interconnect Macromodeling Algorithm) [5] and ENOR (Efficient Nodal Order Reduction) [6].
They all generate a small set of orthogonal vectors which span the solution space in the limited
frequency range. Model order reduction can also be used in computational electromagnetics or
photonics [7, 8, 9, 10, 11, 12]. It is particulary straightforward to apply this technique in the
methods which use spatial discretization to solve Maxwell’s equations. These equations can
be cast in the state-space form with state variables being the field samples at the discretization
points. MOR allows one to eliminate internal redundant variables, and thus it is particularly
useful when the discretization is very fine.

The MOR technique for dicretized Maxwell’s equations on Yee’s mesh can be implemented
in three main steps [9]. The schematic idea of this process is presented in Fig. 1. In the first

Fig. 1. The idea of model order reduction algorithm.

step a particular region of the domain is selected and its input/output ports are defined. In
the FD method the whole domain is discretized and evenly covered with Yee’s mesh and the
ports mentioned above can be associated with the field samples at the boundary of the region.
Mathematically, the global matrix operator, formed from Maxwell’s grid equations, is separated
into one part corresponding to the model and the second part corresponding to the rest of the
domain. The second stage is a projection of the operator (its part corresponding to the model)
onto a fixed “smaller” subspace. The projection eliminates most of internal state variables,
while the relation between the output and input ports remains preserved for a limited frequency
range. The projection basis is obtained automatically with ENOR algorithm [6] and it can by
applied to the analysis of inhomogeneous regions. Finally, the reduced part of the operator is
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coupled with the unprojected part of the domain. As a result, the problem size is smaller and the
computation time is much shorter. MOR has been successfully applied to reduce the complexity
of FDTD (finite difference in time domain) and FDFD (finite difference in frequency domain)
methods [9].

In this paper we present the application of MOR to analysis of propagation problems. It is
important to note, that this type of problems leads to a linear space-invariant system and the
space-state representation involves a set of differential equations involving space rather than
the time variable. Consequently, the propagation constant, rather than frequency plays a role of
a ”sweep” parameter. For this reason a different formulation of the system of equations to be
reduced is required (different from the standard one considered in [13, 14, 1]).

An efficiency of the reduction strongly depends on a number of the ports coupling the model
with the global domain (field samples at the boundary of the model). Therefore to improve the
reduction efficiency a combination of MOR and discrete function expansion (DFE) technique
is proposed. In this approach samples of the field at the boundary are replaced with a smaller
number of harmonic amplitudes of the field. This improvement results in a significantly smaller
size of the problem and in a very fast analysis (up to 16 times shorter than in the standard FD
method).

2. Formulation

All structures analyzed in this paper are homogeneous along the z direction, so we can assume
that E(ρ ,φ ,z) = E(ρ ,φ)e−γz and H(ρ ,φ ,z) = H(ρ ,φ)e−γz, where γ is the propagation coef-
ficient. In the analysis a standard Yee’s mesh in the cylindrical coordinate system is applied
(Fig. 2). We assume that the computational domain is discretised into M and N points in the ra-
dial and angular direction, respectively. Consequently, Yee’s mesh measures K =M×N points.
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Fig. 2. The discrete field components in the n-th cell (n = 1, . . . ,K).

Following these assumptions, Maxwell’s curl equations can be expressed in a discrete matrix
form, as [1] [

T(e)
t 0

0 T(e)
z

][
γR(e)

tt R(e)
tz

R(e)
zt 0

][
Et

Ez

]
=− jωμ0

[
Ht

Hz

]
,

[
T(h)

t 0

0 T(h)
z

][
γR(h)

tt R(h)
tz

R(h)
zt 0

][
Ht

Hz

]
= jωε0

[
Pt 0
0 Pz

][
Et

Ez

]
. (1)
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where

T (e)
t = diag(ρ(h)

1

−1
, · · · ,ρ(h)

K

−1
,ρ(e)

1 , · · · ,ρ(e)
K ), T (e)

z = diag(ρ(e)
1

−1
, · · · ,ρ(e)

K

−1
) (2)

T (h)
t = diag(ρ(e)

1

−1
, · · · ,ρ(e)

K

−1
,ρ(h)

1 , · · · ,ρ(h)
K ), T (h)

z = diag(ρ(h)
1

−1
, · · · ,ρ(h)

K

−1
) (3)

Pt = diag(ερ1, · · · ,ερK ,εφ1, · · · ,εφK), Pz = diag(εz1, · · · ,εzK) (4)

R(e)
tt =

[
0 IK×K

−IK×K 0

]
= R(h)

tt , R(e)
tz =

[
Rφ
−Rρ

]
= R(h)

zt
T
, R(e)

zt =
[−Rφ Rρ

]
= R(h)

tz
T

(5)

Rρ = Δρ−1

⎧⎨
⎩

−1, m = n,
1, m = n−1,
0, otherwise,

, Rφ = Δφ−1

⎧⎨
⎩

−1, m = n,
1, m = n−N,
0, otherwise,

(6)

Et =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Eρ 1
...

Eρ K

ρ(e)
1 Eφ 1

...

ρ(e)
K Eφ K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ez =

⎡
⎢⎣

Ez1
...

EzK

⎤
⎥⎦ , Ht =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hρ 1
...

Hρ K

ρ(h)
1 Hφ 1

...

ρ(h)
K Hφ K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Hz =

⎡
⎢⎣

Hz1
...

HzK

⎤
⎥⎦ (7)

and Δρ , Δφ are the space discretization in the ρ and φ direction, respectively.
The elimination of longitudinal components of the fields from the equations (1) gives

F(h)ht =−γet , F(e)et = γht , (8)

where

F(h) = R(e)
tt

−1
T(e)

t
−1(

jωμ0I+ 1
jωε0

T(e)
t R(e)

tz Pz
−1T(h)

z R(h)
zt

)
,

F(e) = R(h)
tt

−1
T(h)

t
−1(

jωε0Pt +
1

jωμ0
T(h)

t R(h)
tz T(e)

z R(e)
zt

)
. (9)

To invert the matrices in (9) no special procedure is required (T(e)
t , T(h)

t are diagonal and R(e)
tt ,

R(h)
tt are orthogonal so their inverse is a transposed matrix).
The formulation represented by equations (8) differs significantly from the standard one pre-

sented in [13, 14, 1]. However, also in this approach the eigenvalue problem for the propagation
coefficient can be obtained (from a simple substitution of relations (8)). The main advantage of
this formulation is that taking the inverse Laplace transform with respect to γ one gets a system
of state-space equations which have the form that makes the application of the MOR technique
possible.

In the first step a region for which MOR is to be applied must be selected (modeled area).
At the boundary of that region a set of input and output ports must be defined. Fig. 3 shows the
scheme of the coupling. The modeled area is denoted by a yellow background, the regular grid
by white background and the coupling ports are enveloped with a thick line.

It is convenient to segregate the fields samples located inside the model (eM , hM) from the
ones located outside (eU , hU ). In such a case equations (8) can be rewritten in the following
form[

F(h)
U S(h)

0 F(h)
M

][
hU

hM

]
=−γ

[
eU

eM

]
,

[
F(e)

U 0

S(e) F(e)
M

][
eU

eM

]
= γ

[
hU

hM

]
, (10)
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Fig. 3. Boundary between the model (yellow background) and a regular grid (white back-
ground) with coupling ports.

where F(e)
M , F(h)

M are the discrete operator for the grid point inside the model, F(e)
U , F(h)

U for
outside and S(e), S(h) are coupling matrices [9].

In order to apply a MOR technique one has to consider a relation between the fields inside
and outside the model, which can be obtained from a combination of the equations (10)(

γI+
1
γ

F(e)
M F(h)

M

)
hM = S(e)eU . (11)

The relation can be written in the form of a matrix-valued transfer function involving the bound-
ary fields only

hB = LT
(

γI+
1
γ

F(e)
M F(h)

M

)−1

S(e)eU , (12)

where hB represents the field samples placed at the boundary of the model and matrix L chooses
them from whole set of hM (hB = LT hM). It is important to note, that matrix S(e) chooses
the field samples placed at the boundary of the outside region. In such a case, relation (12)
represents electromagnetic properties of the selected region in a compact form. Note that matrix

LT
(

γI+ 1
γ F(e)

M F(h)
M

)−1
S(e) may be regarded as an equivalent of generalized admittance matrix

of a region, except that γ rather than ω is a sweep parameter.
We have arrived at the formulation that is analogous to the one considered in [6] in the context

of MOR of RLC circuits. Namely, the ENOR algorithm was derived in [6] by considering a
system of the form (

sC+G+
1
s

T
)

X(s) = BJ(s), (13)

where C, G and T are symmetric semi-positive matrices describing circuit reactive or resistive
components, X is a vector of nodal voltages and J is a vector of current sources at ports whose
location is described by the incidence matrix B and s is the Laplace variable s = jω (a complex
angular frequency). It has been show that ENOR algorithm produces an orthogonal projection
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basis V, which spans the solution subspace for the assumed frequency band (s). The projection(
sVT CV+VT GV+

1
s

VT TV
)

X̂(s) = VT BJ(s), (14)

where X̂(s) = VT X(s), significantly reduces a dimension of the problem (dimX̂(s) <<
dimX(s)). As a result, one looses the information about the internal state variables, however
the relation between output and input ports is preserved. The dimension of X̂(s) depends on
the frequency bandwidth and on the assumed accuracy. If q is an order of the reduction and p
is a number of ports, then relation (13) is approximated with respect to frequency up to its q
moments (with a center point s0) [6]. As a result of the projection with basis V, dim X̂(s) is
equal p × q. Since dimX̂(s) << dimX, the inversion in (12) is performed for a significantly
smaller matrix.

Since (13) is analogous to (11) the same model order reduction technique can be applied
to the wave propagation problem by replacing s with a propagation coefficient γ . Let V be a
projection matrix obtained from ENOR algorithm for relation (11), then it can be reduced to
the following form (

γVT IV+
1
γ

VT F(e)
M F(h)

M V
)

ĥM = VT S(e)eU , (15)

where ĥM = VT hM .
Rather than forming the matrix valued transfer function for the modeled region, it is more

convenient to perform the projection directly in curl operators (10) (see [9])[
F(h)

U S(h)V

0 F(h)
M V

][
hU

ĥM

]
=−γ

[
eU

eM

]
,

[
F(e)

U 0

VT S(e) VT F(e)
M

][
eU

eM

]
= γ

[
hU

ĥM

]
. (16)

In this case, the problem has the same form as (10), but the number of variables is significantly
smaller. Also in this case (like in the case concerning frequency) the accuracy of the approxi-
mation is high for a fixed range of propagation coefficient γ . To improve the accuracy or widen
the bandwidth of γ a higher reduction order q is required.

So far we have defined the input and output ports of a macromodel based on the field samples
at the grid points adjacent to the boundary between the modeled region and a regular grid. When
the mesh is fine the numbers of ports is large which has an adverse effect on the efficiency of
MOR. This problem can be circumvented by applying discrete function expansion [1] to the
field samples loacted at the boundary, prior to defining the ports of the macromodel.

In DFE the field samples in Yee’s mesh are replaced by several amplitudes of its harmonics.
This approach can be treated as a second projection with the orthogonal basis [15]. In such a
case, the field samples at the boundary are projected into smaller space of amplitudes (denoted
by tilde)

ẽU = QeeU , h̃M = QhhM, (17)

where Qe and Qh are orthonormal matrices, whose columns corresponding to the boundary con-
tain the discretized modal functions (in Yee’s mesh). As a result, Maxwell’s grid equations are
projected two times - the first time using orthogonal basis (17) and the second time using basis
obtained via ENOR algorithm. Due to DFE, the number of ports is considerably reduced: from
the number of field samples at the boundary of the macromodel p to the number of expansion
functions N.

Finally, having performed all the projections we can eliminate the electric field arriving at
the standard eigenvalue problem with γ2 as an eigenvalue

̂̃F(e)̂̃F(h)̂̃ht =−γ2̂̃ht , (18)
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where tilde and hat symbols represents the DFE and ENOR projections, respectively.

3. Numerical results

To show the efficiency of the algorithm proposed in this paper we have analyzed three mi-
crostructured optical fibers. In the numerical tests we used the boundary conditions for model-
ing of open space (with 20 basis functions) and the scheme for a refractive index averaging (for
a cells with a curved interface between different media) proposed in [1]. All calculations were
performed in the MATLAB environment on a standard PC (i3 3.07GHz).

The first structure used in our tests (Fig. 4a) is a PCF (Photonic Crystal Fiber) with six circu-
lar holes (air) arranged in a hexagonal setting. The radius of the holes is r = 2.5μm, the pitch
length is Λ = 6.75μm and the refractive index of the background medium is nbg = 1.45. In the
analysis the vacuum wavelength λ = 1.45μm is assumed. Due to the symmetry of the structure
only a quarter of the cross section (circle radius R = 10μm) is analysed. Hence, the bound-
ary consist of a PEC (Perfect Electric Conductor) and/or PMC (Perfect Magnetic Conductor)
at the symmetry planes and the radiation condition at the arc boundary [1]- see Fig. 4b. The
numerical domain is divided into 200 cells along ρ direction and 160 along φ . For homoge-
neous regions (rings/layers 1− 80 and 190− 200) the DFE method with 20 basis functions is
used. The macromodel is defined in the inhomogeneous part of the domain (rings 78− 192).
An application of the DFE technique at the boundary of the macromodel reduces the number
of ports p from p = 960 (6 rings of 160 samples) to p = 120 (6 rings of 20 amplitudes). The
propagation coefficient corresponding to an effective refractive index n0 = 1.44 is assumed as
a center of the “γ band”. The results obtained for different orders q are collected in Table 1
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a) b)

Fig. 4. A holey PCF: a) cross section, b) numerical domain.

and compared to the ones obtained from standard FD scheme and FD scheme with DFE. The
combination of the MOR and DFE techniques can significantly reduce the problem size which
results in shorter computation time (about 14 times).

A more detailed analysis of the influence of the reduction order q and the number of basis
functions N on the results is shown in Fig. 5. As expected, the accuracy of the calculations
depends on the field distribution - for higher order modes the higher number N is required.
However, the reduction order q must be grater than 5 in both cases.

To test the algorithm accuracy Group Velocity Dispersion (GVD) of the fundamental mode
is calculated. In Fig. 6 the results obtained for q = 6 and q = 7 are compared with the ones from
the standard FD method and a very good agreement is achieved (error does not exceed 0.5%
for q = 7).

In order to show the flexibility of the method the structure was distorted, the diameters of
the holes are different (see Fig. 7). Despite lower symmetry of such structure the problem
can be efficiently reduced. The results obtained for different modes with q = 6 and N = 20
are collected in Table 2. All the parameters of the simulation (size of the reduced problem,
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Table 1. Effective refractive index ne f f obtained for PCF from Fig. 4a. Eigenproblem solu-
tion time - round brackets, problem size - square brackets.

mode regular FD FD+DFE q = 7 q = 6 q = 5
(∼ 7s), [63120] (∼ 4s), [38480] (∼ 0.8s), [4180] (∼ 0.7s), [4060] (∼ 0.5s), [3940]

HE11 1.4453948− 1.4453948− 1.4453948− 1.4453948− 1.4453954−
3.198 ·10−8j 3.198 ·10−8j 3.198 ·10−8j 3.197 ·10−8j 3.365 ·10−8j

TE01 1.4385852− 1.4385852− 1.4385852− 1.4385852− 1.4385852−
5.286 ·10−7j 5.286 ·10−7j 5.286 ·10−7j 5.286 ·10−7j 5.286 ·10−7j

HE21 1.4384438− 1.4384438− 1.4384438− 1.4384438− 1.4384438−
9.679 ·10−7j 9.679 ·10−7j 9.679 ·10−7j 9.679 ·10−7j 9.679 ·10−7j

EH11 1.4299571− 1.4299571− 1.4299571− 1.4299571− 1.4299590−
1.582 ·10−5j 1.582 ·10−5j 1.582 ·10−5j 1.582 ·10−5j 1.582 ·10−5j

HE31 1.4292596− 1.4292596− 1.4292596− 1.4292596− 1.4292596−
8.725 ·10−6j 8.725 ·10−6j 8.725 ·10−6j 8.724 ·10−6j 8.311 ·10−6j
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Fig. 5. Error of the effective refractive index as a function of the reduction order and the
number of basis function (it is evaluated in reference to the result obtained from standard
FD method).

eigenproblem solution time) are the same as for undistorted structure.

Table 2. Effective refractive index ne f f obtained for distorted PCF shown in Fig. 7.

mode regular FD reduced problem (q = 6, N = 20)

HE11 1.4454571−4.702 ·10−8j 1.4454571−4.703 ·10−8j
TE01 1.4390233−1.375 ·10−6j 1.4390233−1.375 ·10−6j
HE21 1.4383721−8.026 ·10−7j 1.4383721−8.026 ·10−7j
EH11 1.4304247−1.891 ·10−5j 1.4304247−1.891 ·10−5j
HE31 1.4297607−1.870 ·10−5j 1.4297607−1.870 ·10−5j
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Fig. 6. GVD of the fundamental mode evaluated from standard and reduced problem.

Fig. 7. Distortion of the microstructure presented in Fig. 4a.

The next considered microstructure is a fiber presented in Fig. 8a. The angular-shaped holes
have the inner radius r1 = 1μm, the outer radius r2 = 2μm and the angular width of 108o.
The refractive index of the background medium is nbg = 1.44402362. In this case, the analysis
is carried out for vacuum wavelength λ = 1.55μm. Also a shape of the numerical domain is
different for this example - only a half of the cross section can be analyzed (circle radius R =
2.25μm) - see Fig. 8b. The numerical domain is divided into 140 cells along ρ direction and 210
along φ . Also in this case the DFE method with 20 basis functions is used for the homogeneous
regions (rings 1−45 and 120−140). The macromodel is defined in the inhomogeneous part of
the domain (rings 42−123). A propagation coefficient corresponding to the effective refractive
index n0 = 1.28 is assumed as a center of the “γ band”. The results obtained for different orders
q are collected in Table 3. The projections reduced the number of state variables from almost
60000 to 3000 which significantly shortens the time of eigenvalue problem solution (from 8s to
0.5s).

The geometry of the last PCF is presented in Fig. 9a. The radius of the holes and the core is
r = 2μm and the pitch length is Λ = 5μm. The refractive index of the background medium is
nbg = 1.42, core nc = 1.45. The vacuum wavelength λ = 1.5μm is assumed. The discretization
along ρ is M = 200 and along φ is N = 160. Similarly to the first fiber, the analysis is limited to
a quarter of a circle of radius R = 8μm - see Fig. 9b. The DFE method with 20 basis functions
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Fig. 8. A holey PCF with 3 annular-shaped holes: a) cross section, b) numerical domain.

Table 3. Effective refractive index ne f f obtained for PCF from Fig. 8a. Eigenproblem solu-
tion time - round brackets, problem size - square brackets.

mode regular FD FD+DFE q = 7 q = 6 q = 5
(∼ 8s), [57620] (∼ 4s), [31780] (∼ 0.8s), [3100] (∼ 0.6s), [2980] (∼ 0.5s), [2860]

HE11 1.3558917− 1.3558918− 1.3558925− 1.3558942− 1.3552316−
5.020 ·10−5j 5.022 ·10−5j 5.015 ·10−5j 5.028 ·10−5j 5.252 ·10−5j

HE21 1.2396962− 1.2396963− 1.2396963− 1.2396963− 1.2396970−
5.141 ·10−4j 5.142 ·10−4j 5.142 ·10−4j 5.142 ·10−4j 5.153 ·10−4j

TE01 1.2149260− 1.2149260− 1.2149209− 1.2149249− 1.2148099−
1.245 ·10−3j 1.246 ·10−3j 1.246 ·10−3j 1.246 ·10−3j 1.259 ·10−3j

is used for homogeneous regions (rings 1−80 and 190−200) and the macromodel is defined in
inhomogeneous part of the domain (rings 78− 192). A propagation coefficient corresponding
to an effective refractive index n0 = 1.41 is assumed as a center of the “γ band”. The results
obtained for different orders q are collected in table 4. Also for this PCF the results well agree
with the ones obtained from the standard FD method. The problem was reduced from over
60000 to just 3900 variables and the analysis was 16 times shorter.
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Fig. 9. An air-hole assisted PCF: a) cross section, b) numerical domain.

In all examples the accuracy of the analysis depends on the reduction order q, which has
to be high enough (q > 5). Small discrepancy in the results can be observed for propagation
coefficients which differs from the center of the “γ band”. However, it is a consequence of the
assumed approximation and to improve the accuracy a higher reduction order must be used.
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Table 4. Effective refractive index ne f f obtained for PCF from Fig. 9a. Eigenproblem solu-
tion time - round brackets, problem size - square brackets.

mode regular FD FD+DFE q = 7 q = 6 q = 5
(∼ 7s), [63514] (∼ 4s), [40108] (∼ 0.8s), [3980] (∼ 0.6s), [3860] (∼ 0.5s), [3740]

HE11 1.4353561− 1.4353561− 1.4353561− 1.4353561− 1.4353926−
9.196 ·10−11j 9.196 ·10−11j 9.215 ·10−11j 9.237 ·10−11j 9.697 ·10−8j

EH11 1.3898474− 1.3898474− 1.3898474− 1.3898475− 1.3900137−
1.299 ·10−6j 1.299 ·10−6j 1.299 ·10−6j 1.301 ·10−6j 4.142 ·10−6j

HE31 1.3878920− 1.3878920− 1.3878920− 1.3878924− 1.3878916−
5.254 ·10−7j 5.254 ·10−7j 5.254 ·10−7j 5.519 ·10−7j 1.158 ·10−7j

HE12 1.3841605− 1.3841605− 1.3841605− 1.3841602− 1.3830352−
4.135 ·10−6j 4.135 ·10−6j 4.135 ·10−6j 4.120 ·10−6j 5.559 ·10−5j

4. Conclusion

In this paper a MOR technique was adopted to reduce the size of a propagation problem for-
mulated in FDFD method. A verification of the proposed algorithm was performed on three
different types of microstructured optical fibers. In all presented cases the ENOR algorithm
combined with DFE method results in significant reduction of the problem size (up to 20 times)
and the simulation time (up to 16 times).
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