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Abstract

In this article we conduct an overview of various types of thermal contact con-
ditions at the sliding interface. We formulate a problem of non-stationary heat
conduction in two sliding layers with generalized thermal contact conditions al-
lowing for dependence of the heat-generation coefficient and contact heat trans-
fer coeflicient on time. We then derive an analytical solution of the problem by
constructing a special coordinate integral transform. In contrast to the com-
monly used transforms, e.g. Laplace or Fourier transforms, the one proposed is
applicable to a product of two functions dependent on time. The solution is vali-
dated by a series of test problems with parameters corresponding to those of real
tribosystems. Analysis shows an essential influence of both time-dependent heat
generation and contact heat transfer coefficients on the partition of the friction
heat between the layers. The solution can be used for simulating temperature
fields in sliding components with account of this influence.

Keywords: Non-stationary heat conduction, Sliding layers, Imperfect thermal
contact, Integral transform
PACS: 02.30.Uu, 44.05.+¢, 46.55.4d, 81.40.Pq

1. Introduction

Thermal friction problem is considered to be one of the central problems in
tribology due to the fact that thermal effects manifest in various forms and often
can not be ignored. Accurate simulation of frictional processes in a tribosystem
requires the knowledge of the temperature fields in its sliding components.
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These temperature fields can be determined by numerical methods. De-
spite the fact that such methods have become common practice, the analytical
approach is preferable in many cases. Analytical expressions for the tempera-
ture fields enable parametric analysis, investigation of asymptotic behavior and
special cases, or testing of numerical algorithms.

Thermal friction problem is usually formulated in the form of an initial-
boundary-value problem of non-stationary heat conduction in two coupled bod-
ies with a heat source at their interface. The contact conditions are specified
at the interface to describe a certain relation between the spatial derivatives of
the temperatures 17 and Tb of the bodies, i.e. the heat fluxes into the bodies,
and the specific power ¢ of heat generation. There are several basic types of the
contact conditions, which are reviewed in [1].

Blok [2] partitioned the friction heat between the sliding bodies by intro-
ducing the heat-partition coefficient ¢, so that the contact conditions have the
form
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where S is the interface region, 7 is the unit normal vector at S directed from
the first to the second body, A; and Ay are the thermal conductivity coefficients
of the bodies.

Ling [3] formulated the conditions of the perfect thermal contact which imply
the energy balance and temperature continuity in the microscopic regions of
contact of roughness asperities. The perfect thermal contact conditions are also
often specified at the macroscopic interface, that is
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Podstrigach [4] considered a thermal interaction of two bodies through a
thin intermediate layer. He proposed the conditions of imperfect thermal contact
between the bodies which describe the heat conduction in the intermediate layer
with the contact heat transfer coefficient v. In the presence of a heat source at
the interface, these conditions take the form
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Independently, Barber [5, 6] and Protasov [7] introduced another type of
imperfect thermal contact conditions, which can be presented in our notations
as
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where « is the heat-generation coefficient [7]. It is noteworthy that Barber’s
reasoning [5] was based on heat conduction theory. He assumed that the heat
flux, passing in either of the sliding bodies, consists of two components: the
first one is due to the frictional heating, while the second is caused by the
temperature difference of the bodies. The coefficient « is determined through
the microscopic thermal resistances of the rough surfaces of the bodies. Pro-
tasov [7], on the other side, investigated the friction heat generation considering
adhesion-deformational interactions of roughness asperities and based his con-
clusion on the principles of thermodynamics. He introduced « as the fraction of
the friction energy which is generated at the surface (adhesive mechanism) and
in the subsurface layer (deformational mechanism) of the first sliding body.

There is a principal difference between ay and o: the former means the
partition of the friction heat, whereas the latter specifies the partition of the
heat-generation power (q) between the sliding bodies. When using any of the
conditions (2), (3), or (4), a; is a priori unknown.

It should be mentioned that the equations (4) are a generalization of the
contact conditions considered above, so that (4) would degenerate into (1) at
~ =0, into (2) at v — oo, and into (3) at & = 1/2.

If the friction conditions, such as the sliding velocity and contact pressure,
vary with time, this would result in a change of q. They have also effects on
the coefficients « and . It is known from literature (see, for instance, [8]) that
~ generally increases with the contact pressure. According to the theoretical
study [9], both a and v depend on the sliding velocity. Thus, the quantities g,
«, v should be considered as variables dependent on time t. By this means, the
contact conditions (4) are transformed into
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A number of analytical studies on temperatures in sliding components have
been conducted using the Laplace transform, Fourier series, or other techniques.
The existing mathematical techniques allow to derive analytical solutions of
one-dimensional heat conduction problems for sliding bodies represented in the
form of semispaces or layers. Classical solutions for the semispaces interacting
due to the contact conditions (1) or (2) can be found in [10]. Temperature
expressions for the elements of the pairs semispace—semispace, semispace—layer
and layer—layer were derived for the contact conditions (3) [11, 12, 13, 14], and
the contact conditions (4) [15, 16, 17]. At the same time, a literature review
reveals that analytical solutions of heat conduction problems with the time-
dependent conditions (5) are unknown.

The aim of this study is to provide an analytical solution of the initial-
boundary-value problem of non-stationary heat conduction in two layers cou-
pled through the contact conditions (5). For this purpose, an original integral
transform is developed to map the differential operator under the given specific
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Figure 1: Problem schematic

contact conditions.

2. Problem Statement

We consider non-stationary heat conduction in two layers with thicknesses
h1 and hs which move relative to each other, so that there is friction between
them. The friction leads to a heat release with a specific power given as a
continuous function ¢(¢) > 0. We assume that the thermal contact between the
layers follows the conditions (5). At the free surfaces of the layers we specify
convective heat transfer with coefficients ar; and as. At ¢ = 0 the temperatures
of the layers are equal to some ambient temperature Ty # 0. Under the given
assumptions, the temperatures Ti(x,t) and To(x,t) in the layers change with
time ¢ along the direction = perpendicular to the sliding interface. Fig. 1 shows a
schematic of the problem. The thermal conductivity and diffusivity coefficients
of the layers are denoted by A1, Ao and aq, as, respectively.

The dimensionless formulation of the problem described incorporates the
heat conduction equations
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with zero initial conditions
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the contact conditions
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and the boundary conditions
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In the equations above we use the following dimensionless variables
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3. Analytical Solution

The equations (6)—(9) represent an initial-boundary-value heat conduction
problem in a double domain with the special contact conditions (8). The main
peculiarity of the problem lies in the time-dependent dimensionless contact heat
transfer coefficient B. The general methods, which are commonly used for solv-
ing such initial-boundary-value problems (e.g. operational calculus or Fourier
series approach), are not applicable in this case due to the occurrence of the
product of two time-dependent functions. However, an analytical solution can
be obtained in the form of a convolution integral by applying the method of
generalized integral transforms for multiple domains [18].

8.1. Construction of the Integral Transform

In this section we construct a generalized integral transform [19, 20, 21]
with respect to the spatial variable & which should eliminate the differentiation
defined by the linear second-order differential operator
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where the arbitrary function
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belongs to C'®)(—1, H) with respect to £. For the operator (10) we formulate
the Sturm-Liouville problem with the differential equation
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containing a parameter p € R.

Let T denote a set of functions from the space C?)(—1, H) matching the
equation (11) together with the contact conditions (8) and the boundary con-
ditions (9) formulated for the function w(¢, 7). Furthermore, we denote by I'y,
a similar set of functions satisfying the homogeneous contact conditions
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which coincide with (8) at @ = 0.
If we use the dot product
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in the Hilbert space L?*[—1, H], we can ask the operator (10) to be self-adjoint
with respect to this dot product, which can be achieved by the special choice of
the weight function

=1, —-1<€<0,
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leading to the following corollaries [21].

Corollary 1. For the Sturm-Liouville problem with the linear differential op-
erator (10) for functions from the space '}, the condition of the self-conjugacy
implies existence of an infinite sequence of real eigenvalues
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and corresponding non-trivial solutions K (&, px) which form a complete orthog-
onal function system on the interval —1 < & < H with respect to the weight

function p(€).

Corollary 2. Any function u(€,7) € L? can be expanded into a Fourier series
along the function system K (&, py) and represented in the form of the infinite
sum

u(€, ™) = ZH KED) e ), K (e, ),

K (& pi)l?
meaning that it converges to the function uw(&,T) along the norm of the space
L2, and || f(€)|| = \/{f(&), f(€)) with the dot product defined by (13).



By this means, based on the corollaries, the sought temperature function
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can be expanded into a Fourier series along the function system K (&, py). This
allows constructing the direct integral transform as
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denoting by T the operator of the integral transform. The inverse transform
gives the equality
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considered in L?[—1, H].

3.2. Construction of the Kernel

According to (14), (15), the temperature functions ©(£,7) and ©5(&,7)
differ only by their kernels K;(&,p) and K2(&,p) on the domains [—1,0] and
[0, H], respectively. These kernels can be defined by the following theorem.

Theorem 1. Assume O(&,7) € T'. Let the kernel K(€,p) € L?[—1, H] of the
integral transform (14), (15) satisfy the Sturm—Liouville problem (11) with the
homogeneous contact conditions (12) and the boundary conditions defined as
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Then the image of the differential operator (10) satisfies the property

T[Dle(E,7)]] = —p*TO(E )] + Q(1)E(p. 7), (17)

where
E(p,7) = A1) K1(€,p)| g + (1 — (7)) K2(&,p)| -

PROOF. We begin our proof with applying the direct integral transform (14) to
the differential operator (10) and integrating two times by parts, which results
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Here Ni(p,7) and Na(p,7) are unknown terms which shall be defined further
from the boundary and contact conditions.

The equality (18) should not include the integral terms. To eliminate them,
we assume without loss of generality that
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and hence eliminates integrals.
We are still left with the task of determining Aj(p,7) and Na(p, 7). From
the condition ©(&,7) € T, for £ = —1 we have
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which should be equal to zero under the assumption (16). Thereby, we eliminate
the unknown function 61 (&, 7). The same approach for £ = H allows elimination
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Substitution of the obtained expressions into (18) leads to the satisfaction
of the property (17), which finishes the proof. ]

Thereby, according to the Theorem 1, the kernel of the integral trans-
form (14), (15) is defined as a solution of the initial differential equations (6)
and has the form

K1(&p) = Mi(p)sin (pg) + Ni(p) cos (p§) ,
s siy () i)

where the coefficients My (p) and Ny(p), k = 1,2, do not depend on ¢&.
We apply the boundary conditions (16) to decrease the number of the coef-
ficients by two, i.e.

m1(p)
a6.0) = M) (sin() + 8 cos(r)).
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The missing coefficients M (p) and My (p) can be found by use of the follow-
ing equalities derived from the contact conditions (12):

9 oo A 06 o

which reads, when transformed and written in the matrix form,

with
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This matrix equation has a non-trivial solution only in case of zero determinant,
that is,

m1(p) ma(p)
p+ B(T (——A X—— | =0. 20
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The characteristic equation (20) has an infinite number of real solutions p,
k=1,2,..., which are situated symmetrically with respect to the origin.

From (19) we first find
My(p) = Ay/XMi(p)



and then determine the last missing coefficient, for instance, M;(p). From the
condition
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The obtained function system K (&, py) forms an orthonormal system on the
closed interval [—1, H].

8.8. Application of the Integral Transform

Since the kernel K (&,p) incorporates the time-dependent coefficient B, we
face a certain difficulty to apply the integral transform (14), (15) to the prob-
lem (6)—(9) as we cannot swap the operator T of the integral transform and the
time derivative:

7|20 2 2 (Tete ).

To overcome this difficulty we use the kernel splitting procedure proposed in [22]
for multiple domains. Let us introduce the notation

0
0 (p.7) = / 61 (6,7) [sin(pe) + i cos(pe)] de,
Z1
H

Qo(p, ) = io/@(gm) [sin <5—§_<> + i cos (5—;” e,

where ¢ is the imaginary unit, and

arl) = o) (1- 242
rlp) = AT (11228 ).
which allows representing the image U(p,7) in the form
Up,7) = Re {w1(p) 2 (p.7) + w2(p)a(p. 1) }. (21)

We can propose, yet without proof,
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Lemma 1. For the image (21) the following equations hold:

T DO, )] = —p* Re{wi () (p, 7) + w2 (p)Qa(p, 7))} + Q(T)E(p, 7).

By applying the direct integral transform (14) to the problem (6)—(9) and
taking (21), (22) into account, we formulate the initial-value problem

Re {Z (wk(m% + PP (D)% p, ))} = Q()E(p.7),

Qk(va)|T -0 0 k= 1527

(22)

(23)

considering p as a parameter and hence using full derivatives. While the func-
tions Q(7) and =(p, 7) are real, and based on the properties of complex numbers,
the problem (23) can be represented in the form

AUp.7) | og o QUOE(mT)
dr +p Qk(pv ) |W1(p)|2 ¥ |w2(p)|2 k(p)’ (24)
Q(p.7)|,_, =0, k=1,2,

where by @ we denote the complex-conjugate function to w.
The solution of (24) is found by using common methods for solving linear
differential equations:

DE(p. e P T gt k=12

The substitution of the expression above into (21) and explicit indication of the
dependence of p on the time variable yield
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Figure 2: Sliding of hollow cylinders

We note here that p(t) and p(7) are calculated at the time moments ¢ and T,
respectively.

Finally, by applying the inverse integral transform (15), we derive the sought
solution in the form

e =S [ n v, 25)

where pi(7) are positive roots of the equation (20).

4. Validation of the Solution

An analysis of the solution (25) shows that it coincides with the known
analytical solutions [10, 11, 12, 13, 15, 16] in particular cases. As an example, we
consider a problem of sliding of hollow cylinders as depicted in Fig. 2. The stator
cylinder is aluminum, while the rotor cylinder is steel, i.e. A = 9.5, x = 0.17. We
assume that the cylinders are long and thin-walled, which allows representing
the given problem as a problem of sliding of two layers. The values of the
parameters are chosen as follows: H = 0.5, « = 0.5, B = 0.0082, Q = 0.038,
Bi = 0.0011, T = 3.1. Figures 3 and 4 illustrate the evolution of the non-
stationary contact temperatures (£ = 0) and the distributions of the stationary
temperatures in the layers (7 — o0), respectively. The solution of Eq. (25) and
the solution [11] for the contact conditions (3) are provided.

To solve the problem (6)—(9) numerically, an algorithm based on the finite-
difference method with an implicit scheme is applied. A comparison of the
numerical solution and that obtained by (25) for different combinations of the
parameters confirms the validity of (25). For instance, we consider a problem

12
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Figure 5: Sliding of discs

of sliding of two thin discs, as shown in Fig. 5. The rotor disc is polymer,
whereas the stator disc is steel, i.e. A = 0.032, x = 13. The stator disc is 1.5
times thicker than the rotor disc, leading to H = 1.5. The sliding duration is
7o = 0.038. The dimensionless specific power @ of heat generation decreases
linearly from the initial value Q¢ = 780 to zero:

an=an(1-7). (26)

The heat-generation coefficient «v and contact heat transfer coefficient B change
linearly with time:

a(r) = ag (1 +kal), (27)

70
B(r) = By (1+k31>, (28)

To
where ay = 0.26 and By = 5.9 are the initial values, while k£, = 0.1 and
kp = —0.4 are the rates of change of o and B, respectively. The convective
heat transfer parameters are set as Bi = 0.35 and T = 0.67. This problem
describes the heating of the friction discs during braking when « increases by
10% and B decreases by 40%. The evolution of the contact temperatures (§ = 0)

is presented in Fig. 6. Fig. 7 shows the temperature distributions at the end of
braking (7 = 79).
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Figure 8: Heat partition dependent on the heat-generation coefficient o

5. Analysis of the Heat Partition

The dependence on time of the coefficients o and B inevitably affects the
heat partition

B(r
as(r) = ar) = G O1(€:7) ~ Oa(67) |y

We consider a friction pair similar to that shown in Fig. 5. The discs are assumed
to have the same sizes and properties, i.e. H = A = xy =T = 1. During a single
braking, ) decreases due to (26) with Qo = 1 and 79 = 0.1. The convective
heat transfer at the free surfaces of the discs is neglected, meaning that Bi = 0.
The friction surfaces of the discs have different roughness characteristics, which
results in an asymmetric heat generation, so that o changes due to (27) with
ap = 0.2. The coefficient B changes according to (28) with By = 1. By
using (25) we conduct simulations of ay at various values ko and kp. Fig. 8
shows the results for kg = 0 and k, varying from —1 (« decreases to zero) to
4 (« increases to 1). Similarly, Fig. 9 presents the results for k, = 0 and kg
varying from —1 (B decreases to zero) to 4 (B increases by 5 times). These
simulations exhibit an essential influence of the time-dependent o and B on
the heat partition, which emphasizes the practical value of the solution (25)
obtained in this study.

6. Conclusions

The initial-boundary-value problem (6)—(9) of non-stationary heat conduc-
tion in two sliding layers with generalized thermal contact conditions at their
interface is formulated allowing for variation of the heat-generation coefficient
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Figure 9: Heat partition dependent on the contact heat transfer coefficient B

and contact heat transfer coefficient with time. The integral transform (14), (15)
is developed to eliminate the differentiation with respect to the spatial variable
in the heat conduction equation and to take the contact conditions inside the
double domain with the time-dependent contact heat transfer coefficient into
account. On the basis of the integral transform, the analytical solution (25) of
the problem is derived. The validity of the solution is confirmed by comparisons
with the known analytical expressions as well as numerical results. The heat
partition is shown to be sensitive to time-dependent heat-generation coefficient
and contact heat transfer coefficient. The solution is applicable for simulation
of temperature fields in sliding components of tribosystems.
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