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The instability of sliding causes deterioration of performance characteristics of tribosystems and is 

undesired. To predict its occurrence, the motion of a body of a one-degree-of-freedom system with 

friction is investigated about the steady sliding equilibrium position. The motion equation is 

formulated with the friction coefficient dependent on the sliding velocity and contact temperature 

changing due to transient heat conduction in the body. An analytical expression for the body motion 

is derived using the Laplace integral transform. It is shown that the sliding instability can manifest 

in the form of deviation of the body from the equilibrium position or in the form of oscillation. The 

instability conditions containing the friction–velocity and friction–temperature slope coefficients 

are obtained. Positive friction–temperature slope results in the deviation of the body from the 

equilibrium position. At negative friction–temperature slope, both types of the sliding instability 

can occur. The proposed instability conditions agree well with existing theoretical concepts and can 

be useful when designing tribosystems. 

Keywords: sliding instability; frictional oscillation; frictional heating; instability condition. 

1. Introduction.

The instability of sliding is a common phenomenon which may occur in the process of 

relative motion of contacting surfaces and is usually accompanied by uncontrollable changes in the 

sliding velocity 𝑣s and friction characteristics. In tribosystems such as brakes, clutches, or bearings, 

these changes lead to performance deterioration, noise emission, and premature failures [1]. 

Therefore, prediction of the sliding instability occurrence is often required at the design stage. 

It is common knowledge that the relationship between the friction coefficient 𝜇 and 𝑣s 

affects essentially the character of sliding. If 𝜇 decreases with 𝑣s, i.e. the 𝜇–𝑣s slope is negative, the 

negative damping and associated sliding instability take place [2, 3]. The difference between the 

kinetic friction force and the maximum tangential force in static contact is the reason for excitation 

of stick−slip oscillations [4, 5]. The sliding instability in the form of oscillation can also occur due 

to the sprag–slip mechanism [6], thermoelastic contact instability [7, 8], self-excited elastic waves 

at the sliding surface [9], etc. 
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Notations 

𝑎 friction–velocity slope coefficient 𝑋 dimensionless displacement, 

𝑋 = (𝑘𝑥 + 𝜇0𝑁) (𝑣√𝑘𝑚)⁄  

𝑏 friction–temperature slope coefficient 𝛼 heat-partition coefficient 

𝑐 damping coefficient 𝜀0 velocity perturbation 

𝑖 summation index 𝜁 reduced damping ratio, 

𝜁 = (𝑐 + 𝑎𝑁) (2√𝑘𝑚)⁄  

𝑗 summation index 𝜂 dimensionless coefficient, 

𝜂 = 𝛼𝑏𝑁𝑣√𝜘 (𝐾𝑆)⁄  

𝑘 stiffness coefficient 𝜇 friction coefficient 

𝑚 body mass 𝜇0 steady sliding friction coefficient 

𝑛 summation index 𝜍 integration variable 

𝑞 friction heat flux rise 𝜏 dimensionless time variable, 𝜏 = 𝑡√𝑘 𝑚⁄  

𝑠 Laplace integral transform parameter 𝜓 dimensionless friction–temperature slope 

coefficient, 𝜓 = 𝜂 √𝑚 𝑘⁄4
 

𝑡 time variable 𝛩 dimensionless friction force 

𝑣 steady sliding velocity 𝜘 thermal diffusivity coefficient 

𝑣s sliding velocity, 𝑣s = 𝑣 + 𝑑𝑥 𝑑𝑡⁄  ℒ Laplace integral transform operator 

𝑥 displacement erf(∙) Gauss error function 

𝐹 dimensionless parameter, 

𝐹 = 𝑁(𝜇0 + 𝑎𝑣) (𝑣√𝑘𝑚)⁄  

𝐂(∙) Fresnel cosine integral function 

𝐾 thermal conductivity coefficient 𝐸1 2⁄ ,𝛽 2⁄ (∙) Mittag-Leffler function with two 

parameters 1 2⁄  and 𝛽 2⁄  

𝑁 normal force 𝐒(∙) Fresnel sine integral function 

𝑆 contact area Γ(∙) gamma function 

𝑇 contact temperature rise   

 

Frictional heating of the sliding surface leads to a rise 𝑇 of its temperature. Since 𝜇 is 

generally temperature dependent, 𝑇 has influence on the dynamics of sliding. In most cases this 

influence is of quantitative character. For example, it is known that heating of the friction pair of 

brake affects the deceleration rate and braking duration [10]. At the same time, there have been 

found evidences for qualitative influence of the dependency 𝜇(𝑇) on the sliding dynamics. Kokonin 

et al. [11] showed experimentally that carbonic friction discs used in aircraft brakes exhibit an 
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oscillatory sliding when the 𝜇–𝑇 slope is negative. Temperature-related instabilities of sliding were 

also noted in [12–15]. 

Several theoretical studies were done on the sliding instability caused by the dependency 

𝜇(𝑇). Maksimov and Rakhmanov [16, 17] investigated the motion of a body on a counterbody with 

𝜇 dependent on 𝑣s and 𝑇. Assuming a uniform temperature distribution in the body, it was shown 

that the sliding instability can arise in different forms: joint exponential increase in 𝑣s and 𝑇, 

growing oscillations of 𝑣s and 𝑇, periodic oscillations of 𝑣s and 𝑇. The instability conditions 

containing the 𝜇–𝑣s and 𝜇–𝑇 slope coefficients were derived for the mentioned cases. 

Nosonovsky and Bhushan [18] investigated the thermodynamics of friction and self-

organization during friction, relying on the study [19] by Fox-Rabinovich et al. It was assumed that 

𝜇 depends on 𝑣s and 𝑇, while the thermal conductivity depends on 𝑣s. The stability condition was 

obtained in variational form, according to which the friction system loses stability at positive 𝜇–𝑇 

slope. 

Mortazavi et al. [20] analysed the sliding instability excited by positive 𝜇–𝑇 slope. The 

friction body was represented as a one-dimensional slab. The temperature distribution in it was 

described analytically with account of the influence of the 𝜇–𝑇 slope on the friction heat generation. 

The instability condition was derived, stating that 𝑇 would increase exponentially if the 𝜇–𝑇 slope 

coefficient exceeds a critical value dependent on the sizes and thermal conductivity coefficient of 

the body. 

Nosko et al. [21] investigated stick−slip oscillations in a one-degree-of-freedom system with 

friction, induced by negative 𝜇–𝑇 slope. The temperature in the body was simulated allowing for 

the contact heat transfer between the body and counterbody. The instability threshold curve was 

obtained, dividing the parameter plane into the region of stable sliding and the region of stick−slip 

oscillation. It was shown that an increase in the 𝜇–𝑇 slope coefficient in modulus leads to a 

decrease in the stability margin for a stable system or an oscillation amplification for an unstable 

one. 

It follows from the studies above that the sliding instability can manifest in the form of 

exponential increase in 𝑣s or in the form of non-decaying oscillation. The former instability type is 

likely to occur when the 𝜇–𝑇 slope is positive [16−18, 20], while the latter is caused by negative 𝜇–

𝑣s slope [2, 3] or negative 𝜇–𝑇 slope [11, 21]. The aim of this study is to investigate both types of 

the sliding instability and obtain the corresponding instability conditions using a unified approach. 

For this purpose, a one-degree-of-freedom system with friction dependent on 𝑣s and 𝑇 is analysed 

in the neighbourhood of the steady sliding equilibrium state. 
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2. Formulation of the governing equation. 

2.1. Motion equation. 

Consider a body 𝑚 connected to a base with a spring 𝑘 and a damper 𝑐, as shown in Fig.1. 

The body is pressed by a force 𝑁 against a counterbody moving with a velocity 𝑣. The frictional 

interaction between the body and counterbody results in variations in the body displacement 𝑥(𝑡) 

and rise 𝑇(𝑡) of the body contact temperature. 

Assume that the friction coefficient 𝜇(𝑡) depends linearly on the sliding velocity 𝑣s = 𝑣 +

𝑑𝑥 𝑑𝑡⁄  and 𝑇 in the neighbourhood of a steady sliding equilibrium state (𝑥, 𝑑𝑥 𝑑𝑡⁄ , 𝑇) =

(−𝜇0𝑁 𝑘⁄ , 0, 0), i.e. 

𝜇 = 𝜇0 + 𝑎
𝑑𝑥

𝑑𝑡
+ 𝑏𝑇 (1) 

where 𝜇0 is the steady sliding friction coefficient; 𝑎 = 𝜕𝜇 𝜕𝑣s⁄ |𝑣s=𝑣 is the 𝜇–𝑣s slope coefficient; 

𝑏 = 𝜕𝜇 𝜕𝑇⁄ |𝑇=0 is the 𝜇–𝑇 slope coefficient. Positive values of 𝑎 and 𝑏 correspond to positive 𝜇–𝑣s 

and 𝜇–𝑇 slopes, respectively. In the preceding and subsequent expressions, it is accepted that the 

quantities 𝑑𝑥 𝑑𝑡⁄  and 𝑇 are small. 

 With account of Eq.(1), the motion equation is formulated in the following form: 

𝑚
𝑑2𝑥

𝑑𝑡2
+ (𝑐 + 𝑎𝑁)

𝑑𝑥

𝑑𝑡
+ 𝑘 (𝑥 +

𝜇0𝑁

𝑘
) = −𝑏𝑁𝑇, 𝑡 > 0 (2) 

To solve Eq.(2), it is necessary to describe the behaviour of 𝑇. 

2.2. Contact temperature equation. 

 Variations in 𝑣s and 𝑇 lead to the rise 𝑞(𝑡) of the friction heat flux into the body: 

𝑞 =
𝛼𝑁𝜇𝑣s

𝑆
−

𝛼𝑁𝜇0𝑣

𝑆
=

𝛼𝑁(𝜇0 + 𝑎𝑣)

𝑆

𝑑𝑥

𝑑𝑡
+

𝛼𝑏𝑁𝑣

𝑆
𝑇 +

𝛼𝑎𝑁

𝑆
(

𝑑𝑥

𝑑𝑡
)

2

+
𝛼𝑏𝑁

𝑆

𝑑𝑥

𝑑𝑡
𝑇 

≈
𝛼𝑁(𝜇0 + 𝑎𝑣)

𝑆

𝑑𝑥

𝑑𝑡
+

𝛼𝑏𝑁𝑣

𝑆
𝑇 

(3) 

where 𝑆 is the contact area; 𝛼 is the heat-partition coefficient [22]. In Eq.(3), the terms of the 

second-order smallness are neglected. 

 According to heat conduction theory [23], the heat source of Eq.(3) results in the surface 

temperature rise 

𝑇 =
√𝜘

√𝜋𝐾
∫

𝑞|𝜍 𝑑𝜍

√𝑡 − 𝜍

𝑡

0

=
𝛼𝑁√𝜘

√𝜋𝐾𝑆
∫ ((𝜇0 + 𝑎𝑣)

𝑑𝑥

𝑑𝑡
+ 𝑏𝑣𝑇)|

𝜍

 
𝑑𝜍

√𝑡 − 𝜍

𝑡

0

 (4) 

where 𝜍 is the integration variable; 𝐾 is the thermal conductivity coefficient; 𝜘 is the thermal 

diffusivity coefficient. Application of the Laplace integral transform ℒ to Eq.(4) along with the 

convolution theorem gives 
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ℒ[𝑇(𝑡)] =
𝛼𝑁(𝜇0 + 𝑎𝑣)√𝜘

𝐾𝑆

ℒ[𝑑𝑥 𝑑𝑡⁄ ]

√𝑠 − 𝜂
 (5) 

where 𝑠 is the transform parameter and 

𝜂 =
𝛼𝑁𝑣√𝜘

𝐾𝑆
𝑏  

The inverse transform [23] 

ℒ−1 [
1

√𝑠 − 𝜂
] =

1

√𝜋𝑡
+ 𝜂 exp(𝜂2𝑡) (1 + erf(𝜂√𝑡)) (6) 

allows to express the original of Eq.(5) as 

𝑇 =
𝛼𝑁(𝜇0 + 𝑎𝑣)√𝜘

𝐾𝑆
∫

𝑑𝑥

𝑑𝑡
|

𝑡−𝜍
(

1

√𝜋𝜍
+ 𝜂 exp(𝜂2𝜍) (1 + erf(𝜂√𝜍))) 𝑑𝜍

𝑡

0

 (7) 

where erf(∙) is the Gauss error function. 

 

2.3. Dimensionless governing equation and initial conditions. 

 Substitute Eq.(7) into Eq.(2) and obtain the motion equation in the integro-differential form 

𝑚
𝑑2𝑥

𝑑𝑡2
+ (𝑐 + 𝑎𝑁)

𝑑𝑥

𝑑𝑡
+ 𝑘 (𝑥 +

𝜇0𝑁

𝑘
)

= −
𝑁𝜂(𝜇0 + 𝑎𝑣)

𝑣
∫

𝑑𝑥

𝑑𝑡
|

𝑡−𝜍
(

1

√𝜋𝜍
+ 𝜂 exp(𝜂2𝜍) (1 + erf(𝜂√𝜍))) 𝑑𝜍

𝑡

0

 

(8) 

 After introducing the dimensionless variables 

𝜏 = 𝑡√𝑘 𝑚⁄ , 𝑋 =
𝑘𝑥 + 𝜇0𝑁

𝑣√𝑘𝑚
 

 

and parameters 

𝜁 =
𝑐 + 𝑎𝑁

2√𝑘𝑚
, 𝜓 = 𝜂 √𝑚 𝑘⁄4

, 𝐹 =
𝑁(𝜇0 + 𝑎𝑣)

𝑣√𝑘𝑚
 

 

one can rewrite Eq.(8) as follows 

𝑑2𝑋

𝑑𝜏2
+ 2𝜁

𝑑𝑋

𝑑𝜏
+ 𝑋 = 𝛩 = −𝐹𝜓 ∫

𝑑𝑋

𝑑𝜏
|

𝜏−𝜍
(

1

√𝜋𝜍
+ 𝜓 exp(𝜓2𝜍) (1 + erf(𝜓√𝜍))) 𝑑𝜍

𝜏

0

 (9) 

This equation contains three parameters. The parameters 𝜁 and 𝐹 are dependent on 𝑎, while the 

parameter 𝜓 is proportional to 𝑏. One can distinguish three dimensionless force affecting the body 

motion: the spring force (−𝑋), the reduced damping force (−2𝜁 𝑑𝑋 𝑑𝜏⁄ ), and the friction force 𝛩 

associated with the contact temperature variation. 

To complete the description of the body motion, the initial conditions are specified in the 

form of a small velocity perturbation 𝜀0, that is 
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𝑋|𝜏=0 = 0,
𝑑𝑋

𝑑𝜏
|

𝜏=0
= 𝜀0 (10) 

Note that the principal results presented further in this study are valid for the general case of the 

initial conditions, i.e. specified displacement and velocity perturbations. The initial displacement is 

set to zero in order to decrease the number of parameters and thereby simplify analysis. 

 

3. Analytical expression for the body motion. 

 Find an analytical solution of Eqs.(9), (10). With account of Eq.(6), 𝑋 can be expressed in 

the images of the Laplace integral transform: 

ℒ[𝑋(𝜏)] =
𝜀0(√𝑠 − 𝜓)

𝑠2√𝑠 − 𝜓𝑠2 + 2𝜁𝑠√𝑠 − 𝜓(2𝜁 − 𝐹)𝑠 + √𝑠 − 𝜓
 (11) 

Expand Eq.(11) into a series and apply the multinomial theorem [24]: 

ℒ[𝑋(𝜏)] =
𝜀0

𝑠2
 

1

1 +
2𝜁𝑠−1 2⁄ − 𝜓(2𝜁 − 𝐹)𝑠−1 + 𝑠−3 2⁄ − 𝜓𝑠−2

𝑠1 2⁄ − 𝜓

=
𝜀0

𝑠2
∑

(−1)𝑖

(𝑠1 2⁄ − 𝜓)𝑖

∞

𝑖=0

(2𝜁𝑠−1 2⁄ − 𝜓(2𝜁 − 𝐹)𝑠−1 + 𝑠−3 2⁄ − 𝜓𝑠−2)
𝑖

=
𝜀0

𝑠2
∑

(−1)𝑖

(𝑠1 2⁄ − 𝜓)𝑖

∞

𝑖=0

∑
𝑖! (−𝜓)𝜅1𝑖𝑗(𝜓(𝐹 − 2𝜁))

𝜅3𝑖𝑗(2𝜁)𝜅4𝑖𝑗

𝜅1𝑖𝑗! 𝜅2𝑖𝑗! 𝜅3𝑖𝑗! 𝜅4𝑖𝑗!
𝑠−2𝜅1𝑖𝑗−

3
2

𝜅2𝑖𝑗−𝜅3𝑖𝑗−
1
2

𝜅4𝑖𝑗

(3+𝑖)! (3!𝑖!)⁄

𝑗=1

= 𝜀0 ∑ 𝑖!

∞

𝑖=0

∑
(−1)𝑖+𝜅1𝑖𝑗  𝜓𝜅1𝑖𝑗+𝜅3𝑖𝑗(𝐹 − 2𝜁)𝜅3𝑖𝑗(2𝜁)𝜅4𝑖𝑗

𝜅1𝑖𝑗! 𝜅2𝑖𝑗! 𝜅3𝑖𝑗! 𝜅4𝑖𝑗!

𝑠−(4+4𝜅1𝑖𝑗+3𝜅2𝑖𝑗+2𝜅3𝑖𝑗+𝜅4𝑖𝑗) 2⁄

(𝑠1 2⁄ − 𝜓)𝑖

(3+𝑖)! (3!𝑖!)⁄

𝑗=1

 

(12) 

where 𝑖 and 𝑗 are the summation indices; (𝜅1𝑖𝑗, 𝜅2𝑖𝑗 , 𝜅3𝑖𝑗 , 𝜅4𝑖𝑗) is the 𝑗-th combination of non-

negative integers satisfying the equality 𝜅1𝑖𝑗 + 𝜅2𝑖𝑗 + 𝜅3𝑖𝑗 + 𝜅4𝑖𝑗 = 𝑖. For a fixed 𝑖, there are 

(3 + 𝑖)! (3! 𝑖!)⁄  different such combinations, which can be evaluated by known methods of 

combinatorial mathematics [24]. 

 Based on the properties of the Mittag-Leffler function, a number of useful Laplace 

transforms were obtained [25], including the following one: 

ℒ−1 [
𝑠(1−𝛽) 2⁄

(𝑠1 2⁄ − 𝜓)𝑖+1
] =

𝜏(𝛽+𝑖−2) 2⁄

𝑖!
 𝐸1 2⁄ ,𝛽 2⁄

(𝑖)
(𝜓 𝜏1 2⁄ ), 

𝐸1 2⁄ ,𝛽 2⁄
(𝑖) (𝑧) =

𝑑𝑖

𝑑𝑧𝑖
𝐸1 2⁄ ,𝛽 2⁄ (𝑧) = ∑

(𝑖 + 𝑛)! 𝑧𝑛

𝑛! Γ((𝛽 + 𝑖 + 𝑛) 2⁄ )

∞

𝑛=0

 

(13) 

where 𝐸1 2⁄ ,𝛽 2⁄ (∙) is the Mittag-Leffler function with two parameters 1 2⁄  and 𝛽 2⁄ ; Γ(∙) is the 

gamma function; 𝑛 is the summation index.  

Application of the transform of Eq.(13) to Eq.(12) allows to reconstruct the original: 
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𝑋 = 𝜀0 (𝜏 + ∑  𝑖 ∑
 (−1)𝑖+𝜅1𝑖𝑗  (𝐹 − 2𝜁)𝜅3𝑖𝑗  (2𝜁)𝜅4𝑖𝑗

𝜅1𝑖𝑗!  𝜅2𝑖𝑗!  𝜅3𝑖𝑗! 𝜅4𝑖𝑗!

(3+𝑖)! (3!𝑖!)⁄

𝑗=1

∞

𝑖=1

×  ∑
(𝑖 + 𝑛 − 1)! 𝜓𝑛+𝜅1𝑖𝑗+𝜅3𝑖𝑗  𝜏(2+𝑖+𝑛+4𝜅1𝑖𝑗+3𝜅2𝑖𝑗+2𝜅3𝑖𝑗+𝜅4𝑖𝑗) 2⁄

𝑛! Γ((4 + 𝑖 + 𝑛 + 4𝜅1𝑖𝑗 + 3𝜅2𝑖𝑗 + 2𝜅3𝑖𝑗 + 𝜅4𝑖𝑗) 2⁄ )

∞

𝑛=0

) 

(14) 

Equation (14) is validated by using a numerical algorithm based on the Runge-Kutta method 

and product-integration approximation approach [26]. For example, at 𝜓 = −1, 𝜁 = 0.1 and 𝐹 =

0.4, when 𝑋 ≈ 𝜀0 sin 𝜏,  the finite sum of Eq.(14) with 𝑖 = 1,2, … ,20 and 𝑛 = 0,1, … ,1000 has a 

relative error of the order 10–6 on the interval 0 < 𝜏 < 10. 

 

4. Sliding instability analysis. 

 The motion of the body is analysed separately for positive 𝜇–𝑇 slope (𝜓 > 0) and negative 

𝜇–𝑇 slope (𝜓 < 0). 

 

4.1. Positive 𝝁–𝑻 slope. 

Introduce 𝑝 = √𝑠 and represent the denominator of the transfer function of Eq.(11) in the 

form of a polynomial: 

𝑝5 − 𝜓𝑝4 + 2𝜁𝑝3 − 𝜓(2𝜁 − 𝐹)𝑝2 + 𝑝 − 𝜓 = (𝑝 − 𝑝1)(𝑝 − 𝑝2)(𝑝 − 𝑝3)(𝑝 − 𝑝4)(𝑝 − 𝑝5) (15) 

where 𝑝1,…, 𝑝5 are the polynomial roots which are either purely real or appear in complex 

conjugate pairs. Equating the constant terms of the left and right sides of Eq.(15) yields 

𝑝1𝑝2𝑝3𝑝4𝑝5 = 𝜓 > 0 (16) 

Since the product of a complex number and its conjugate is always positive, it follows from Eq.(16) 

that among 𝑝1,…, 𝑝5 there exists at least one positive root (let it be 𝑝1 for definiteness). 

Consequently, in general case the transfer function of Eq.(11) has a purely real pole 𝑠 = 𝑝1
2 > 0 and 

is hence unstable [27], which implies the exponential increase in |𝑋|. 

 Figure 2 illustrates the behaviour of 𝑋 due to Eq.(14) and the corresponding location of the 

poles of Eq.(11) in the complex plane (Re 𝑠, Im 𝑠) at various values of 𝜓. The poles are denoted by 

the symbol “×”. It is seen that as 𝜓 increases, the body deviates stronger from the equilibrium 

position. The motion of the body includes an oscillatory term, which can be decaying, periodic, or 

growing, as shown in Fig.3. 

Thus, at positive 𝜇–𝑇 slope coefficient 

𝑏 > 0 (17) 
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the sliding instability occurs in the form of deviation. Physically, the deviation is explained by the 

positive feedback between 𝜇 and 𝑇 represented by Eq.(4). A small increase in 𝑇 causes a small 

increase in 𝜇, which, in its turn, results in a further increase in 𝑇. 

 

 

 

 

4.2. Negative 𝝁–𝑻 slope. 

 Figure 4 illustrates the body motion at negative values of 𝜓. At 𝜓 = −0.45 the deviation 

takes place, while at 𝜓 = −0.05 the body oscillates with growing amplitude. When 𝜓 ≈ −0.25, the 

two real poles turn into a complex conjugate pair, and the deviation transforms into the oscillation. 

Thereby, at negative friction–temperature slope, the sliding instability can arise in the form of 

deviation as well as oscillation. 

Different cases of the oscillatory motion are shown in Fig.5. At 𝜓 = −0.5 the oscillation 

grows. On the contrary, it decays at 𝜓 = −0.1. In the limit case at 𝜓 ≈ −0.29, the real part of the 

complex conjugate poles is zero, and the oscillation is periodic. 

The limit points are determined, corresponding to the transitions of deviation / oscillation 

(see Fig.4) and growing oscillation / decaying oscillation (see Fig.5). Based on these points, the 

limit curves are found, dividing the parameter plane (𝜓, 𝐹 𝜁⁄ ) into the regions «Deviation», 

«Oscillation» (growing oscillation), and «Stable sliding» (decaying oscillation). Figs.6 and 7 show 

the limit curves for the cases 𝜁 > 0 and 𝜁 < 0. It is evident that the configuration of the regions 

depends essentially on the sign of 𝜁. 

Of practical interest is the equation of the limit curve between the regions «Stable sliding» 

and «Oscillation». Try to find it for the case |𝜁| ≪ 1 when the limit cycle represents an almost 

harmonic motion [28] defined for definiteness as 𝑋 = 𝜀0 sin 𝜏. The work of the spring force over 

one cycle of oscillation is 

∫ ((−𝑋)
𝑑𝑋

𝑑𝜏
)|

𝜍

𝑑𝜍

𝜏+2𝜋

𝜏

= 0 (18) 

The work of the reduced damping force can be represented as follows: 

∫ ((−2𝜁
𝑑𝑋

𝑑𝜏
)

𝑑𝑋

𝑑𝜏
)|

𝜍

𝑑𝜍

𝜏+2𝜋

𝜏

= −2𝜋𝜀0
2𝜁 (19) 

The friction force 𝛩 is derived in the following manner [23]: 
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𝛩 = −𝜀0𝐹𝜓 ∫ cos(𝜏 − 𝜍) (
1

√𝜋𝜍
+ 𝜓 exp(𝜓2𝜍) (1 + erf(𝜓√𝜍))) 𝑑𝜍

𝜏

0

= ℒ−1 [−
𝜀0𝐹𝜓𝑠

(𝑠2 + 1)(√𝑠 − 𝜓)
]

= −
𝜀0𝐹𝜓

1 + 𝜓4
(𝜓3 exp(𝜓2𝜏) (1 + erf(𝜓√𝜏))

+ (√2𝜓2 𝐂 (√2𝜏 𝜋⁄ ) + √2 𝐒 (√2𝜏 𝜋⁄ ) + 𝜓) sin 𝜏

+ (√2 𝐂 (√2𝜏 𝜋⁄ ) − √2 𝜓2 𝐒 (√2𝜏 𝜋⁄ ) − 𝜓3) cos 𝜏) 

where 𝐂(∙) is Fresnel cosine integral function; 𝐒(∙) is Fresnel sine integral function. At 𝜓 < 0 and 

𝜏 → ∞ we obtain the periodic function 

𝛩 = −
𝜀0𝐹𝜓

√2(1 + 𝜓4)
((1 + √2𝜓 + 𝜓2) sin 𝜏 + (1 − 𝜓2 − √2𝜓3) cos 𝜏)  

With account of the equation above, the work of the friction force over one cycle of oscillation is 

∫ (𝛩
𝑑𝑋

𝑑𝜏
)|

𝜍
𝑑𝜍

𝜏+2𝜋

𝜏

=
𝜋𝜀0

2𝐹|𝜓|(1 − 𝜓2 + √2|𝜓|3)

√2(1 + 𝜓4)
 (20) 

Due to the energy balance, the work of all the forces acting on the body for one cycle, i.e. the sum 

of Eqs.(18)–(20), must be equal to zero. This yields the following limit equation: 

𝐹
|𝜓|(1 − 𝜓2 + √2|𝜓|3)

√2(1 + 𝜓4)
= 2𝜁 (21) 

The validity of Eq.(21) is confirmed by its comparison with the limit points obtained from Eq.(14), 

as shown in Fig.8. 

 The instability condition is easily obtained from Eq.(21) in the form  

(
𝜇0

𝑣
+ 𝑎)

|𝜓|(1 − 𝜓2 + √2|𝜓|3)

√2(1 + 𝜓4)
>

𝑐

𝑁
+ 𝑎 (22) 

According to Eq.(22), the sliding instability occurrence depends on both 𝑎 and 𝑏, i.e. the 𝜇–𝑣s and 

𝜇–𝑇 slopes. Since at 𝜓 < 0 it is true that 

0 <
|𝜓|(1 − 𝜓2 + √2|𝜓|3)

√2(1 + 𝜓4)
< 1 

 

there can be singled out two particular cases: sliding is stable at 𝜇0 𝑣⁄ < 𝑐 𝑁⁄  and 𝑐 𝑁⁄ + 𝑎 > 0; 

sliding is unstable at 𝜇0 𝑣⁄ > 𝑐 𝑁⁄  and 𝑐 𝑁⁄ + 𝑎 < 0. 

 

5. Discussion. 

Maksimov and Rakhmanov [16, 17] considered the friction of a body on a stationary 

counterbody, caused by constant normal and tangential forces applied to the body. It was assumed 

that the friction coefficient 𝜇 depends linearly on 𝑣s and 𝑇, with dimensionless 𝜇–𝑣s slope 
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coefficient 𝜇𝑣 and 𝜇–𝑇 slope coefficient 𝜇𝑇; the temperature is uniformly distributed in the body 

and is governed by the frictional heating and convective heat transfer from the body to the 

environment. By analysing the response of the body on small velocity and temperature 

perturbations, the instability conditions were derived, containing 𝜇𝑣, 𝜇𝑇, and a dimensionless steady 

sliding velocity 𝑢. It was shown that growing oscillations of 𝑣s and 𝑇 occur at 

0 < 𝜇𝑇𝑢 − 𝜇𝑣 − 1 < 2√𝜇𝑣 + 𝜇𝑇 (23) 

while 𝑣s and 𝑇 increase exponentially at 

𝜇𝑣 + 𝜇𝑇 < 0 or 0 < 2√𝜇𝑣 + 𝜇𝑇 < 𝜇𝑇𝑢 − 𝜇𝑣 − 1 (24) 

The instability conditions of Eqs.(17), (22) proposed in this study differ from Eqs.(23), (24) since 

they allow for non-uniformity of the temperature field in the body as well as the presence of the 

spring and damper links. Nevertheless, both Eqs.(17), (22) and Eqs.(23), (24) yield the same 

qualitative conclusions: (1) sliding can be unstable at positive 𝜇–𝑣s slope, and it can be stable at 

negative 𝜇–𝑣s slope; (2) the 𝜇–𝑇 slope can result in the sliding instability; (3) the sliding instability 

can occur in the form of deviation or oscillation. It is noteworthy that the conclusion (1) has 

experimental confirmations [12, 29]. 

Nosonovsky and Bhushan [18] applied the thermodynamic approach to analyse the friction 

system instability. Assuming that 𝜇 depends on 𝑣s and 𝑇, while the thermal conductivity coefficient 

𝐾 depends on 𝑣s, the local stability condition [19] was expressed in the following form: 

(
𝜕𝜇

𝜕𝑣s
𝑣s + 𝜇) (

𝜕𝜇

𝜕𝑣s
𝑣s + 𝜇 −

𝜇𝑣s

𝐾

𝜕𝐾

𝜕𝑣s
) (𝛿𝑣s)2 −

2𝜇𝑣s
2

𝑇

𝜕𝜇

𝜕𝑇
(𝛿𝑇)2 ≥ 0 (25) 

where 𝛿𝑣s and 𝛿𝑇 are the variations of 𝑣s and 𝑇, respectively. If the condition of Eq.(25) is violated, 

the friction system would likely enter the self-organizing regime with reduced friction and wear rate. 

One of possible consequences of the self-organization is the sliding instability [18]. It was 

concluded that the violation of the condition of Eq.(25) takes place either if the 𝜇–𝑇 slope is 

positive (𝜕𝜇 𝜕𝑇⁄ > 0), which is equivalent to the fulfilment of the instability condition of Eq.(17), 

or if, in the first term, the parentheses have different signs. 

 Mortazavi et al. [20] investigated the influence of positive 𝜇–𝑇 slope on the sliding 

instability for a friction body represented as a slab with a length 𝐿 and a thickness 𝑤. It was 

assumed that the temperature is uniformly distributed in the body in the directions of its width and 

thickness; 𝜇 increases linearly with 𝑇. By specifying a non-uniform temperature distribution at the 

initial moment and simulating the heat conduction along the body length, it was found that the 

condition 

𝜕𝜇

𝜕𝑇
>

𝜋2𝑤𝐾

𝑄0𝐿2
 (26) 
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leads to the unstable sliding with 𝜇 and 𝑇 increasing exponentially. Here 𝑄0 is the initial heat 

generation rate per unit area. It is evident that the assumption of uniform temperature distribution 

along the body thickness is true for small values of 𝑤. When 𝑤 → 0, Eq.(26) transforms into the 

instability condition of Eq.(17). 

Nosko et al. [21] studied the influence of negative 𝜇–𝑇 slope on the occurrence and 

characteristics of stick−slip oscillations in a one-degree-of-freedom system with friction. The 

temperature in the body was described with account of the heat conduction in the direction 

perpendicular to the sliding surface and the contact heat transfer between the body and counterbody. 

The analysis of the energy balance led to the oscillation occurrence condition. For the case when 

there is no contact heat transfer, this condition degenerates into  

𝜕𝜇

𝜕𝑇
< −

√2𝑐𝐾𝑆 √𝑘
4

𝛼𝜇0𝑁2 √𝜘 √𝑚
4   

which coincides with the instability condition of Eq.(22) at 𝑎 = 0 and |𝜓| ≪ 1. 

 Sextro [30] analysed the energy balance of stationary friction. Assuming that 𝑇 is 

proportional to 𝑞 with a coefficient 𝑘𝑞, the dependency 𝜇 = 𝜇0 − 𝑘𝑇𝑇 was shown to be equivalent 

to the dependency 

𝜇 =
𝜇0

1 + 𝑘𝑞𝑘𝑇𝑝𝑣s 𝜇0⁄
≈ 𝜇0 − 𝑘𝑞𝑘𝑇𝑝𝑣s  

i.e. the model with negative 𝜇–𝑇 slope (with the coefficient 𝑏 = −𝑘𝑇) is almost identical to the 

model with negative 𝜇–𝑣s slope (with the coefficient 𝑎 = −𝑘𝑞𝑘𝑇𝑝). Here 𝑝 is the contact pressure. 

If we assume a sharp negative 𝜇–𝑇 slope, i.e. 𝜓 → −∞, the transfer function of Eq.(11) takes the 

form 

ℒ[𝑋(𝜏)] =
𝜀0

𝑠2 + (2𝜁 − 𝐹)𝑠 + 1
  

which is equivalent to the motion equation 

𝑚
𝑑2𝑥

𝑑𝑡2
+ (𝑐 −

𝜇0𝑁

𝑣
)

𝑑𝑥

𝑑𝑡
+ 𝑘 (𝑥 +

𝜇0𝑁

𝑘
) = 0, 𝑥|𝑡=0 = −

𝜇0𝑁

𝑘
,

𝑑𝑥

𝑑𝑡
|

𝑡=0
= 𝜀0𝑣 (27) 

The comparison of Eq.(27) with Eq.(2) at 𝑏 = 0 shows that the sharp negative 𝜇–𝑇 slope produces 

the same motion as does the 𝜇–𝑣s slope with 𝑎 = − 𝜇0 𝑣⁄ . This result is qualitatively similar to that 

obtained by Sextro [30]. 

 

6. Conclusions. 

 An analytical expression of Eq.(14) is derived for the motion of a body of a one-degree-of-

freedom system with velocity- and temperature-dependent friction about the steady sliding 

equilibrium position. Based on this expression, the instability conditions of Eq.(17) and Eq.(22) are 
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obtained, which allow to predict the sliding instability of two types — deviation of the body from 

the equilibrium position and oscillation. The instability conditions are in a good agreement with 

existing theoretical concepts. 

1. Positive friction–temperature slope results in the deviation of the body from the equilibrium 

position. The deviation increases with the friction–temperature slope coefficient and can be 

accompanied by growing oscillation. 

2. At negative friction–temperature slope, both types of the sliding instability can arise depending 

on the friction–velocity and friction–temperature slopes. The instability condition of Eq.(22) 

and the limit curves of Figs.6, 7 allow to predict the instability occurrence. 

3. The motion of the body at sharp negative friction–temperature slope almost coincides with the 

motion at negative friction–velocity slope with the coefficient equal in modulus to the ratio of 

the friction coefficient to the steady sliding velocity. 
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Figures 

 

Fig.1 One-degree-of-freedom system with friction 

 

 

Fig.2 Deviation increasing with 𝜓 at 𝜁 = 0.1 and 𝐹 = 1 
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Fig.3 Oscillatory term at 𝜓 = 0.5 and 𝐹 = 1 

 

 

Fig.4 Transition between the deviation and oscillation at 𝜁 = 0.1 and 𝐹 = 10 
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Fig.5 Transition between the growing oscillation and decaying oscillation at 𝜁 = 0.1 and 𝐹 = 1 

 

 

Fig.6 Character of sliding at 𝜓 < 0 and 𝜁 > 0 
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Fig.7 Character of sliding at 𝜓 < 0 and 𝜁 < 0 

 

 

Fig.8 Limit curve of the sliding instability at 𝜓 < 0 and |𝜁| ≪ 1 
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