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Abstract

We investigate the mechanical properties of penta-graphene (PG), a recently pro-

posed two-dimensional carbon allotrope using atomistic simulation techniques com-

bined with the empirical description of interatomic interactions. We report on the

dependence of its three in-plane mechanical moduli (i.e. Young’s modulus, Pois-

son’s ratio and shear modulus) on the deformation direction, strain and tempera-

ture. We show that PG displays a strongly manifested mechanical anisotropy, being

characterized by Poisson’s ratio and the shear modulus which both depend strongly

on the deformation direction. By analyzing bond energies we study the influence

of different carbon-carbon bonds on the mechanical response of PG and based on

that we explain the origins of the observed anisotropy. We show that it is mostly

a consequence of the characteristics of the sp3-hybridizied bonds, which form the

diamond-like tetrahedral blocks. We investigate the auxeticity of PG in detail and

show that it displays complete auxetic behavior, having negative Poisson’s ratio for

all the deformation directions. We show that the auxeticity of PG is similar to that

of defective graphene containing 5-8-5 double vacancies, as it also originates from

the so-called de-wrinkling mechanism. We study the influence of temperature and

show that it only slightly affects the mechanical moduli of PG.
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1. Introduction

Penta-graphene (PG) is a new carbon allotrope, which has been proposed the-

oretically based on ab initio calculations [1]. Similarly to graphene, PG is a two-

dimensional crystal, however, its structure is completely made of pentagons.

Since its discovery, PG has been gaining much interest [2–23], mostly because

of its electric properties. As opposed to graphene, PG possesses a band gap, which

presence makes PG a good candidate material for two-dimensional transistors. Fur-

thermore, its electric properties can be fine-tuned by functionalization [6, 8], doping

[6, 22] or by applying stacking [5, 12]. This further stimulates interest in this struc-

ture.

PG is also interesting because of its unique mechanical properties. It has very

high in-plane stiffness, which reaches 265 GPa nm [1], i.e. more than two thirds

of that of graphene. In addition, it is also characterized by very high mechanical

strength, being able to withstand strains as high as 25% [1]. PG has also another

interesting mechanical property. Having a negative Poisson’s ratio it belongs to the

group of materials called auxetics, which expand in the transverse direction during

stretching.

Insofar the electrical properties of PG are already well known, its mechanical

properties have not been a subject of intensive research. In addition to the original

work of Zhang et al. [1], which presented the linear elastic constants of PG, the

mechanical properties of PG have been investigated – to our best knowledge – in

three other papers [7, 11, 17] only.

In Ref. [11] Sun et al. focused on nonlinear mechanical properties of PG and

studied its behavior at large deformations by using density functional theory (DFT)

calculations combined with the fourth order continuum elasticity theory. They

also made an attempt to explain the auxeticity of PG, concluding that it results

from a de-wrinkling mechanism. Despite such a significant expansion of knowledge,

Ref. [11] did not present a complete picture of the variability of mechanical prop-

erties of PG, because the problem of their dependence on the direction was not

raised.

The mechanical properties of PG were also investigated by Le [17], who stud-

3

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


ied the influence of temperature on Young’s modulus and the yield point of PG.

However, Le’s studies did not provide any insight into the anisotropy of the me-

chanical properties of PG either, as he limited his studies to only one family of

crystallographic directions, namely 〈100〉. What is more important, the credibil-

ity of his results can be questioned by the fact that in his studies he applied the

REAX potential [24], which in our recent work [25] we found as rather inappropri-

ate for describing PG. A similar – and in our opinion inappropriate – approach was

applied by Cranford in Ref. [7], who also used the REAX potential [24] to study

the mechanical behavior of finite (hydrogen-terminated) PG sheets during uniaxial

tension. His studies did not give an insight into the mechanical anisotropy of PG

either, as he also considered only one deformation direction, namely [110].

It is worth noting that the way in which PG is built, especially the fact that it is

made of non-equivalent sp2- and sp3-hybridizied atoms, which – in addition – form

a very untypical lattice, spanned by bonds of different stiffness and orientations,

suggests a potentially strong dependence of its mechanical properties on direction.

However, a comprehensive description of these properties is still missing in the

literature. It is also still unclear how the interplay between non-equivalent bonds

present in PG builds its mechanical response, and how this picture changes when

deformation is carried out in different directions.

In the present work we made an attempt to fill the above mentioned gaps. We

investigated the mechanical properties of PG and completely described its in-plane

mechanical response by using molecular statics (MS) and molecular dynamics (MD)

simulations combined with the empirical description of interatomic interactions. We

also performed a detailed bond energy analysis and analysis of the geometry changes

and based on that we explained the origins of the observed mechanical anisotropy.

We also characterized the influence of temperature on the mechanical properties of

PG.

This work is organized as follows. In Section 2 we recap the basic information

about PG and present the methodology used. In Section 3 we present the results of

MS calculations of the mechanical properties of PG at zero temperature. In Section

4 we explain the observed mechanical anisotropy, relating the obtained picture to
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the features of the PG structure and the specifics of its bonding. In Section 5

we investigate the influence of temperature on the mechanical properties of PG,

presenting the results of MD simulations. Section 6 is a summary.

2. Penta-graphene

2.1. Structure

The structure of PG (as described by Zhang et al. in [1]) is presented in Figure 1.

PG belongs to the tetragonal space group P-421m with the lattice parameters a =

b = 3.64 Å and it has a layered structure (see Figure 1b) made of two types of

carbon atoms. The middle layer (with z = 0) contains only sp3-hybridizied atoms

(later on termed as C1 atoms), while the upper and lower layers (with z = ±h)

contain only sp2-hybridizied atoms (detoned as C2). Here, h denotes the interlayer

spacing which – according to Ref. [1] – equals 0.6 Å. The carbon-carbon bonds have

the lengths d1 = 1.55 Å (all C1-C2 bonds) and d2 = 1.34 Å (all C2-C2 bonds).

Figure 1: Structure of penta-graphene: top (panel a) and side (panel b) views. The

sp3-hybridizied atoms (C1) are shown in green, while the sp2-hybridizied atoms (C2)

are shown in blue (lower layer with z = −h) and red (upper layer with z = +h).

The illustration was prepared using OVITO [26].
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PG forms a structure which is similar to the Cairo pentagonal tiling (CPT).

Similarly to CPT, all pentagons in PG are the same. However, their geometry

differs slightly from that seen in CPT. This originates from the fact that PG is

not strictly planar, while CPT is. In CPT the interior angles of pentagons are

equal to 120 (occurs three times) and 90 degrees (occurs twice), while in PG the

corresponding angles are equal to 113.5 (C1-C2-C2 angle, occurs twice), 112.4 (C1-

C2-C1 angle) and α = 98.6 degrees (C2-C1-C2 angle, also occurs twice). There is

also another C2-C1-C2 angle, which measures the corrugation of the PG structure.

According to Ref. [1] it is equal to β = 134.4 degrees.

2.2. Mechanical properties

The presence of strong covalent bonds is the reason why PG has very high

stiffness, with the corresponding Young’s modulus equal to E = 264 GPa nm. PG

is also characterized by a high shear modulus µ = 152 GPa nm and a negative

Poisson’s ratio ν = −0.068. The above presented values of moduli are taken from

Ref. [1] and correspond to the 〈100〉 family of directions. In this work we will focus

on the anisotropy of mechanical properties, with the main scope being to determine

the dependence of the mechanical moduli E, ν and µ on the deformation direction

and strain.

To describe the deformation direction we will use the angle θ, which we define

as the angle between the deformation direction and the crystallographic direction

[100]. Therefore θ = π/4 will correspond to the [110] direction, while θ = π/2 will

correspond to the [010] direction.

The symmetry of PG is the reason why the range of the considered directions

(angles θ) can be restricted to θ ∈ [0, π/4]. For larger angles the following relations

can be used:

P (π/4 + θ) = P (π/4− θ), for θ ∈ (0, π/4], (1)

P (π/2 + θ) = P (θ), for θ ∈ (0, π/2], (2)

P (π + θ) = P (θ), for θ ∈ (0, π). (3)

in order to obtain the value of mechanical modulus P (where P = E, ν or µ) for

any angle θ.
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Throughout this work we will use the Voigt notation. The axial and transverse

directions will always correspond to the x and y directions, respectively, and the

corresponding strains will be denoted with ε1 and ε2 symbols, respectively. The

shear strain will be denoted as ε6. Consequently, the corresponding elements of the

stress tensor will be denoted with σ1, σ2 and σ6 symbols. Stresses will be expressed

in units of GPa nm (which equals N/m), i.e. as a linear force density. This unit is

much more convenient for the description of single layer thick systems, as it does

not necessitate defining the thickness of the considered structure, which is often

problematic and may cause some ambiguities.

2.3. Interatomic interactions

Penta-graphene constitutes a challenging system for the empirical potentials.

This mostly originates from its mixed sp2-sp3 hybridization but is also a consequence

of the fact, that the base structural building blocks of PG differ strongly from their

counterparts seen in diamond and graphite/graphene.

In our previous work [25] we showed that among empirical potentials available

for the elemental carbon there is only one potential which correctly describes all

the important features of PG. It is a parameterization of the Tersoff potential

[27, 28] proposed in 2005 by Erhart and Albe [29]. As we showed in Ref. [25],

this potential reproduces very well the structure of PG and its linear mechanical

properties (in Table 1 we compare the properties obtained with this potential with

the DFT results of Ref. [1]). At the same time it provides a reliable picture of the

thermodynamic stability of PG. This potential also satisfactorily (as for an empirical

model) describes the nonlinear mechanical behavior of PG, even at strains as high

as 0.2. This further justifies its application in studies on the anisotropy of the

mechanical properties of PG, allowing us to believe that the obtained picture will

be qualitatively true and quantitatively satisfactory. Therefore, in this work we

have employed this potential to describe the interactions of carbon atoms in PG.
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Table 1: Structural and mechanical properties of the penta-graphene obtained

with the DFT method [1] compared with the empirical calculations [25] based on

the parameterization of the Tersoff potential proposed by Erhart and Albe [29].

C11, C12 and C66 symbols denote the elastic constants, while φ denotes the so-called

deflection angle (for details, please see Ref. [22]). In the last column we present

the signed relative error, which was calculated by taking the DFT results as the

reference.

Property DFT Tersoff Relative

potential error (%)

Structural

a = b (Å) 3.64 3.59 -1.4

h (Å) 0.60 0.71 18

d1 (Å) 1.55 1.55 -0.25

d2 (Å) 1.34 1.48 11

α (degrees) 98.6 102 3.4

β (degrees) 134.2 125.7 -6.4

φ (degrees) 19.17 24.11 26

Mechanical

C11 (GPa nm) 265 244 -7.9

C12 (GPa nm) -18.0 -20.6 15

C66 = µ (GPa nm) 152 162 6.7

E (GPa nm) 264 242 -8.1

ν -0.068 -0.085 24

The total potential energy Utot of the system composed of N atoms within the

Tersoff potential is given by:

Utot =
∑

i

∑

j>i

fC(rij)

[

VR(rij)−
bij + bji

2
VA(rij)

]

=
∑

i

∑

j>i

Vij. (4)

Here, rij denotes the distance between atoms i and j. The functions VR(r) and VA(r)

describe repulsion and attraction and both have an exponential form. The factor

bij = (bij + bji)/2 which occurs before the second term is the so-called bond order.

By scaling the attractive term VA it controls the strength of the bond, enabling

a simultaneous (i.e. obtained within one approach) description of single, double
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and triple covalent bonds. The bij parameter depends in the nonlinear way on the

configuration of the system in the vicinity of atoms i and j. This causes the Tersoff

potential to be, in fact, a many-body potential.

The cutoff function fC(r) smoothly turns off the interactions between distant

atoms, causing that it is only the contributions of pairs of atoms which are covalently

bonded that are included in the double summation present in Eq. (4). Thus, it is

possible to consider the Vij contribution to be energy associated with the i-j bond.

However, it must stressed here that the Vij contribution defined in this way is not

a two body contribution, as it depends also on the positions of atoms which are

nearest neighbors of atoms i and j, through the bond order bij . In fact, the Vij term

describes not only the energetics of the bond stretching, but also captures all the

bond-bond effects that occur when the valence angle between two adjacent bonds

is varied. In this work we do not present a detailed description of the underlying

physics. However, we emphasize the importance of the rightmost form of Eq. (4),

which we will use later in this work.

3. Mechanical properties at zero temperature

3.1. Simulation protocol

At the beginning we examined the mechanical response of PG at zero tem-

perature, neglecting – but only for now – the influence of temperature. In the

calculations for zero temperature we used the molecular statics method. All the

calculations presented in this work were carried out using the LAMMPS simula-

tion package [30] in a monoclinic simulation box spanned by vectors A = [Lx, 0, 0],

B = [Xy, Ly, 0] and C = [0, 0, Lz]. The penta-graphene was laying in the xy plane

with the periodic boundary conditions (PBC) applied in the x and y coordinate

directions. The crystal lattice of PG was oriented in such a way that the chosen

deformation direction was aligned with the x axis. The simulations were carried

out for systems consisting of 2400 up to 3576 atoms, depending on the chosen

deformation direction.

We considered 42 different deformation directions from the range θ ∈ [0, π/4].

For each direction θ the calculations started with the equilibrium structure obtained
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from the energy minimization (details regarding the procedure employed for mini-

mization can be found in Ref. [25], the initial structure used in this work corresponds

to the global minimum identified there). The equilibrated (i.e. corresponding to the

zero strain) structure was then deformed by incrementally dilating the simulation

box along the loading direction and applying an equal affine transformation to the

atomic positions. This was followed by the energy minimization of the atomic coor-

dinates. The minimization was carried out using the Polak-Ribiére [31] formulation

of the conjugate gradient method. Strict convergence criteria were always used.

The termination criterion for all the atomic force components was to be below 10−8

eV Å−1, with the final positions being accurate to no worse than 10−6 Å.

To determine all the three in-plane moduli (E, ν and µ) we considered two

deformation types: uniaxial stretching and simple shearing. In the case of uniaxial

stretching, for each considered state (defined by ε1) the Ly and Xy coordinates of the

simulation box were also optimized during the minimization procedure, to ensure

that the obtained state was truly characterized by σ2 = σ6 = 0 (with σ1 6= 0). For

this deformation type we considered 201 different strains in the range ε1 ∈ [0, 0.2].

In the case of simple shearing, the Lx and Ly simulation box sizes were relaxed,

in order to obtain a state characterized by σ1 = σ2 = 0 (with σ6 6= 0). For this

deformation type we considered 101 different strains in the range ε6 ∈ [0, 0.1].

Knowing the sizes of the deformed system (i.e. Lx, Ly and Xy), the axial and the

transverse strains were calculated as ε1 = (Lx − L0
x)/L

0
x and ε2 = (Ly − L0

y)/L
0
y,

respectively, while the shear strain was calculated as ε6 = Xy/L
0
y. Here, L0

x and L0
y

represent the sizes of the undeformed system.

3.2. Results

We start the presentation with the results corresponding to the uniaxial stretch-

ing. The stress-strain σ1(ε1) dependencies obtained for four exemplary directions

(i.e. θ = 0, π/12, π/6 and π/4) are presented in Figure 2a. On their basis we

determined the strain dependent Young’s modulus E(ε1), defined by:

E(ε1) =
∂σ1(ε1)

∂ε1
, (5)
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which was found by differentiating the sixth degree polynomial fitted to the σ1(ε1)

data. The obtained E(ε1) curves are presented in Figure 2b.

 0

 5

10

15

20

25

30

0.00 0.05 0.10 0.15 0.20

(a)

A
x
ia

l 
st

re
ss

 σ
1
 (

G
P

a 
n
m

)

Axial strain ε1

θ = 0
θ = π/12
θ = π/6
θ = π/4

 0

50

100

150

200

250

300

0.00 0.05 0.10 0.15 0.20

(b)

Y
o
u
n
g
’s

 m
o
d
u
lu

s 
E

 (
G

P
a 

n
m

)

Axial strain ε1

θ = 0
θ = π/12
θ = π/6
θ = π/4

Figure 2: Uniaxial stretching of penta-graphene: strain-stress curves (panel a) and

strain dependent Young’s modulus (panel b). The solid lines on panel a represent

polynomial fits (see text).

Even the first glance shows that the mechanical response of PG is characterized

by strong nonlinearity. For all directions a continuous decrease in the strain depen-

dent Young’s modulus E(ε1) is observed. As a result at ε1 = 0.1 and ε1 = 0.2 strain

E decreases to about 50% and 20% of its initial value, respectively. The anisotropy

of the mechanical properties is also visible. The highest stiffness is observed for

θ = π/4, for which we obtained E(ε1 = 0) = 265 GPa nm, which is by about

10% higher than the value obtained for θ = 0. In Figure 5a we present a 2D map

which shows how Young’s modulus E depends on ε1 for all the studied deformation

directions θ.
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Figure 3: Uniaxial stretching of penta-graphene: strain-strain curves (panel a) and

strain dependent Poisson’s ratio (panel b). The solid lines on panel a represent

polynomial fits (see text).

A strong nonlinearity is also observed on the ε2(ε1) curves (Figure 3a). This

can be easily seen by analyzing the strain dependent Poisson’s ratio ν(ε1) (see

Figure 3b), defined by:

ν(ε1) = −∂ε2(ε1)

∂ε1
(6)

and found in a way analogous to E(ε1) (sixth degree polynomial was used to ap-

proximate the ε2(ε1) data and then differentiated).

Our calculations have shown that for all directions the Poisson’s ratio decreases

strongly with the increasing axial strain ε1. For θ = 0 the initial (i.e. zero strain)

Poisson’s ratio was found as ν(ε1 = 0) = −0.085, while for the highest studied strain

(and the same direction) we obtained ν(ε1 = 0.2) = −0.185, which gives more than

a two-fold change in the absolute value of ν. For θ = π/4 this ratio turned out to
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be only slightly lower (≈ 1.75).

In the case of the Poisson’s ratio the mechanical anisotropy manifests itself even

stronger than in the case of Young’s modulus. This is clearly visible when one

compares the ratio of extreme Poisson’s ratios, which was found as

ν(ε1 = 0, θ = π/4)

ν(ε1 = 0, θ = 0)
≈ 2.2. (7)

Poisson’s ratio decreases monotonically with increasing θ and ε1. The only slight

deviation from this character is observed for directions θ ∈ [0, π/12] and strains

ε1 ∈ [0.15, 0.20]. This is clearly visible on a 2D map of ν(θ, ε1) shown in Figure 5b,

which presents the behavior of ν in the entire studied region. It is worth noting

that Poisson’s ratio turned out to be negative for all the studied directions (and all

the studied strains). This property, which is often termed as complete auxeticity,

is very rare.

Now we will discuss the results corresponding to the shearing. In Figure 4a we

present four examples of σ6(ε6) dependencies. Based on them we calculated the

strain dependent shear modulus:

µ(ε6) =
∂σ6(ε6)

∂ε6
, (8)

which was calculated in a way analogous to that used previously. The obtained

µ(ε6) dependencies are presented in Figure 4b.

The anisotropy of the shear modulus is also clearly visible. Its value strongly

depends on the deformation direction and is the lowest for θ = π/4. For this

direction and the zero strain we obtained µ(ε6 = 0) = 132.6 GPa nm, which is

by 20% lower than the value obtained for θ = 0 (162.5 GPa nm), for which PG

systematically (i.e. for all studied strains) displays the highest rigidity.

The dependence of the shear modulus on θ and ε6 turned out to be very similar to

that of Poisson’s ratio. This is clearly visible when the contour plots of µ (Figure 5c)

and ν (Figure 5b) are compared. In both cases the highest value of the modulus

was obtained for θ = 0 and the zero strain, while the lowest value was found for

θ = π/4 and the highest strain. This observation suggests that the mechanism of

PG auxeticity must be somehow related to the mechanism which “builds up” its

rigidity. We will address this issue later in this work.
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Figure 4: Simple shearing of penta-graphene: strain-strain curves (panel a) and

strain dependent shear modulus (panel b). The solid lines on panel a represent

polynomial fits (see text).

In order to facilitate the use of our results (e.g. in continuum modeling) we

have described the obtained dependencies of mechanical moduli E, ν and µ with

2D polynomials of the form:

f(θ, ε) = a0,0 + a1,0θ + a0,1ε+ a2,0θ
2 + a1,1θε+ a0,2ε

2 +

a3,0θ
3 + a2,1θ

2ε+ a1,2θε
2 + a0,3ε

3 +

a4,0θ
4 + a3,1θ

3ε+ a2,2θ
2ε2 + a1,3θε

3 + a0,4ε
4. (9)

In the above expression symbol f represents the mechanical modulus (i.e. f = E,

ν or µ), while symbol ε denotes the strain associated with it (i.e. ε = ε1 for f = E

and f = ν; while ε = ε6 for f = µ). The coefficients ai,j obtained from the nonlinear

least squares fitting are listed in Table 2. We note that the calculated mean relative

error (averaged over 42 × 201 or 42 × 101 – in the case of µ – points) was found
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as 0.14%, 0.28% and 0.045% (for E, ν and µ, respectively), and the maximum

relative error did not exceed 1.7%, 2.5% and 0.42%. This shows that the obtained

fits accurately reproduce the 2D maps presented in Figure 5.

Table 2: Coefficients of polynomials (see Eq. (9)) describing nonlinear anisotropic

mechanical behavior of penta-graphene. Here, angle θ is expressed in degrees. The

unit for Young’s modulus E and shear modulus µ is GPa nm.

Coefficient Young’s modulus Poisson’s ratio Shear modulus

indices i, j E(θ, ε1) ν(θ, ε1) µ(θ, ε6)

0, 0 2.425206× 102 −8.251884×10−2 1.624817× 102

1, 0 7.541568×10−2 −9.004087×10−4 8.116323×10−2

0, 1 −1.163927× 103 −1.119765× 100 −1.735933× 101

2, 0 2.720296×10−2 −3.284450×10−5 −6.006031×10−2

1, 1 −4.609653× 100 1.508443×10−3 −1.152805× 100

0, 2 −1.234095× 103 2.867903× 100 −9.601932× 102

3, 0 −3.496951×10−4 −2.229375×10−6 1.188480×10−3

2, 1 −8.066811×10−2 −3.209775×10−5 8.676308×10−2

1, 2 2.407700× 101 6.118096×10−2 −2.195936× 101

0, 3 1.982593× 104 −1.943642× 100 −1.362941× 104

4, 0 −1.138031×10−6 5.146748×10−8 −4.826035×10−6

3, 1 2.261860×10−3 1.165261×10−8 −1.536743×10−3

2, 2 −4.799477×10−1 −1.295644×10−3 8.399292×10−1

1, 3 1.912602× 101 −1.405455×10−1 −3.761039× 100

1, 4 −4.347723× 104 1.215379× 101 7.739685× 104
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Figure 5: Contour plots showing the dependence of mechanical moduli of penta-

graphene on deformation direction θ and strain: Young’s modulus E (panel a),

Poisson’s ratio ν (panel b) and shear modulus µ (panel c).
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4. Explanation of observed anisotropy

Now we will try to explain the observed anisotropy of the mechanical properties

of PG. We will analyze in details two deformation directions, θ = 0 and θ = π/4,

which – from the mechanical point of view – turned out to be significantly different

and therefore can be considered as two main directions. First, we will introduce

some concepts.

In fact, PG constitutes a lattice of carbon atoms connected with non-equivalent

covalent bonds. The bonds which connect atoms C1 and C2 (we will denote them

as 1-2 bonds) are less stiff than the bonds which connect two C2 atoms (2-2 bonds).

The influence of these two types of bonds on the mechanical properties of PG is

significantly different and changes when the deformation direction is changed.

Figure 6: Six considered bond types. The PG structure is shown as it is oriented

when deformation is carried out in direction θ = 0 (panel a) and direction θ = π/4

(panel b). On both panels the x axis is aligned with the axial direction, while the

y axis corresponds to the transverse direction. Mechanically non-equivalent bonds

(see text) are depicted with a different color. The six atom (panel a) and twelve

atom (panel b) unit cells are shown.
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To better illustrate this, in Figure 6 once again we show the structure of PG,

presenting how it is oriented when the deformation is carried out in directions

θ = 0 (panel a) and θ = π/4 (panel b). We distinguished (and depicted with a

different color) six different bond types: 1-2A (black), 1-2B (red), 1-2C (yellow),

1-2D (violet), 2-2A (green) and 2-2B (blue). These types differ because of their i)

different stiffness (1-2 vs 2-2) and ii) different role (compare 1-2A, . . . , 1-2D bonds

and 2-2A and 2-2B bonds). The latter is a consequence of a different orientation of

specific bonds with respect to the deformation direction.

4.1. Young’s modulus

First, we will focus on the anisotropy of Young’s modulus E. When looking at

the PG structure (Figure 6) in the context of uniaxial stretching significant differ-

ences are seen between the two considered deformation directions. The deformation

carried out in direction θ = π/4 strongly favors some of the 2-2 bonds. Half of them,

namely the 2-2A bonds, are oriented parallel to the deformation direction, while

their second half (i.e. 2-2B bonds) is perpendicular to it. As a result, during the

stretching the 2-2A bonds are strongly stretched, while the 2-2B bonds are even

shortened. This is clearly visible in Figure 7b which presents the dependencies of

bond lengths on the strain. When moving from ε1 = 0 to ε1 = 0.2 the 2-2A bonds

– which are much more “exposed” to the deformation – elongate by 6.3% of their

initial length, while the 2-2B bonds shorten by 0.9%.

This situation changes when the deformation is carried out in direction θ =

0. For this direction both types of the 2-2 bonds form an angle of π/4 with the

direction of deformation and have the same influence on the course of deformation,

as evidenced by the overlapping d2−2A(ε1) and d2−2B(ε1) characteristics (Figure 7a).

For this direction the role played by the 2-2 bonds is somehow limited, as they do

not elongate significantly, only by 1.6% of their initial length (compare with 6.3%

elongation obtained for the 2-2A bonds and θ = π/4).
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Figure 7: Changes of bond lengths in penta-graphene during uniaxial stretching.

Two panels correspond to deformation carried out in directions θ = 0 (panel a) and

θ = π/4 (panel b). Six characteristics correspond to six different bond types (see

text).

The non-equivalence of roles is also visible in the case of the 1-2 bonds. For both

the considered directions half of them (i.e. 1-2A and 1-2C bonds for θ = 0, 1-2B

and 1-2C bonds for θ = π/4) form a smaller angle with the deformation direction

and – as a result – are much more “exposed” to the deformation. The analysis of

bond lengths (Figure 7) confirms that: when moving from ε1 = 0 to ε1 = 0.2 the

indicated bonds elongate by as much as 13.6% (θ = 0, 1-2A and 1-2C) and 11.2%

(θ = π/4, 1-2B and 1-2C) of their initial length. As opposed, the remaining 1-2

bonds, as they form a larger angle with the direction of deformation, are less “active”

in the deformation process and – as a consequence – do not elongate significantly,

by less than 2% (1-2B and 1-2D for θ = 0) and 4% (1-2A and 1-2D for θ = π/4).
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The above analysis outlines important differences seen in the role played by

individual bonds. However, as it is based on simple geometrical considerations only

it does not allow qualifying these differences more accurately. This requires looking

at the problem from an energetic perspective and can be done using decomposition

of the potential energy defined by Equation (4). We used this decomposition to

study how the energies Vij of six considered bond types (1-2A, 1-2B, 1-2C, 1-2D,

2-2A and 2-2B) change during the deformation. The obtained Vij(ε1) dependencies

are presented in Figure 8.
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Figure 8: Changes of bond energies in penta-graphene during uniaxial stretching.

Two panels correspond to deformation carried out in directions θ = 0 (panel a) and

θ = π/4 (panel b). Six characteristics correspond to six different bond types (see

text).
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For the direction θ = 0 the energy of all types of the 1-2 bonds increases, from

−3.77 eV obtained for ε1 = 0 to −3.16 eV (1-2A and 1-2C bonds) and −3.57 eV

(1-2B and 1-2D bonds) obtained for ε1 = 0.2. This comparison confirms the earlier

finding that for θ = 0 the 1-2A and 1-2C bonds are more “active” than the 1-2B

and 1-2D bonds. An analysis of bond energies also confirms that in the deformation

carried out for the second considered direction θ = π/4 the 1-2B and 1-2C bonds

are more “active”, as their Vij(ε1) characteristics lie above the characteristics corre-

sponding to the 1-2A and 1-2D bonds. For this deformation direction the energy of

all 1-2 bonds also increases with the increasing strain.

As opposed to the 1-2 bonds, the energy of both types of the 2-2 bonds decreases

with the increasing strain. For θ = 0 the characteristics obtained for the 2-2A and

2-2B bonds overlap, which confirms their identical role. For direction θ = π/4

their role becomes diversified, as evidenced by significant differences seen between

V2−2A(ε1) and V2−2B(ε1) characteristics. For this deformation direction, a strong

change in the energy of the 2-2A bonds is visible (their energy changes by more

than −0.4 eV when moving from ε1 = 0 to ε1 = 0.2), while the energy of the 2-2B

bonds changes only slightly (by −0.04 eV).

An analysis of the bond energies Vij also allows quantifying the influence of

individual bond types on the total stiffness of PG (i.e. its Young modulus). For

this purpose, we determined the dependency of the strain energy density for each

considered bond type, defined as:

eij(ε1) =
Nij [Vij(ε1)− Vij(ε1 = 0)]

A0

. (10)

Here, A0 denotes the area of the unit cell in the relaxed (unstrained) state, which is

equal to A0 = a2
0

(for θ = 0) and A0 = (
√
2a0)

2 = 2a2
0

(for θ = π/4). The a0 symbol

denotes the (equilibrium) lattice constant, which equals to a0 = 3.592 Å. Symbol

Nij denotes the number of bonds of the ij-th type (ij = 1-2A, 1-2B, 1-2C, 1-2D,

2-2A or 2-2B) in the unit cell. We note that one six-atom unit cell of size a0 × a0

(direction θ = 0) has as many as eight “weaker” 1-2 bonds (two bonds for each of

the four considered types: 1-2A, . . . , 1-2D) and only two “stronger” 2-2 bonds (one

of each type). The given numbers of bonds increase twice for the twelve-atom unit
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cell of size
√
2a0 ×

√
2a0 (direction θ = π/4).

The obtained eij(ε1) dependencies were fitted with the seventh degree polyno-

mial. By examining their curvature, i.e. by calculating the second derivative:

Eij(ε1) =
∂2eij(ε1)

∂ε21
, (11)

we determined the contributions Eij(ε1) of the individual bonds to the strain de-

pendent Young’s modulus E(ε1). We will term the Eij contribution as the effective

stiffness of bonds of the ij-th type. Within such an approach, Young’s modulus is

given as a sum of the effective stiffnesses of the six considered bond types, i.e.:

E(ε1) = E1−2A(ε1) + E1−2B(ε1) + E1−2C(ε1) + E1−2D(ε1) + E2−2A(ε1) + E2−2B(ε1).

(12)

The obtained Eij(ε1) characteristics are presented in Figure 9.

Even the first glance shows that for θ = 0 the total stiffness of PG is mainly

determined by the very high stiffness of the 1-2A and 1-2C bonds. For ε1 = 0 their

effective stiffness was found as E1−2A = E1−2C = 102 GPa nm, which implies that

they make up more than 85% of Young’s modulus E. The contributions of other

bonds were found as much smaller, not exceeding 13.8 GPa nm (the 2-2A and 2-2B

bonds) and 4.9 GPa nm (the 1-2B and 1-2D bonds).

For the second considered direction θ = π/4 the 1-2B and 1-2C bonds were

found as giving the leading contributions (ca. 75% of E), with the effective stiffness

(calculated for ε1 = 0) being as high as E1−2B = E1−2C = 98 GPa nm, which is

very similar to a value obtained for the 1-2A and 1-2C bonds and θ = 0. What is

interesting, it turned out that for θ = π/4 the 2-2B bonds give a slightly negative

(−4.4 GPa nm) contribution to E. The effective stiffnesses of the remaining bonds

were found as E2−2A = 30.9 GPa nm and E1−2A = E1−2D = 20.8 GPa nm.

In order to summarize the obtained picture and see what the resultant role of

the 1-2 and 2-2 bonds is (regardless of their orientation), it is useful to look at the

total contributions

E1−2(ε1) = E1−2A(ε1) + E1−2B(ε1) + E1−2C(ε1) + E1−2D(ε1) (13)

and

E2−2(ε1) = E2−2A(ε1) + E2−2A(ε1), (14)
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Figure 9: Effective stiffness of bonds in penta-graphene.

which are shown in Figure 9c. Such a look allows stating that at low deformations

(i.e. close to ε1 = 0) the anisotropy of Young’s modulus is mostly a consequence of

differences seen in the role played by the 1-2 bonds, and not a consequence of the

characteristics of the 2-2 bonds. This is evidenced by the fact that at ε1 = 0 the

E1−2 contributions corresponding to θ = 0 and θ = π/4 turned out to be different

(by almost 25 GPa nm), while the E2−2 contributions turned out to be almost
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identical. This picture changes at high deformations. When moving from ε1 = 0

to ε1 = 0.2 the anisotropy of Young’s modulus is to a decreasingly smaller degree

a consequence of the characteristics of the 1-2 bonds, and to an increasing larger

degree a consequence of the characteristics of the 2-2 bonds. This is evidenced by

the fact that the E1−2 contributions corresponding to θ = 0 and θ = π/4 converge

as the strain is increased (and above ε1 ≈ 0.075 become almost identical), while the

E2−2 contributions continuously diverge.

In the above analysis we limited ourselves to two deformation directions only.

However, a similar analysis performed for intermediate directions showed that the

picture obtained for θ = 0 smoothly transforms into the picture obtained for θ =

π/4, and no peculiarities are observed between these two main directions.

To complete this analysis we would like to point out that the presented approach

is a kind of an effective look. In fact, when analyzing the bond energies Vij we

account for all effects that occur in the vicinity of the considered ij-th bond during

the deformation, and not only for effects which are related to bond stretching.

The many-body nature of Vij causes that the effective stiffnesses Eij also account

for energy contributions which originate from changing the valence angles. As we

limited ourselves to the presentation of bond length changes only, it must be noted

here that the changes of valence angles also turned out to be significant. This can

be well illustrated, for example, by the analysis of the angle β which measures the

corrugation of PG (see Section 2.1). Our calculations showed that when the strain

is increased from ε1 = 0 to ε1 = 0.2 this angle changes by as much as 19-25 degrees

(for θ = π/4 and θ = 0, respectively), i.e. by 15%-20% of its initial value. This

clearly shows that during the stretching of PG the process of angles deformation

is very intense. We remind that the characteristics of the potential used in these

studies (especially the nonlinear nature of the bond order term bij , see discussion

in Section 2.3) makes it impossible to assess quantitatively how the changing of

specific valence angles affects Young’s modulus (and other mechanical moduli) of

PG.
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4.2. Shear modulus

Now we will explain the anisotropy of the shear modulus µ, using the approach

analogous to that applied in the case of Young’s modulus E.

Even an intuitive look at the structure of PG (Figure 6) suggests that for θ = 0

the shearing force (acting tangentially on the +y edge in the +x direction) should

cause an elongation of the 1-2B, 1-2C and 2-2A bonds and shortening of the remain-

ing 1-2A, 1-2D and 2-2B bonds. We observed this behavior in our simulations, as

evidenced by the calculated dependencies of bond lengths on the shearing strain ε6

(Figure 10a). A similar (ca. 2.4%-2.6%) increase in the bond length was observed

for the first triple of bonds indicated above, while for the second triple similar (ca.

1.7%-1.9%) shortening was found.
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Figure 10: Changes in bond length in penta-graphene during simple shearing. The

two panels correspond to deformation carried out in directions θ = 0 (panel a) and

θ = π/4 (panel b). The six characteristics correspond to six different bond types

(see text).
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This picture changes significantly for θ = π/4. Although the 1-2 bonds behave

similarly (half of them – namely 1-2A and 1-2C – elongate and half of them –

namely 1-2B and 1-2D – shorten, with similar elongations – ca. 2.3%-2.5% – and

shortenings – ca. 1.7%-1.9%, see Figure 10b), for this deformation direction the

2-2 bonds behave completely differently, as their lengths almost do not change (the

relative change in their length was found as 0.02% for 2-2A and 0.2% for 2-2B). This

can be explained by a simple mechanical analog: since for θ = π/4 the 2-2A/2-2B

bonds become parallel/orthogonal to the direction of the shearing force they are

not affected by it.
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Figure 11: Changes of bond energies in penta-graphene during simple shearing.

The two panels correspond to deformation carried out in directions θ = 0 (panel

a) and θ = π/4 (panel b). The six characteristics correspond to six different bond

types (see text).
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This change in the role played by the 2-2 bonds is also revealed by the analysis

of bond energies Vij (Figure 11). For θ = 0 the energy of both 2-2 bonds changes

significantly, by approximately −0.2 eV (2-2A) and 0.3 eV (2-2B). For θ = π/4

these changes turned out to be smaller by one order of magnitude (we obtained

V2−2A(ε6 = 0.1)− V2−2A(ε6 = 0) = 0.06 eV and V2−2B(ε6 = 0.1)− V2−2B(ε6 = 0) =

0.03 eV).

Interesting results are provided by analysis of the contributions µij of the indi-

vidual bonds to the shear modulus µ. These contributions were determined in a

way analogous to that used in the previous subsection, by calculating the following

second derivative of the strain energy density:

µij(ε6) =
∂2eij(ε6)

∂ε2
6

. (15)

The contribution µij will be termed as the effective rigidity of the bonds (of the

ij-type).

The obtained dependencies µij(ε6) are presented in Figure 12. The 1-2 bonds

give the highest contributions to the shear modulus, which are similar for all their

types and for ε6 = 0 equal to 33.5-35.1 GPa nm (θ = 0) and 53.1-55.8 GPa nm

(θ = π/4). The contributions of the 2-2 bonds are much smaller, not exceeding

12.7 GPa nm (θ = 0, ε6 = 0) or 14.2 and 9.3 GPa nm (θ = π/4, ε6 = 0, 2-2A and

2-2B bonds, respectively).

The analysis of effective rigidities shows that the anisotropy of the shear modulus

µ is mostly a consequence of the characteristics of all 1-2 bonds. For these bonds the

effective rigidities µij calculated for the direction θ = 0 (Figure 12a) turned out to

be significantly smaller than those calculated for the direction θ = π/4 (Figure 12b).

The total rigidity, captured by the sum:

µ1−2 = µ1−2A + µ1−2B + µ1−2C + µ1−2D, (16)

turned out to be lower for θ = 0 by ca. 30 GPa nm than the value obtained for

θ = π/4 (see Figure 12c). On the other hand, the total contribution of the 2-2

bonds, i.e.:

µ2−2 = µ2−2A + µ2−2B, (17)
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turned out to be almost identical. We found that at ε6 = 0 it decreases only by ca.

2 GPa nm when the deformation direction is changed from θ = 0 to θ = π/4. This

observation allows us to state that the 2-2 bonds do not contribute significantly to

the observed anisotropy of the shear modulus µ, and it should be mainly attributed

to the “weaker” 1-2 bonds.
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Figure 12: Effective rigidity of bonds in penta-graphene.
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4.3. Poisson’s ratio

The geometric nature of Poisson’s ratio is the reason why an approach analogous

to the one applied before, i.e. based on the decomposition of the strain energy into

contributions coming from different bonds, can not be used in an attempt to explain

its anisotropy. However, it is possible to decompose Poisson’s ratio based on the

geometric construction.

By using the lengths a and b of the unit cell sides its area A can be written as:

A(ε1) = a(ε1)b(ε2) = [a0(1 + ε1)] [b0(1 + ε2(ε1))] . (18)

Here, symbols a0 and b0 denote the equilibrium lattice constants and the transverse

strain ε2 depends on the axial strain ε1 through strain dependent Poisson’s ratio

(Eq. (6)).

By differentiating Eq. (18) with respect to ε1 one obtains:

A′(ε1) = a0b0

[

(

1 + ε2(ε1)
)

+
(

1 + ε1
)∂ε2
∂ε1

]

. (19)

Accounting for the fact that for PG a0 = b0 and by using Eq. (6) this can be written

as:

ν(ε1) = −∂ε2
∂ε1

=
A(ε1)

a20(1 + ε1)2
− A′(ε1)

a20(1 + ε1)
. (20)

This expression relates strain dependent Poisson’s ratio ν(ε1) to the area of the unit

cell A.

The usefulness of Eq. (20) originates from its linear nature (in terms of A),

owing to which it is possible to decompose Poisson’s ratio ν and write it as a

sum of contributions coming from different building blocks forming the considered

structure.

To illustrate this, in Figure 13 once again we have shown the structure of PG,

this time distinguishing two building blocks, which form its lattice. The first block

is made up of one C1 atom linked by 1-2 bonds with four C2 atoms. This block has

a tetrahedral shape, therefore we will denote it with the TET symbol. The second

block is constituted by a pair of C2 atoms linked by a 2-2 bond. It is spanned

by four TET blocks and has the shape of a bent parallelogram, therefore we will
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denote it with the PAR symbol. It is worth noting that one unit cell of PG has two

TET blocks and two PAR blocks. Moreover, for each block type two subtypes can

be distinguished, which have different orientation with respect to the deformation

direction. We will denote these subtypes as TET-A, TET-B, PAR-A and PAR-B.

They are also marked in Figure 13.

Figure 13: Structural building blocks in penta-graphene. The PG structure is

shown as it is oriented when the deformation is carried out in direction θ = 0

(panels a and c) and direction θ = π/4 (panels b and d). Panels a and b present the

four considered building blocks (TET-A, TET-B, PAR-A and PAR-B, see text),

which are depicted by filled areas. On panels c and d we show four considered

valence angles (βA1, βA2, βB1 and βB2, see text), which measure the corrugation of

PG. Each angle was depicted by coloring two bonds that make it. All angles lie in

planes which are perpendicular to the plane of picture.
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The PG unit cell area can be written as:

A = ATET-A + ATET-B + APAR-A + APAR-B, (21)

i.e. as a sum of the areas of orthogonal projections of blocks on the z = 0 plane.

This allows us to write Poisson’s ratio of PG as a sum of four contributions:

ν = νTET-A + νTET-B + νPAR-A + νPAR-B, (22)

where the contribution νBLO (here, BLO = TET-A, TET-B, PAR-A or PAR-B) is

given as:

νBLO(ε1) =
ABLO(ε1)

a2
0
(1 + ε1)2

− A′

BLO(ε1)

a2
0
(1 + ε1)

. (23)

Based on these expressions it is possible to determine Poisson’s ratio for each of the

considered blocks. This allows us to identify blocks which are responsible for i) the

negativity and ii) the anisotropy of ν.

Using the approach introduced above, we analyzed the results corresponding to

the uniaxial stretching. At the beginning, we examined how the ABLO areas changed

during the deformation. The obtained ABLO(ε1) dependencies were fitted with

fourth degree polynomials. Then, by differentiating them and by using Eq. (23),

we calculated the contributions νBLO(ε1). The obtained results are presented in

Figure 14.

In the case of deformation carried out in direction θ = 0 (Figure 14a) both

TET blocks behave in an identical way, which is evidenced by the overlapping

of their νBLO(ε1) characteristics. The situation is similar in the case of the PAR

blocks, both of which also play an identical role. A comparison of TET and PAR

blocks shows their different role. The former give negative contributions to Poisson’s

ratio (we obtained νTET-A(ε1 = 0) = νTET-B(ε1 = 0) = −0.074 and νTET-A(ε1 =

0.2) = νTET-B(ε1 = 0.2) = −0.113), while the latter increase its value (we obtained

νPAR-A(ε1 = 0) = νPAR-B(ε1 = 0) = 0.032 and νPAR-A(ε1 = 0.2) = νPAR-B(ε1 =

0.2) = 0.019).
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Figure 14: Poisson’s ratio of different building blocks.

When moving to direction θ = π/4 (Figure 14b) the qualitative role of the TET

blocks does not change and they still give negative contributions to Poisson’s ratio

(we obtained νTET-A(ε1 = 0) = νTET-B(ε1 = 0) = −0.108 and νTET-A(ε1 = 0.2) =

νTET-B(ε1 = 0.2) = −0.159), However, for this deformation direction the role of the

PAR blocks is diversified. Half of them, namely the PAR-A blocks, still increase the

value of ν (we obtained νPAR-A(ε1 = 0) = 0.078 and νPAR-A(ε1 = 0.2) = 0.027), but
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their second half decrease it (we obtained νPAR-B(ε1 = 0) = −0.047 and νPAR-B(ε1 =

0.2) = −0.035).

The above analysis shows that the auxeticity of PG should be mainly attributed

to the presence of the TET blocks. It also allows explaining the anisotropy of ν. In

Figure 14c we present the total characteristics

νTET = νTET-A + νTET-B (24)

and

νPAR = νPAR-A + νPAR-B. (25)

Having analyzed them it becomes clear that the observed anisotropy cannot be

attributed to a single block type (TET or PAR), because the change of θ from 0 to

π/4 results in comparable changes in νTET and νPAR contributions (νTET and νPAR

decrease by about 0.07-0.09 and 0.03-0.05, respectively).

The above analysis shows that the negativity of Poisson’s ratio is mainly a con-

sequence of the behavior of the TET blocks. However, the auxeticity of PG cannot

be only explained by the presence of the TET blocks. In fact, it is a consequence

of the specificity of both types of blocks. The role of the PAR blocks is equally

important: by connecting the TET blocks with stiff 2-2 bonds, they are the reason

why the deformation of PG goes mainly through the flattening of easily deformable

tetrahedrons.

The picture of PG deformation obtained in this work is in accordance with the

results of Sun et al. [11], who based on the DFT calculations concluded that the

auxeticity of PG results from (as they called it) de-wrinkling mechanism. To show

how significant this effect is, in Figure 15a we show how the thickness of PG (defined

as 2h, see Section 2.1) changes during uniaxial stretching. It is clearly visible that

the flattening effect is i) very strong and ii) stronger for the deformation carried

out in direction θ = π/4 (when the strain is increased from ε1 = 0 to ε1 = 0.2 the

thickness 2h decreases by 23% and 28% for θ = 0 and θ = π/4, respectively). The

second observation explains the more negative values of Poisson’s ratio obtained for

θ = π/4.
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Figure 15: Changes in thickness (panel a) and corrugation (panel b) of penta-

graphene during uniaxial stretching.

The described flattening effect can be also analyzed with the use of the β angle

(see Section 2.1), which measures the corrugation of PG. In fact, four such angles can

be defined (they are depicted in Figure 13), two for each considered TET block. For

θ = 0 the angles βA1 and βB1 mainly measure the structure flattening in the axial (x)

direction, while the angles βA2 and βB2 describe this flattening along the transverse

(y) direction. For θ = π/4 this situation changes: βA2 and βB1 correspond to the

axial direction, while the βA1 and βB2 angles correspond to the transverse direction.

We note that an increase in the value of β angle indicates that the flattening along

the corresponding direction takes place (an angle equal to 180 degrees corresponds

to a completely flat structure).

The obtained β(ε1) dependencies are presented in Figure 15b. The most pro-

nounced flattening is observed for θ = 0 along the x direction (βA1(ε1) = βB1(ε1)
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increase the fastest). However, for θ = 0 the flattening along the transverse direc-

tion turned out to be smaller than for θ = π/4 (compare βA2(ε1) = βB2(ε1) obtained

for θ = 0 with βA1(ε1) = βB2(ε1) obtained for θ = π/4). This means that for θ = 0

the expansion of PG structure along the transverse direction is less intense than

for θ = π/4. This observation explains once again the more negative values of ν

obtained for θ = π/4. It also shows how important – for the mechanics of PG – the

angular deformation is.

In this place we would like to refer to work [32], in which we investigated the

influence of double vacancies of the 5-8-5 type on the mechanical properties of

graphene. We showed there that after introducing a large amount of these defects

(ca. 0.5%–3%) the graphene sheet becomes wrinkled. During the stretching of such

a structure the introduced wrinkles are flattened. This process leads to an increase

in the area of the structure in the plane of deformation and results in auxetic

behavior. The mechanism of PG auxeticity is therefore similar to the mechanism

found for the defective graphene, as it also resembles the flattening of the initially

corrugated structure.

In the description of this type of auxeticity – resulting from the wrinkage of the

structure – the criterion given by Eq. (23) plays a particularly important role. By

requiring that νBLO < 0 this criterion can be written as:

A′

BLO(ε1) >
ABLO(ε1)

1 + ε1
. (26)

The above expression informs, how the projected area ABLO should behave during

the deformation. If the above inequality is satisfied, then the considered build-

ing block contributes to the auxetic behavior, giving negative contribution to the

Poisson’s ratio of the entire structure. Since this condition links the microscopic

feature (variation of area ABLO) with the macroscopic consequence (Poisson’s ratio

negativity), we believe that it will be very useful in studies on 2D auxeticity based

on the crumpled paper mechanism.
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5. Mechanical properties at finite temperature

5.1. Simulation protocol

We carried out a series of MD simulations to investigate the influence of temper-

ature T on the mechanical moduli (E, ν and µ) of penta-graphene. Here, we limited

our studies to four representative deformation directions (θ = 0, π/12, π/6 and π/4)

and considered the temperatures between 50 and 600 K, with the 50 K temperature

interval. The calculations corresponding to one set of conditions (T, θ) consisted of

two series of simulations, in which we studied the behavior of PG during i) uniaxial

stretching (σ1 6= 0, σ2 = σ6 = 0) and ii) simple shearing (σ1 = σ2 = 0, σ6 6= 0).

In the case of simulations corresponding to finite temperature we had to restrict

the range of the studied stresses. This is motivated by the fact that at finite tem-

peratures the PG structure breaks at stresses lower than at 0 K. For the uniaxial

stretching we considered 31 different stresses σ1, from the range [0, 15] GPa nm,

while for the simple shearing we considered 21 different stresses σ6, from the range

[−0.4, 0.4] GPa nm.

All the MD simulations were performed in the isobaric-isothermal ensemble

NpT . Pressure p and temperature T were controlled with a Parrinello-Rahman

barostat [33] and a Nosé-Hoover thermostat [34, 35], both as implemented [36–38]

in the LAMMPS program [30, 39, 40], which we used to perform the calculations.

The equations of motion were integrated with the velocity Verlet algorithm [41],

with the timestep length taken as ∆t = 0.5 fs. The sizes of the simulated systems

and the periodic boundary conditions were chosen identically as in the case of the

MS simulations.

The simulation corresponding to a single stress state (σ1, σ2, σ6) consisted of

25 000 steps of the (initial) equilibration followed by 100 000 steps of sampling

during which the information about the system was collected. This simulation was

repeated 15 times, each time starting with a different initial condition, varied by

changing the seed used for the random generation of the initial velocities. This

allowed us to assess the uncertainty of the obtained results. To show the scale of

the performed calculations we note that the entire series of simulations (12 temper-

atures, 4 deformation directions, 15 seeds, 31 and 21 stresses) consisted of about
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4.7× 109 MD steps.

After performing simulations for all the studied cases we calculated the corre-

sponding system sizes Lx, Ly, Xy and the actual values of stresses σ1, σ2 and σ6

by using time averaging. This allowed us to construct the σ1(ε1), ε2(ε1) and σ6(ε6)

characteristics, which we used to find the moduli E, ν and µ. We calculated them

using an approach analogous to that used in the case of MS calculations, i.e. by fit-

ting the obtained strain-stress (or strain-strain) dependencies with polynomials and

then differentiating them. The obtained moduli were averaged over the performed

runs, which allowed us to assess their uncertainties.

5.2. Results

In Figure 16 (panels a-c) we show how the strain dependent mechanical moduli

of PG vary with the temperature, presenting the results obtained for three temper-

atures (0, 300 and 600 K) and two deformation directions (θ = 0 and π/4). As it

is clearly visible the temperature does not affect significantly the E(ε1) and µ(ε6)

characteristics, shifting them slightly towards lower values. In the case of Poisson’s

ratio a shift towards less negative values is observed, especially at lower ε1 strains.

In order to quantify the influence of temperature more accurately, in Figure 16

(panels d-f) we present how the zero strain moduli depend on the temperature

T . When the temperature is increased from 0 to 600 K the Young’s modulus and

the shear modulus decrease, by approximately 4–5% (E) and 6–9% (µ) of their

initial (i.e. 0 K) value. In contrast to this, the Poisson’s ratio increases with the

temperature, but changes only by 8-14% of its 0 K value and remains negative

even at the highest considered temperature. This holds for all studied deformation

directions and shows that PG displays complete auxetic behavior in a wide range

of temperatures.

All the three moduli depend almost linearly on temperature T in the considered

temperature range. This holds for all the four considered deformation directions

and it is evidenced by the fact that the linear interpolants (represented in Figure 16

by dashed lines) of the form f(T ) = f0 + fTT (here, f = E, ν or µ) are good fits

to the data. In Table 3 we present the parameters of the obtained fits to facilitate
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the use of our results (e.g. in continuum modeling of PG). We note that when

performing the fitting, the modulus f0 (corresponding to T = 0 K) was taken as

the result of MS calculations and we optimized only coefficient fT , which describes

the temperature dependence of modulus f .
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Figure 16: Influence of temperature on mechanical properties of PG: strain de-

pendent mechanical moduli (panels a-c) and temperature dependence of zero strain

mechanical moduli (panels d-e). The 0 K results were taken from the MS simula-

tions. For T > 0 K the points and error bars represent mean and standard deviation

of the results obtained from 15 independent simulations.
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Table 3: Temperature dependence of zero strain mechanical moduli. Linear fit

coefficients are presented (see text). The unit for E0 and µ0 is GPa nm, while the

unit for ET and µT is MPa nm K−1. The unit for νT is 10−6 K−1.

Direction Young’s modulus Poisson’s ratio Shear modulus

θ (rad) E0 ET ν0 νT µ0 µT

0 242.7 −18.67 −0.0847 19.22 162.5 −24.65

π/12 248.1 −20.52 −0.1087 17.21 153.7 −23.20

π/6 258.8 −21.78 −0.1570 23.78 139.2 −16.73

π/4 265.0 −21.55 −0.1845 26.57 132.5 −14.59

6. Summary

In this work we investigated the mechanical properties of penta-graphene, a

recently proposed carbon allotrope. We calculated three in-plane elastic moduli of

PG and characterized their dependence on the deformation direction, strain and

temperature using molecular statics and molecular dynamics simulations combined

with the empirical description of the interatomic interactions.

Our results showed that Young’s modulus E did not depend strongly on the

deformation direction, as opposed to Poisson’s ratio ν and the shear modulus µ,

which we found as strongly anisotropic. According to our model the zero strain

moduli vary between 243 and 265 GPa nm (E), −0.185 and −0.085 (ν), and 132

and 162 GPa nm (µ). These extreme values correspond to 〈100〉 (maximum of ν,

minimum of E and µ) and 〈110〉 (minimum of ν, maximum of E and µ) crystallo-

graphic directions.

We found that all three E, ν and µ moduli decreased with an increase in the

corresponding strain. The shear modulus µ turned out not to depend strongly on

the strain, as opposed to E and ν, for which we observed a strong dependence,

leading to a 2-fold (observed for ν) or even 5-fold (found for E) decrease in the

modulus value, when the strain was increased from 0 to 0.2.

We studied how different (non-equivalent from the chemical point of view)

carbon-carbon bonds contributed to the mechanical response of PG by analyzing

bond energies. We showed that bonds which form diamond-like tetrahedral units
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(and connect sp2- and sp3-hybridizied atoms in the structure of PG) gave the high-

est contribution to Young’s modulus of PG, being responsible for almost 90% of its

total stiffness. The shear modulus was also found to be dominated by these contri-

butions, which make (again) about 90% of the total rigidity of PG. The analysis of

energetics also showed that the anisotropy of Young’s modulus was a consequence

of the characteristics of both types of bonds present in PG. As opposed to that,

we found that the anisotropy of the shear modulus should be mostly attributed to

diamond-like bonds.

We analyzed the auxeticity of PG in detail and showed that PG had negative

Poisson’s ratio for all deformation directions and therefore should be considered as a

completely auxetic structure. By studying the geometry changes which accompany

deformation we demonstrated that the auxeticity of PG was mainly a consequence

of the characteristics of the diamond-like tetrahedral units. We showed that the

mechanism of PG auxeticity was similar to that of defective graphene, as it also

resembled the behavior of crumpled paper. In an attempt to generalize our analysis

we formulated a criterion for a two-dimensional auxeticity originating from this – so-

called de-wrinkling – mechanism. This criterion allows determining which structural

blocks contribute to auxeticity and to what extent.

We also investigated the influence of temperature showing that it only slightly

affected the mechanical moduli of PG. For all the three considered mechanical

moduli (E, µ, ν) we found that their dependence on the temperature could be well

described with a linear function. Our simulations showed that both Young’s modu-

lus E and the shear modulus µ decreased with temperature. For Poisson’s ratio we

have found that it increases towards less negative values when the temperature is

increased but – even at high temperatures – it remains negative. This shows that

PG displays complete auxeticy in a wide range of temperatures.
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