Anisotropic Orlicz-Sobolev spaces of vector valued functions and Lagrange equations

M. Chmara ${ }^{\text {a,*, }}$, J. Maksymiuk ${ }^{\text {a }}$
${ }^{a}$ Department of Technical Physics and Applied Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-952 Gdańsk, Poland

Abstract

In this paper we study some properties of anisotropic Orlicz and Orlicz-Sobolev spaces of vector valued functions for a special class of G-functions. We introduce a variational setting for a class of Lagrangian Systems. We give conditions which ensure that the principal part of variational functional is finitely defined and continuously differentiable on Orlicz-Sobolev space.

Keywords: anisotropic Orlicz space, anisotropic Orlicz-Sobolev space, Lagrange equations, variational functional
2010 MSC: 46E30, 46E40

1. Introduction

In this paper we make some preliminary steps for variational analysis in anisotropic Orlicz-Sobolev spaces of vector valued functions. We consider the Euler-Lagrange equation

$$
\begin{equation*}
\frac{d}{d t} L_{v}(t, u(t), \dot{u}(t))=L_{x}(t, u(t), \dot{u}(t)), \quad t \in(a, b) \tag{1}
\end{equation*}
$$

where Lagrangian is of the form $L(t, x, v)=F(t, x, v)+V(t, x)$.
If $F(v)=\frac{1}{2}|v|^{2}$ then the equation (1) reduces to $\ddot{u}(t)+\nabla V(t, u(t))=0$. One can consider more general case $F(v)=\phi(|v|)$, where ϕ is convex and nonnegative. In the above cases F does not depend on v directly but rather on its norm $|v|$ and the growth of F is the same in all directions, i.e. F has isotropic growth. Equation (1) with Lagrangian $L(t, x, v)=\frac{1}{p}|v|^{p}+V(t, x)$ has been studied by

[^0]many authors under different conditions. The classical reference is [1]. The isotropic Orlicz-Sobolev space setting was considered in [2].

We are interested in anisotropic case. This means that F depends on all components of v not only on $|v|$ and has different growth in different directions. A simple example of such function is $F(v)=\sum_{i=1}^{N}\left|v_{i}\right|^{p_{i}}$ or $F(v)=\sum_{i=1}^{N} \phi_{i}\left(\left|v_{i}\right|\right)$, where ϕ_{i} are N -functions. We wish to consider more general situation. We assume that $F:[a, b] \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ satisfies
($\left.F_{1}\right) F \in C^{1}$,
$\left(F_{2}\right)|F(t, x, v)| \leq a(|x|)(b(t)+G(v))$,
$\left(F_{3}\right)\left|F_{x}(t, x, v)\right| \leq a(|x|)(b(t)+G(v))$,
$\left(F_{4}\right) G^{*}\left(F_{v}(t, x, v)\right) \leq a(|x|)\left(c(t)+G^{*}(\nabla G(v))\right)$,
where $a \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), b, c \in \mathbf{L}^{1}\left(I, \mathbb{R}_{+}\right)$and $G: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a G-function. Conditions $\left(F_{1}\right)-\left(F_{4}\right)$ are direct generalization of standard growth conditions from [1] (see also [2]). We show (see Theorem 5.7) that under these conditions the functional $\mathcal{I}: \mathbf{W}^{1} \mathbf{L}^{G} \rightarrow \mathbb{R}$ given by

$$
\mathcal{I}(u)=\int_{I} F(t, u, \dot{u}) d t
$$

is continuously differentiable.
We restrict our considerations to a special class of G -functions. Here $G: \mathbb{R}^{n} \rightarrow$ $[0, \infty)$ is convex, $G(-x)=G(x)$, supercoercive, $G(0)=0$ and satisfies Δ_{2} and ∇_{2} conditions. We define the anisotropic Orlicz space to be

$$
\mathbf{L}^{G}\left(I, \mathbb{R}^{N}\right)=\left\{u: I \rightarrow \mathbb{R}^{N}: \int_{I} G(u) d t<\infty\right\} .
$$

The Orlicz space \mathbf{L}^{G} equipped with the Luxemburg norm

$$
\|u\|_{\mathbf{L}^{G}}=\inf \left\{\alpha>0: \int_{I} G\left(\frac{u}{\alpha}\right) d t \leq 1\right\}
$$

is a reflexive Banach space. An important example of Orlicz space is classical Lebesgue \mathbf{L}^{p} space, defined by $G(x)=\frac{1}{p}|x|^{p}$. In this case, the Luxemburg norm and the standard \mathbf{L}^{p} norm are equivalent. Therefore, Orlicz spaces can be viewed as a straightforward generalization of \mathbf{L}^{p} spaces.

Properties of N-functions and Orlicz spaces of real-valued functions has been studied in great details in monographs $[3,4,5]$ and $[6]$. The standard references for vector-valued case are $[7,8,9]$ and $[10,11]$ for Banach-space valued functions. In [7,8] author considers a class of G -functions together with a uniformity conditions
which, for example, excludes the function $G(x)=\sum\left|x_{i}\right|^{p_{i}}$ unless $1<p_{1}=\cdots=$ $p_{N}<\infty$. Moreover G is not necessarily assumed to be an even function. As was pointed out in [11], if G is not even then \mathbf{L}^{G} is no longer a vector space (see also [10, Example 2.1]).

Our strong conditions on G allow us to work in Orlicz spaces without worry about some technical difficulties arising in general case. For example, it is well known that the set $\mathbf{L}^{G}\left(I, \mathbb{R}^{N}\right)$ is a vector space if and only if G satisfies Δ_{2} condition. Otherwise \mathbf{L}^{G} is only a convex set. Another difficulty is the convergence notion. In Lebesgue spaces $\left\|u_{n}-u\right\|_{\mathbf{L}^{p}} \rightarrow 0$ means simply $\int\left|u_{n}-u\right|^{p} \rightarrow 0$. For arbitrary G-function G, convergence in Luxemburg norm is not equivalent to $\int G\left(u_{n}-u\right) d t \rightarrow 0$ unless G satisfies Δ_{2}. The Δ_{2} condition is also crucial for separability and reflexivity of \mathbf{L}^{G}.

The main consequence of anisotropic nature of G is the lack of monotonicity of the norm. It is no longer true that $|u| \leq|v|$ implies $\|u\|_{\mathbf{L}^{G}} \leq\|v\|_{\mathbf{L}^{G}}$. In anisotropic case, standard dominance condition $\left|u_{n}\right| \leq f$ does not implies convergence in \mathbf{L}^{G} norm and must be replaced by $G\left(u_{n}\right) \leq f$ (see Theorem 3.17).

For every G there exist $p, q \in(1, \infty)$ such that $\mathbf{L}^{q} \hookrightarrow \mathbf{L}^{G} \hookrightarrow \mathbf{L}^{p}$. If $G(x)=$ $\sum\left|x_{i}\right|^{p_{i}}$ then \mathbf{L}^{G} can be identified with the product of $\mathbf{L}^{p_{i}}$ but in many cases an anisotropic Orlicz Space is not equal to the space $\mathbf{L}^{p_{1}} \times \mathbf{L}^{p_{2}} \times \ldots \times \mathbf{L}^{p_{N}}$ (see Example 3.7).

To give a proper variational setting for equation (1) we introduce a notion of an anisotropic Orlicz-Sobolev space $\mathbf{W}^{1} \mathbf{L}^{G}$ of vector-valued functions. It is defined to be

$$
\mathbf{W}^{1} \mathbf{L}^{G}\left(I, \mathbb{R}^{N}\right)=\left\{u \in \mathbf{L}^{G}\left(I, \mathbb{R}^{N}\right): \dot{u} \in \mathbf{L}^{G}\left(I, \mathbb{R}^{N}\right)\right\}
$$

with the norm

$$
\|u\|_{\mathbf{W}^{1} \mathbf{L}^{G}}=\|u\|_{\mathbf{L}^{G}}+\|\dot{u}\|_{\mathbf{L}^{G}}
$$

To the authors best knowledge there is no reference for the case of anisotropic norm and vector-valued functions of one variable. The references for other cases are $[2,9,12,13,14,15,16,17,18,19]$.

In [9] and [18] the space $H^{0}(G, \Omega), \Omega \subset \mathbb{R}^{n}$ is defined as a completion of $C_{0}^{1}\left(\Omega, \mathbb{R}^{n}\right)$ under norm $\|u\|_{H^{0}(G, \Omega)}=\|D u\|_{G, \Omega}$. It is classical result due to Trudinger $H^{0}(G, \Omega) \hookrightarrow L_{A}(\Omega)$, where A is some N -function (see also Cianchi [14]).

In [17] and [19] the anisotropic Orlicz-Sobolev space $W^{1} L_{G}$ is defined for Gfunction $G: \mathbb{R}^{n+1} \rightarrow[0, \infty]$ as a space of weakly differentiable functions $u: \mathbb{R}^{n} \supset$ $\Omega \rightarrow \mathbb{R}$ such that $\left(u, D_{1} u, D_{2} u, \ldots, D_{n} u\right)$ belongs to the Orlicz space generated by G. A norm for $W^{1} L_{G}$ is given by

$$
\|u\|_{1, G, \Omega}=\|(u, D u)\|_{G, \Omega} .
$$

In [12] we can find definition of isotropic Orlicz-Sobolev space of real valued functions

$$
W_{A}^{1}(\Omega)=\left\{u \in \Omega \rightarrow \mathbb{R} \text { measurable }: u,|\nabla u| \in L_{A}\right\}
$$

where L_{A} is Orlicz Space and A is an N -function.
In [2] the isotropic Orlicz-Sobolev space of vector-valued functions is defined to be a space of absolutely continuous functions $u:[0, T] \rightarrow \mathbb{R}^{d}$ such that u and \dot{u} belongs to Orlicz space generated by an N-function. Similar treatment can be found in [20].

2. G-functions

Let $\langle\cdot, \cdot\rangle$ denote the standard inner product on \mathbb{R}^{N} and $|\cdot|$ is the induced norm. We assume that $G: \mathbb{R}^{N} \rightarrow[0, \infty)$ satisfies the following conditions:
$\left(G_{1}\right) G(0)=0$,
$\left(G_{2}\right) G$ is convex,
$\left(G_{3}\right) G$ is even,
$\left(G_{4}\right) G$ is supercoercive:

$$
\lim _{|x| \rightarrow \infty} \frac{G(x)}{|x|}=\infty
$$

$\left(G_{5}\right) G$ satisfies the Δ_{2} condition:

$$
\begin{equation*}
\exists_{K_{1} \geq 2} \exists_{M_{1}>0} \forall_{|x| \geq M_{1}} G(2 x) \leq K_{1} G(x) \tag{2}
\end{equation*}
$$

$\left(G_{6}\right) G$ satisfies the ∇_{2} condition:

$$
\begin{equation*}
\exists_{K_{2} \geq 1} \exists_{M_{2}>0} \forall|x| \geq M_{2} \quad G(x) \leq \frac{1}{2 K_{2}} G\left(K_{2} x\right) \tag{2}
\end{equation*}
$$

A function G is a G-function in the sense of Trudinger [9]. In general, Gfunction can be unbounded on bounded sets and need not satisfy conditions $\left(G_{4}\right)-\left(G_{6}\right)$ but only $\lim _{x \rightarrow \infty} G(x)=\infty$. A G-function of one variable is called N -function. Some typical examples of G are:

1. $G_{p}(x)=\frac{1}{p}|x|^{p}, 1<p<\infty$,
2. $G(x)=\sum_{i=1}^{N} G_{p_{i}}\left(x_{i}\right), 1<p_{i}<\infty$,
3. $G\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}\right)^{2}+x_{2}^{4}$.

A function G can be equal to zero in some neighborhood of 0 . So that a function

$$
G(x)= \begin{cases}0 & |x| \leq 1 \\ |x|^{2}-1 & |x|>1\end{cases}
$$

is also admissible. Condition Δ_{2} implies that G is of polynomial growth (see Lemma 2.4 below and [3]). A function $f: \mathbb{R}^{2} \rightarrow \mathbb{R} f(x)=e^{|x|}-|x|-1$ does not satisfy Δ_{2}.

Since G is convex and finite on \mathbb{R}^{n}, G is locally Lipschitz and therefore continuous. Note that for every $x \in \mathbb{R}^{N}$

$$
\begin{aligned}
& G(\alpha x) \leq \alpha G(x), \text { if } 0 \leq \alpha \leq 1, \\
& \alpha G(x) \leq G(\alpha x), \text { if } 1 \leq \alpha .
\end{aligned}
$$

We get immediately that G is non-decreasing along any half-line through the origin i.e. for every $x \in \mathbb{R}^{N}$

$$
\begin{equation*}
0<\alpha \leq \beta \Longrightarrow G(\alpha x) \leq G(\beta x) \tag{2}
\end{equation*}
$$

Our assumptions on G imply that for every $x_{0} \in \mathbb{R}^{N}$ there exists $a \in \mathbb{R}^{N}$ and $b \in \mathbb{R}$ such that for all $x \in \mathbb{R}^{N}$

$$
\left\langle a, x_{0}\right\rangle+b=G\left(x_{0}\right) \text { and }\langle a, x\rangle+b \leq G(x) .
$$

From this, we can easily obtain the Jensen integral inequality. Let $I \subset \mathbb{R}$ be a finite interval and let $u \in \mathbf{L}^{1}\left(I, \mathbb{R}^{N}\right)$. Then

$$
G\left(\frac{1}{\mu(I)} \int_{I} u d t\right) \leq \frac{1}{\mu(I)} \int_{I} G(u) d t
$$

We will often make use of the following simple observation.
Proposition 2.1. For all $\alpha \in \mathbb{R}$ there exists $K_{1}(\alpha)>0$ such that

$$
G(\alpha x) \leq K_{1}(\alpha) G(x)
$$

for all $|x| \geq M_{1}$.
In fact, the above proposition provides a characterization of Δ_{2} (see [7, 11]). It follows that for every $\alpha \in \mathbb{R}$ there exists $C_{\alpha}>0$ such that for $x \in \mathbb{R}^{N}$

$$
G(\alpha x) \leq C_{\alpha}+K_{1}(\alpha) G(x) .
$$

We recall a notion of Fenchel conjugate. Define $G^{*}: \mathbb{R}^{N} \rightarrow[0, \infty)$ by

$$
G^{*}(y):=\sup _{x \in \mathbb{R}^{N}}\{\langle x, y\rangle-G(x)\} .
$$

A function G^{*} is called Fenchel conjugate of G. As an immediate consequence of definition we have the so called Fenchel inequality:

$$
\forall_{x, y \in \mathbb{R}^{N}}\langle x, y\rangle \leq G(x)+G^{*}(y) .
$$

Consider arbitrary $f: \mathbb{R}^{N} \rightarrow[0, \infty)$. It is obvious that the conjugate function f^{*} is always convex. But in general f^{*} need not be continuous, finite or coercive, even if f is. From the other hand, it is well known that if f is convex and l.s.c. then $f^{*} \not \equiv \infty$ and $\left(f^{*}\right)^{*}=f$.

Example 2.2.

1. If

$$
g(x)= \begin{cases}0 & |x| \leq 1 \\ \infty & |x|>1\end{cases}
$$

then $g^{*}(x)=|x|$. Note that g and g^{*} are G-functions but do not satisfy our assumptions.
2. If $G_{p}(x)=\frac{1}{p}|x|^{p}$, then $G_{p}^{*}(x)=\frac{1}{q}|x|^{q}, \frac{1}{p}+\frac{1}{q}=1$.
3. If $G(x)=\sum_{i=1}^{N} G_{p_{i}}\left(x_{i}\right)$, then $G^{*}(x)=\sum_{i=1}^{N} G_{p_{i}}^{*}\left(x_{i}\right)$,
4. If $G(x, y)=(x-y)^{2}+y^{4}$, then

$$
G^{*}(x, y)=\frac{1}{4} x^{2}+\frac{3}{4}(x+y)\left(\frac{x+y}{4}\right)^{\frac{1}{3}} .
$$

More information on general theory of conjugate functions can be found in standard books on convex analysis, see for instance [21, 22].

If a function $G: \mathbb{R}^{n} \rightarrow[0, \infty)$ satisfies conditions $\left(G_{1}\right)-\left(G_{6}\right)$ then the same is true for its conjugate G^{*}. This is main reason we want to restrict class of considered functions.
Theorem 2.3. If G satisfies conditions $\left(G_{1}\right)-\left(G_{6}\right)$ then G^{*} also satisfies $\left(G_{1}\right)-$ $\left(G_{6}\right)$ and $\left(G^{*}\right)^{*}=G$.

Proof. It is evident that G^{*} satisfies $\left(G_{1}\right),\left(G_{2}\right)$ and $\left(G_{3}\right)$. It is well known that, under our conditions, G^{*} is finite (proposition 1.3.8, [21]), G^{*} is supercoercive (proposition 1.3.9, [21]) and G^{*} satisfies $\left(G_{5}\right)$ and $\left(G_{6}\right)$ (remark 2.3, [10]). Corrollary [21, cor. 1.3.6] gives $\left(G^{*}\right)^{*}=G$.

In order to compare growth rate of G-functions we define two relations. Let G_{1} and G_{2} be G-functions. Define

$$
G_{1} \prec G_{2} \Longleftrightarrow \exists_{M \geq 0} \exists_{K>0} \forall_{|x| \geq M} G_{1}(x) \leq G_{2}(K x)
$$

and

$$
G_{1} \prec \prec G_{2} \Longleftrightarrow \forall_{\alpha>0} \lim _{|x| \rightarrow \infty} \frac{G_{2}(\alpha x)}{G_{1}(x)}=\infty .
$$

For conjugate functions we have (see [3, thm. 3.1])

$$
G_{1} \prec G_{2} \Rightarrow G_{2}^{*} \prec G_{1}^{*} .
$$

Obviously $G_{1} \prec \prec G_{2}$ implies $G_{1} \prec G_{2}$. Assumption $\left(G_{4}\right)$ implies $|x| \prec \prec G$. It is true that $|x| \prec G$ holds under weaker assumption: $G(x) \rightarrow \infty$. Note that, if $p>1$ then $|x| \prec \prec|x|^{p}$. Hence, if $|x|^{p} \prec G$ then $|x| \prec \prec G$. Since G satisfies (G_{5}) and (G_{6}) we have the following bounds for the growth of G.

Lemma 2.4 ([10, Lemma 2.4]). There exist $p, q \in(1, \infty)$ such that

$$
|x|^{p} \prec G \prec|x|^{q} .
$$

The exponents p and q depend on the constants in the ∇_{2} and Δ_{2} conditions respectively. Immediately from the above we get $|x|^{\frac{q}{q-1}} \prec G^{*} \prec|x|^{\frac{p}{p-1}}$.

3. Orlicz spaces

Let $I \subset \mathbb{R}$ be a finite interval. The Orlicz space $\mathbf{L}^{G}=\mathbf{L}^{G}\left(I, \mathbb{R}^{n}\right)$ is defined to be

$$
\mathbf{L}^{G}\left(I, \mathbb{R}^{n}\right)=\left\{u: I \rightarrow \mathbb{R}^{n}: u \text { - measurable, } \int_{I} G(u) d t<\infty\right\} .
$$

As usual, we identify functions equal a.e. For $u \in \mathbf{L}^{G}$ define:

$$
\|u\|_{\mathbf{L}^{G}}=\inf \left\{\alpha>0: \int_{I} G\left(\frac{u}{\alpha}\right) d t \leq 1\right\} .
$$

The function $\|\cdot\|_{\mathbf{L}^{G}}$ is called the Luxemburg norm. It is easy to see that

$$
\int_{I} G\left(\frac{u}{\|u\|_{\mathbf{L}^{G}}}\right) d t=1
$$

since G satisfies Δ_{2}. Moreover

$$
\int_{I} G\left(\frac{u}{k}\right) d t \leq 1 \Longleftrightarrow\|u\|_{\mathbf{L}^{G}} \leq k
$$

Using Fenchel's inequality we obtain the Hölder inequality

$$
\int_{I}\langle u, v\rangle d t \leq 2\|u\|_{\mathbf{L}^{G}}\|v\|_{\mathbf{L}^{G^{*}}}, u \in \mathbf{L}^{G} \text { and } v \in \mathbf{L}^{G^{*}}
$$

Similarly to [3] and [8] one can show that \mathbf{L}^{G} is a linear ([3, thm. 8.2]) and normed space ($\left[8\right.$, thm. 2.3]). Completeness and separability of \mathbf{L}^{G} can be obtained in the same way as in [11, thm. 6.1, thm. 6.3, cor. 6.1]. Since $\mathbf{L}^{G} \hookrightarrow \mathbf{L}^{p} \hookrightarrow \hookrightarrow \mathbf{L}^{p_{0}} \hookrightarrow \mathbf{L}^{1}$ (see propositions 3.3 and 3.4 below) and $1<p_{0}<p$, it follows that \mathbf{L}^{G} is reflexive space. The proof, in more general case, can be found in [11].

According to above remarks, we have the following theorem.
Theorem 3.1. If $G: \mathbb{R}^{n} \rightarrow[0, \infty)$ satisfies $\left(G_{1}\right)-\left(G_{6}\right)$, then $\left(\mathbf{L}^{G}\left(I, \mathbb{R}^{n}\right),\|\cdot\|_{\mathbf{L}^{G}}\right)$ is a separable, reflexive Banach space.

Remark 3.2.

1. All properties of \mathbf{L}^{G} remains true for $\mathbf{L}^{G^{*}}$, since G and G^{*} belongs to the same class of functions.
2. For an arbitrary G-function $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ which does not satisfies Δ_{2} the set \mathbf{L}^{f} is not a linear space but only a convex set. In fact, it is well known that the set \mathbf{L}^{f} is linear space if and only if a G-function f satisfies Δ_{2} condition.
3. It was pointed out by Schappacher [11, example 3.1] that if f is not bounded on bounded sets (i.e. we allow $f(x)=+\infty$ for some $x \in \mathbb{R}^{n}$) then \mathbf{L}^{f} need not be a linear space, even if f satisfies Δ_{2} condition (see [3, 11]).
4. It is well known that if G-function does not satisfies Δ_{2} condition then \mathbf{L}^{G} is not separable. One can define a subspace E^{G} as the closure of bounded functions under Luxemburg norm. In this case, the space E^{G} is a proper subset of \mathbf{L}^{G} and is always separable (see $[3,11]$).
5. For every $F \in\left(\mathbf{L}^{G}\right)^{*}$ there exists unique $v \in \mathbf{L}^{G^{*}}$ such that for every $u \in \mathbf{L}^{G}$

$$
F u=\int_{I}\langle u, v\rangle d t .
$$

As a consequence we obtain that $\mathbf{L}^{G^{*}} \simeq\left(\mathbf{L}^{G}\right)^{*}$. Since $G^{* *}=G$, we also get $\mathbf{L}^{G} \simeq\left(\mathbf{L}^{G^{*}}\right)^{*}($ see $[3,8,11])$.
6. If G-function does not satisfies Δ_{2} and ∇_{2} conditions, then \mathbf{L}^{G} is not reflexive and $\left(\mathbf{L}^{G}\right)^{*}$ is not isomorphic to $\mathbf{L}^{G^{*}}$ (see $\left.[3,11]\right)$.

An important example of Orlicz space is a classical Lebesgue space $\left(\mathbf{L}^{p},\|\cdot\|_{\mathbf{L}^{p}}\right)$, $p \in(1, \infty)$ defined by $G(x)=\frac{1}{p}|x|^{p}$. It is easy to check that in this case $\mathbf{L}^{G}=\mathbf{L}^{p}$ and the Luxemburg norm and standard \mathbf{L}^{p} norm are equivalent. Two important examples of Lebesgue spaces are not covered in our setting, namely \mathbf{L}^{1} and \mathbf{L}^{∞}.

The space \mathbf{L}^{1} is generated by $f(x)=|x|$ and the space \mathbf{L}^{∞} generated by f^{*}. We exclude these two spaces because we want to have only reflexive spaces in the class of Orlicz spaces we consider.

We will use the symbols \hookrightarrow and $\hookrightarrow \hookrightarrow$ for, respectively, continuous and compact embeddings. Using the same methods as in [6, th. 8.12, 8.24] we obtain basic embedding theorems for anisotropic Orlicz spaces.
Proposition 3.3. Assume that $F \prec G$. Then $L^{G} \hookrightarrow L^{F}$ and

$$
\|u\|_{\mathbf{L}^{F}} \leq K(C \mu(I)+1)\|u\|_{\mathbf{L}^{G}}
$$

for some $C>0$.
Proposition 3.4. If $F \prec \prec G$ then $\mathbf{L}^{G} \hookrightarrow \hookrightarrow \mathbf{L}^{F}$.
Directly from Lemma 2.4 we obtain that Orlicz spaces can be viewed as a spaces between two Lebesgue spaces determined by constants in Δ_{2} and ∇_{2} conditions.

Proposition 3.5. For every G there exist $p, q \in(1, \infty)$ such that

$$
\mathbf{L}^{q} \hookrightarrow \mathbf{L}^{G} \hookrightarrow \mathbf{L}^{p} .
$$

In particular $\mathbf{L}^{\infty} \hookrightarrow \mathbf{L}^{G} \hookrightarrow \hookrightarrow \mathbf{L}^{1}$.
In some cases \mathbf{L}^{G} is simply a product of $\mathbf{L}^{p_{i}}(I, \mathbb{R})$, but there exist Orlicz spaces which are not in the form $\mathbf{L}^{p}(I, \mathbb{R}) \times \mathbf{L}^{q}(I, \mathbb{R})$ (cf. [9, pp. 18-20]).
Example 3.6. Consider the Orlicz space $\mathbf{L}^{G}=\mathbf{L}^{G}\left(I, \mathbb{R}^{2}\right)$ generated, by $G(x)=$ $\left|x_{1}\right|^{p_{1}}+\left|x_{2}\right|^{p_{2}}, p_{1}, p_{2}>0$. If $u=\left(u_{1}, u_{2}\right) \in \mathbf{L}^{p_{1}}(I, \mathbb{R}) \times \mathbf{L}^{p_{2}}(I, \mathbb{R})$, then

$$
\int_{I} G(u) d t=\int_{I}\left|u_{1}\right|^{p_{1}} d t+\int_{I}\left|u_{2}\right|^{p_{2}} d t<\infty
$$

Conversely, if $u=\left(u_{1}, u_{2}\right) \in \mathbf{L}^{G}$ then

$$
\int_{I}\left|u_{1}\right|^{p_{1}} d t \leq \int_{I} G(u) d t<\infty \text { and } \int_{I}\left|u_{2}\right|^{p_{2}} d t \leq \int_{I} G(u) d t<\infty
$$

Hence $u \in \mathbf{L}^{p_{1}}(I, \mathbb{R}) \times \mathbf{L}^{p_{2}}(I, \mathbb{R})$.
Example 3.7. Consider the Orlicz space $\mathbf{L}^{G}=\mathbf{L}^{G}\left(I, \mathbb{R}^{2}\right)$ generated, by $G(x)=$ $\left(x_{1}-x_{2}\right)^{4}+x_{2}^{2}$. From Lemma 2.4 and Proposition 3.5 we obtain that $\mathbf{L}^{4}\left(I, \mathbb{R}^{2}\right) \hookrightarrow$ $\mathbf{L}^{G} \hookrightarrow \mathbf{L}^{2}\left(I, \mathbb{R}^{2}\right)$. Let u_{1} be a function in $\mathbf{L}^{2}(I, \mathbb{R})$ such that $u_{1} \notin \mathbf{L}^{p}(I, \mathbb{R})$, for $p>2$. Set $u=\left(u_{1}, u_{1}\right)$, then

$$
\int_{I} G(u) d t=\int_{I^{2}}\left|u_{1}\right|^{2} d t<\infty
$$

but

$$
\int_{I}|u|^{p} d t=\infty
$$

Therefore for every $p>2$ there exists $u \in \mathbf{L}^{G}$ such that $u \notin \mathbf{L}^{p}\left(I, \mathbb{R}^{2}\right)$. Moreover, $u \notin \mathbf{L}^{p}(I, \mathbb{R}) \times \mathbf{L}^{2}(I, \mathbb{R})$ for any $p>2$. From the other hand if $u=\left(u_{1}, u_{2}\right) \in$ $\mathbf{L}^{4}(I, \mathbb{R}) \times \mathbf{L}^{4}(I, \mathbb{R})$ then $u \in \mathbf{L}^{G}$. Therefore

$$
\mathbf{L}^{4}(I, \mathbb{R}) \times \mathbf{L}^{4}(I, \mathbb{R}) \hookrightarrow \mathbf{L}^{G} \hookrightarrow \mathbf{L}^{2}(I, \mathbb{R}) \times \mathbf{L}^{2}(I, \mathbb{R})
$$

but \mathbf{L}^{G} cannot be identified with any

$$
\mathbf{L}^{4}(I, \mathbb{R}) \times \mathbf{L}^{4}(I, \mathbb{R}) \hookrightarrow \mathbf{L}^{p}(I, \mathbb{R}) \times \mathbf{L}^{q}(I, \mathbb{R}) \hookrightarrow \mathbf{L}^{2}(I, \mathbb{R}) \times \mathbf{L}^{2}(I, \mathbb{R})
$$

3.1. Convergence

Now we investigate relations between Luxemburg norm and the integral

$$
R_{G}(u):=\int_{I} G(u) d t
$$

A functional R_{G} is called modular. Theory of modulars is well known and is developed in more general setting than ours. More information can be found in $[23,5]$.

For Lebesgue spaces a notions of modular and norm are indistinguishable because modular $\int_{I}|u|^{p} d t$ is equal to $\|u\|_{\mathbf{L}^{p}}^{p}$. But in Orlicz spaces relation between R_{G} and $\|\cdot\|_{\mathbf{L}^{G}}$ is more complex.

There is remarkable difference between isotropic and anisotropic spaces. It is clear that if $u, v \in \mathbf{L}^{p}$ (or more generally in isotropic Orlicz space) then $|u(t)| \leq$ $|v(t)|$ a.e. implies $\|u\|_{\mathbf{L}^{p}} \leq\|v\|_{\mathbf{L}^{p}}$. In anisotropic case it is no longer true, even if $G(u(t))<G(v(t))$. Next two examples illustrates this point.

Example 3.8. Let $G(x, y)=(x-y)^{2}+y^{4}, I=[0,1], u(t)=(2,0)$ and $v(t)=$ $(2,3 / 2)$. Then $|u(t)|<|v(t)|, G(u(t))<G(v(t))$ and $R_{G}(u) \leq R_{G}(v)$, but $2=\|u\|_{\mathbf{L}^{G}}>\|v\|_{\mathbf{L}^{G}} \simeq 1.6$.

Example 3.9. Let $G(x, y)=x^{2}+y^{4}, u(t)=(1,0)$ and $v(t)=\frac{11}{10}(\cos t, \sqrt{\sin t})$. In $\mathbf{L}^{G}\left([0, \pi], \mathbb{R}^{2}\right)$ we have $\sqrt{\pi}=\|u\|_{\mathbf{L}^{G}}>\|v\|_{\mathbf{L}^{G}} \simeq 1.7$, but $|u(t)|<|v(t)|$, $G(u(t))<G(v(t))$ for all $t \in[0, \pi]$ and $R_{G}(u)<R_{G}(v)$.

Definition 3.10. We say that a subset $K \subset \mathbf{L}^{G}$ is modular bounded if there exists $C>0$ such that

$$
R_{G}(u) \leq C, \text { for all } u \in K
$$

Modular boundedness is sometimes called mean boundedness. It is evident that $R_{G}(u) \leq\|u\|_{\mathbf{L}^{G}}$ if $\|u\|_{\mathbf{L}^{G}} \leq 1$ and $R_{G}(u)>\|u\|_{\mathbf{L}^{G}}$ if $\|u\|_{\mathbf{L}^{G}}>1$.

Lemma 3.11. Let $u \in \mathbf{L}^{G}$.

1. If $R_{G}(u) \leq C$ then $\|u\|_{\mathbf{L}^{G}} \leq \max \{C, 1\}$.
2. If $\|u\|_{\mathbf{L}^{G}} \leq C$ then $R_{G}(u) \leq \mu(I) \widetilde{C}+K_{1}(C)$ for some $\widetilde{C}>0$.

Moreover, a set $K \subset \mathbf{L}^{G}$ is modular bounded if and only if is norm bounded.
Proof. Assume that $R_{G}(u) \leq C$. If $C \leq 1$ then $\|u\|_{\mathbf{L}^{G}} \leq 1$. If $C>1$ then

$$
\int_{I} G\left(\frac{u}{C}\right) d t \leq \frac{1}{C} \int_{I} G(u) d t \leq 1
$$

This implies $\|u\|_{\mathbf{L}^{G}} \leq \max \{C, 1\}$. For the second statement, assume $\|u\|_{\mathbf{L}^{G}} \leq C$. Then

$$
R_{G}(u)=\int_{I_{1}} G(u) d t+\int_{I \backslash I_{1}} G\left(C \frac{u}{C}\right) d t \leq \mu\left(I_{1}\right) \widetilde{C}+K_{1}(C) \int_{I} G\left(\frac{u}{C}\right) d t
$$

where $I_{1}=\left\{t \in I:|u(t)| \leq M_{1} C\right\}$ and $\widetilde{C}>0$. To finish the proof observe that

$$
\int_{I} G\left(\frac{u}{C}\right) d t \leq \int_{I} G\left(\frac{u}{\|u\|_{\mathbf{L}^{G}}}\right) d t=1 .
$$

Definition 3.12. We say that a sequence of functions $u_{k} \in \mathbf{L}^{G}$ is modular convergent to $u \in \mathbf{L}^{G}$ if $R_{G}\left(u_{k}-u\right) \rightarrow 0$ as $k \rightarrow \infty$.

Modular convergence is sometimes called mean convergence. Norm convergence always implies modular convergence. Let $\left\|u_{k}\right\|_{\mathbf{L}^{G}} \rightarrow 0$ as $k \rightarrow \infty$. We can assume that $\forall_{k}\left\|u_{k}\right\|_{\mathbf{L}^{G}} \leq 1$, then

$$
\frac{1}{\left\|u_{k}\right\|_{\mathbf{L}^{G}}} R_{G}\left(u_{k}\right) \leq R_{G}\left(\frac{u_{k}}{\left\|u_{k}\right\|_{\mathbf{L}^{G}}}\right)=1 .
$$

Hence $0 \leq R_{G}\left(u_{k}\right) \leq\left\|u_{k}\right\|_{\mathbf{L}^{G}}$. In general, converse is not true unless G satisfies Δ_{2} condition (see [3, 11]).

Theorem 3.13. Norm convergence is equivalent to modular convergence.
Proof. We need only to prove that modular convergence implies norm convergence. Fix $\varepsilon>0$ and assume that $\left\{u_{k}\right\}$ is modular convergent to 0 . Define

$$
I_{1, k}=\left\{t \in I:\left|u_{k}(t)\right| \leq M_{1}\right\} .
$$

Since G satisfies Δ_{2}, for all $k>0$ we have

$$
\begin{array}{rl}
\int_{I} G\left(u_{k} / \varepsilon\right) d t \leq \mu\left(I_{1, k}\right) C_{1 / \varepsilon}+K_{1}(1 / \varepsilon) \int_{I \backslash I_{1, k}} & G\left(u_{k}\right) d t \leq \\
& \leq \mu(I) C_{1 / \varepsilon}+K_{1}(1 / \varepsilon) \int_{I} G\left(u_{k}\right) d t .
\end{array}
$$

For sufficiently large k we have

$$
\int_{I} G\left(u_{k}\right) d t \leq \frac{1}{K_{1}(1 / \varepsilon)}
$$

and

$$
\int_{I} G\left(u_{k} / \varepsilon\right) d t \leq \mu(I) C_{1 / \varepsilon}+1=C .
$$

Finally, Lemma 3.11 shows that $\left\|u_{k}\right\|_{\mathbf{L}^{G}} \leq C \varepsilon$ and hence $\left\|u_{k}\right\|_{\mathbf{L}^{G}} \rightarrow 0$.
It is standard result due to Riesz that for $f_{n}, f \in \mathbf{L}^{p}$

$$
f_{n} \rightarrow f \text { a.e. } \Longrightarrow\left(\left\|f_{n}\right\|_{\mathbf{L}^{p}} \rightarrow\|f\|_{\mathbf{L}^{p}} \Longleftrightarrow\left\|f_{n}-f\right\|_{\mathbf{L}^{p}} \rightarrow 0\right) .
$$

Following lemmas establish Orlicz space version of this fact.
Lemma 3.14. For every $k>1$ and $0<\varepsilon<\frac{1}{k}$ and $x, y \in \mathbb{R}^{n}$

$$
|G(x+y)-G(x)| \leq \varepsilon|G(k x)-k G(x)|+2 G\left(C_{\varepsilon} y\right)
$$

where $C_{\varepsilon}=\frac{1}{\varepsilon(k-1)}$
The proof can be found in [24] (see also [25]).
Lemma 3.15. If $u_{n} \rightarrow u$ in \mathbf{L}^{G} then $R_{G}\left(u_{n}\right) \rightarrow R_{G}(u)$.
Proof. In Lemma 3.14 set $x+y=u_{n}, x=u, k=2$. Then $\varepsilon<1 / 2, C_{\varepsilon}=\frac{1}{\varepsilon}$ and

$$
\left|G\left(u_{n}\right)-G(u)\right| \leq \varepsilon|G(2 u)-2 G(u)|+2 G\left(\frac{u_{n}-u}{\varepsilon}\right) .
$$

Since $u_{n} \rightarrow u$ in \mathbf{L}^{G}, there exists n_{0} such that for $n>n_{0}$ we have $\left\|u_{n}-u\right\|_{\mathbf{L}^{G}}<$ $\varepsilon^{2} \leq \varepsilon<1$. Thus

$$
\int_{I} G\left(\frac{u_{n}-u}{\varepsilon}\right) d t \leq \frac{1}{\varepsilon}\left\|u_{n}-u\right\|_{\mathbf{L}^{G}}<\varepsilon .
$$

From this and inequality above we obtain

$$
\left|R_{G}\left(u_{n}\right)-R_{G}(u)\right| \leq \varepsilon \int_{I}|G(2 u)-2 G(u)| d t+2 \varepsilon .
$$

Letting $\varepsilon \rightarrow 0$ we have $R_{G}\left(u_{n}\right) \rightarrow R_{G}(u)$.

According to the above lemma, if $u_{n} \rightarrow u$ in \mathbf{L}^{G} then:

1. Since $\mathbf{L}^{G} \hookrightarrow \mathbf{L}^{1}$ (see Lemma 3.5 below), we can extract a subsequence $u_{n_{k}}$ such that

$$
u_{n_{k}} \rightarrow u \text { a.e and }\left|u_{n_{k}}\right| \leq h \in \mathbf{L}^{1}(I, \mathbb{R}) .
$$

2. Since $R_{G}\left(u_{n}-u\right) \rightarrow 0, G\left(u_{n}-u\right) \rightarrow 0$ in \mathbf{L}^{1}. Thus we can extract a subsequence $\left\{u_{n_{k}}\right\}$ such that

$$
G\left(u_{n_{k}}-u\right) \rightarrow 0 \text { a.e and } G\left(u_{n_{k}}-u\right) \leq h \in \mathbf{L}^{1}(I, \mathbb{R})
$$

3. Since $R_{G}\left(u_{n}\right) \rightarrow R_{G}(u), G\left(u_{n}\right) \rightarrow G(u)$ in \mathbf{L}^{1}. Hence there exists a subsequence $\left\{u_{n_{k}}\right\}$ such that

$$
G\left(u_{n_{k}}\right) \rightarrow G(u) \text { a.e and } G\left(u_{n_{k}}\right) \leq h \in \mathbf{L}^{1}(I, \mathbb{R}) .
$$

Lemma 3.16. Let $\left\{u_{n}\right\} \subset \mathbf{L}^{G}$ and $u \in \mathbf{L}^{G}$. Suppose that

1. $u_{n} \rightarrow u$ a.e.,
2. $R_{G}\left(u_{n}\right) \rightarrow R_{G}(u)$.

Then $u_{n} \rightarrow u$ in \mathbf{L}^{G}.
Proof. This lemma was proved in [4, p. 83] for N-functions. Since G is convex, we get $\frac{1}{2}\left(G\left(u_{n}(t)\right)+G(u(t))\right)-G\left(\frac{u_{n}(t)-u(t)}{2}\right) \geq 0$. Continuity of G and $u_{n} \rightarrow u$ a.e. implies

$$
\frac{1}{2}\left(G\left(u_{n}(t)\right)+G(u(t))\right)-G\left(\frac{u_{n}(t)-u(t)}{2}\right) \rightarrow G(u) \text { a.e. }
$$

So that by the Fatou Lemma, we have

$$
\begin{aligned}
& \int_{I} G(u) d t \leq \liminf _{n \rightarrow \infty} \int_{I} \frac{1}{2}\left(G\left(u_{n}\right)+G(u)\right) d t-G\left(\frac{u_{n}-u}{2}\right) d t \leq \\
& \qquad \begin{aligned}
& \leq \lim _{n \rightarrow \infty} \int_{I} \frac{1}{2}\left(G\left(u_{n}\right)+G(u)\right) d t-\underset{n \rightarrow \infty}{\limsup } \int_{I} G\left(\frac{u_{n}-u}{2}\right) d t= \\
&=\int_{I} G(u) d t-\limsup _{n \rightarrow \infty} \int_{I} G\left(\frac{u_{n}-u}{2}\right) d t .
\end{aligned}
\end{aligned}
$$

This implies that

$$
\int_{I} G\left(\frac{u_{k}(t)-u(t)}{2}\right) d t \rightarrow 0
$$

and $\left\|u_{k}-u\right\|_{\mathbf{L}^{G}} \rightarrow 0$ by Theorem 3.13.

As a consequence we obtain dominated convergence theorem for anisotropic Orlicz spaces:

Theorem 3.17. Suppose that $\left\{u_{n}\right\} \subset \mathbf{L}^{G}$ and

1. $u_{n} \rightarrow u$ a.e.
2. there exists $h \in \mathbf{L}^{1}(I, \mathbb{R})$ such that $G\left(u_{n}\right) \leq h$ a.e.

Then $u \in \mathbf{L}^{G}$ and $u_{n} \rightarrow u$ in \mathbf{L}^{G}.
Proof. Since G is continuous and $u_{n} \rightarrow u$ a.e., $G\left(u_{n}\right) \rightarrow G(u)$ a.e. It follows that $G(u) \leq h$ a.e. Thus $G(u) \in \mathbf{L}^{1}(I, \mathbb{R})$ and hence $u \in \mathbf{L}^{G}$. In a standard way we get $R_{G}\left(u_{n}\right) \rightarrow R_{G}(u)$. Hence $u_{n} \rightarrow u$ in \mathbf{L}^{G}, by the Lemma 3.16.

In the above theorem, assumption $G\left(u_{n}\right) \leq h$ can be replaced by $G\left(u_{n}\right) \leq$ $G(h), h \in \mathbf{L}^{G}$. Consider a sequence $\left\{u_{n}\right\} \subset \mathbf{L}^{G}$ convergent pointwise to measurable function u. Under standard dominance condition (i.e. $\left|u_{n}\right| \leq|g|, g \in \mathbf{L}^{G}$) it is not true in general that $u_{n} \rightarrow u \in \mathbf{L}^{G}$.
Example 3.18. Let $G(x, y)=x^{2}+y^{4}, I=(0,1), u(t)=\left(0, t^{-1 / 4}\right)$ and $h(t)=$ $\left(t^{-3 / 8}, 0\right)$. Define

$$
u_{n}(t)= \begin{cases}u(t) & |u(t)| \leq n \\ 0 & |u(t)|>n\end{cases}
$$

Then $u_{n} \rightarrow u$ a.e., $u_{n}, h \in \mathbf{L}^{G}$ and $\left|u_{n}\right| \leq|h|$ for every t. But $G(u(t))=t^{-1} \notin$ $\mathbf{L}^{1}(I, \mathbb{R})$. Hence $u \notin \mathbf{L}^{G}$.

Remark 3.19. Modular R_{G} is called monotone modular if $|x| \leq|y|$ implies $R_{G}(x) \leq R_{G}(y)$. If R_{G} is monotone modular then $u_{k} \rightarrow u$ a.e and $\left|u_{k}\right| \leq|g|$, $g \in \mathbf{L}^{G}$ implies $u \in \mathbf{L}^{G}$ and $\left\|u_{k}-u\right\|_{\mathbf{L}^{G}} \rightarrow 0$. We refer the reader to [25] for more details.

4. Orlicz-Sobolev spaces

The Orlicz-Sobolev space $\mathbf{W}^{1} \mathbf{L}^{G}=\mathbf{W}^{1} \mathbf{L}^{G}\left(I, \mathbb{R}^{n}\right)$ is defined to be

$$
\mathbf{W}^{1} \mathbf{L}^{G}\left(I, \mathbb{R}^{n}\right):=\left\{u \in \mathbf{L}^{G}\left(I, \mathbb{R}^{n}\right): \dot{u} \in \mathbf{L}^{G}\left(I, \mathbb{R}^{n}\right)\right\} .
$$

For $u \in \mathbf{W}^{1} \mathbf{L}^{G}$ we define

$$
\|u\|_{\mathbf{W}^{1} \mathbf{L}^{G}}:=\|u\|_{\mathbf{L}^{G}}+\|\dot{u}\|_{\mathbf{L}^{G}}
$$

Define $\mathbf{W}_{0}^{1} \mathbf{L}^{G}=\mathbf{W}_{0}^{1} \mathbf{L}^{G}\left(I, \mathbb{R}^{n}\right)$ as the closure of $C_{0}^{1}\left(I, \mathbb{R}^{n}\right)$ in $\mathbf{W}^{1} \mathbf{L}^{G}$ with respect to the $\|\cdot\|_{\mathbf{W}^{1} \mathbf{L}^{G}}$.

Theorem 4.1. The space $\left(\mathbf{W}^{1} \mathbf{L}^{G},\|\cdot\|_{\mathbf{W}^{1} \mathbf{L}^{G}}\right)$ is a separable reflexive Banach space.

Proof is standard and will be omitted, see for instance [26]. If $G(x)=$ $\frac{1}{p}|x|^{p}$, then the Orlicz-Sobolev space $\mathbf{W}^{1} \mathbf{L}^{G}$ coincides with the Sobolev space $\mathbf{W}^{1, p}\left(I, \mathbb{R}^{n}\right)$. Observe that $u_{n} \rightarrow u$ in $\mathbf{W}^{1} \mathbf{L}^{G}$ is equivalent to $R_{G}\left(u_{n}-u\right) \rightarrow 0$ and $R_{G}\left(\dot{u}_{n}-\dot{u}\right) \rightarrow 0$.

Since there exist $p, q \in(1, \infty)$ such that $\mathbf{L}^{q} \hookrightarrow \mathbf{L}^{G} \hookrightarrow \mathbf{L}^{p}$, the following continuous embeddings exist

$$
\mathbf{W}^{1, q} \hookrightarrow \mathbf{W}^{1} \mathbf{L}^{G} \hookrightarrow \mathbf{W}^{1, p}
$$

Using standard results from the theory of Sobolev spaces we get

1. $\mathbf{W}^{1} \mathbf{L}^{G}\left(I, \mathbb{R}^{n}\right) \hookrightarrow \hookrightarrow \mathbf{W}^{1,1}$,
2. $\mathbf{W}^{1} \mathbf{L}^{G}\left(I, \mathbb{R}^{n}\right) \hookrightarrow \hookrightarrow \mathbf{L}^{q}$, for all $1 \leq q \leq \infty$,
3. $\mathbf{W}^{1} \mathbf{L}^{G}\left(I, \mathbb{R}^{n}\right) \hookrightarrow \hookrightarrow C(\bar{I})$.

As a consequence we have
Theorem 4.2. A function $u \in \mathbf{W}^{1} \mathbf{L}^{G}$ is absolutely continuous. Precisely, there exists absolutely continuous representative of u such that for all $a, b \in I$

$$
u(b)-u(a)=\int_{a}^{b} \dot{u}(t) d t
$$

Directly from definition of $\mathbf{W}_{0}^{1} \mathbf{L}^{G}$ we obtain important property of functions in $\mathbf{W}_{0}^{1} \mathbf{L}^{G}$.
Theorem 4.3. If $u \in \mathbf{W}_{0}^{1} \mathbf{L}^{G}$, then $u=0$ on ∂I.
Using embeddings mentioned above we have for every $u \in \mathbf{W}^{1} \mathbf{L}^{G}$

$$
\begin{equation*}
\|u\|_{\mathbf{L}^{\infty}} \leq C\|u\|_{\mathbf{W}^{1} \mathbf{L}^{G}} \tag{3}
\end{equation*}
$$

Theorem 4.4 (Sobolev inequality). For every function $u \in \mathbf{W}^{1} \mathbf{L}^{G}$

$$
\left\|u-u_{I}\right\|_{\mathbf{L}^{G}} \leq \mu(I)\|\dot{u}\|_{\mathbf{L}^{G}}
$$

where $u_{I}=\frac{1}{\mu(I)} \int_{I} u$.

Proof. Since u is absolutely continuous, there exists $t_{0} \in I$ such that $u\left(t_{0}\right)=$ $\frac{1}{\mu(I)} \int_{I} u$ and for every $t \in I$ we have

$$
u(t)-u\left(t_{0}\right)=\int_{t_{0}}^{t} \dot{u} d t
$$

By Jensen's inequality,

$$
\begin{aligned}
& G\left(\frac{u(t)-u\left(t_{0}\right)}{\mu(I)\|\dot{u}\|_{\mathbf{L}^{G}}}\right)=G\left(\frac{1}{\left|t-t_{0}\right|} \int_{t_{0}}^{t} \frac{\left|t-t_{0}\right|}{\mu(I)} \frac{\dot{u}}{\|\dot{u}\|_{\mathbf{L}^{G}}} d t\right) \leq \\
& \quad \leq \frac{1}{\left|t-t_{0}\right|} \int_{t_{0}}^{t} G\left(\frac{\left|t-t_{0}\right|}{\mu(I)} \frac{\dot{u}}{\|\dot{u}\|_{\mathbf{L}^{G}}}\right) d t \leq \frac{1}{\mu(I)} \int_{I} G\left(\frac{\dot{u}}{\|\dot{u}\|_{\mathbf{L}^{G}}}\right) d t \leq \frac{1}{\mu(I)} .
\end{aligned}
$$

Integrating both sides over I we get

$$
\int_{I} G\left(\frac{u-u\left(t_{0}\right)}{\mu(I)\|\dot{u}\|_{\mathbf{L}^{G}}}\right) d t \leq 1
$$

Thus $\left\|u-u_{I}\right\|_{\mathbf{L}^{G}} \leq \mu(I)\|\dot{u}\|_{\mathbf{L}^{G}}$.
In similar way we get
Theorem 4.5 (Poincaré inequality). For every $u \in \mathbf{W}_{0}^{1} \mathbf{L}^{G}$

$$
\|u\|_{\mathbf{L}^{G}} \leq \mu(I)\|\dot{u}\|_{\mathbf{L}^{G}}
$$

It follows that one can introduce equivalent norm in $\mathbf{W}_{0}^{1} \mathbf{L}^{G}$:

$$
\|u\|_{\mathbf{W}_{0}^{1} \mathbf{L}^{G}}=\|\dot{u}\|_{\mathbf{L}^{G}} .
$$

Every linear functional F on $\mathbf{W}_{0}^{1} \mathbf{L}^{G}$ can be represented in the form

$$
F(u)=\int_{I}\left\langle u, v_{0}\right\rangle+\left\langle\dot{u}, v_{1}\right\rangle d t
$$

where $v_{0}, v_{1} \in \mathbf{L}^{G^{*}}$. Moreover, $\|F\|=\max \left\{\left\|v_{0}\right\|_{\mathbf{L}^{G^{*}}},\left\|v_{1}\right\|_{\mathbf{L}^{G^{*}}}\right\}$. In the case of Sobolev space $\mathbf{W}^{1, p}$ the proof is given in [26, proposition 8.14$]$, but it remains the same for Orlicz-Sobolev spaces. As was pointed out in [26], the first assertion of the above proposition holds for every linear functional on $\mathbf{W}^{1} \mathbf{L}^{G}$.

5. Variational setting

In this section we examine the principal part

$$
\begin{equation*}
\mathcal{I}(u)=\int_{I} F(t, u, \dot{u}) d t \tag{4}
\end{equation*}
$$

of the variational functional associated with Euler-Lagrange equation

$$
\frac{d}{d t} F_{v}(t, u, \dot{u})=F_{x}(t, u, \dot{u})+\nabla V(t, u), \quad t \in I
$$

where $u: I \rightarrow \mathbb{R}^{N}$ and the Lagrangian $L: I \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is given by $L(t, x, v)=$ $F(t, x, v)+V(t, x)$.

In definition of the Orlicz space we need not to assume that G is differentiable, but when we consider the functional \mathcal{I} we need it to show that $\mathcal{I} \in C^{1}$. Throughout this section we will assume, in addition to $\left(G_{1}\right)-\left(G_{6}\right)$, that G satisfies
$\left(G_{7}\right) G$ is of a class C^{1}.
Remark 5.1. Differentiability of f is not sufficient to differentiability of f^{*}. But if f is finite, strictly convex, 1 -coercive and differentiable then so is f^{*}. This result is in close relation with Legendre duality (see [21, p. 239] and [1] for more details).

It is well known that if G is continuously differentiable then for all $x, y \in \mathbb{R}^{n}$

$$
\begin{equation*}
G(x)-G(x-y) \leq\langle\nabla G(x), y\rangle \leq G(x+y)-G(x) \tag{5}
\end{equation*}
$$

and

$$
\langle x, \nabla G(x)\rangle=G(x)+G^{*}(\nabla G(x)) .
$$

Let $y=x$ in (5). Then $\langle\nabla G(x), x\rangle \leq G(2 x)-G(x)$. Therefore, for all $x \in \mathbb{R}^{N}$

$$
G^{*}(\nabla G(x)) \leq G(2 x) .
$$

Directly from the above we get
Proposition 5.2. If $u \in \mathbf{L}^{G}$ then $\nabla G(u) \in \mathbf{L}^{G^{*}}$.
Lemma 5.3 (cf. [16, lemma A.5]). If $u_{n} \rightarrow u$ in \mathbf{L}^{G} then $R_{G^{*}}\left(\nabla G\left(u_{n}\right)\right) \rightarrow$ $R_{G^{*}}(\nabla G(u))$.

Proof. There exists a subsequence $\left\{u_{n_{k}}\right\}$ such that $u_{n_{k}} \rightarrow u$ a.e., $G\left(u_{n_{k}}\right) \rightarrow$ $G(u)$ a.e. and $G\left(u_{n_{k}}\right) \leq h \in \mathbf{L}^{1}(I, \mathbb{R})$. By continuity of ∇G and G^{*} we have $\nabla G\left(u_{n_{k}}\right) \rightarrow \nabla G(u)$ a.e. and

$$
G^{*}\left(\nabla G\left(u_{n_{k}}\right)\right) \rightarrow G^{*}(\nabla G(u)) \text { a.e. }
$$

Since $G^{*}(\nabla G(x)) \leq G(2 x)$,

$$
G^{*}\left(\nabla G\left(u_{n_{k}}\right)\right) \leq G\left(2 u_{n_{k}}\right) \leq C+K_{1} G\left(u_{n_{k}}\right) \leq C+K_{1} h .
$$

By dominated convergence theorem $R_{G^{*}}\left(\nabla G\left(u_{n_{k}}\right)\right) \rightarrow R_{G^{*}}(\nabla G(u))$. Since this holds for any subsequence of $\left\{u_{n}\right\}$ we have that

$$
R_{G^{*}}\left(\nabla G\left(u_{n}\right)\right) \rightarrow R_{G^{*}}(\nabla G(u)) .
$$

As a direct consequence of the above lemma and Lemma 3.16 we obtain

Proposition 5.4.

$$
\left\|u_{n}-u\right\|_{\mathbf{L}^{G}} \rightarrow 0 \Longrightarrow\left\|\nabla G\left(u_{n}\right)-\nabla G(u)\right\|_{\mathbf{L}^{G^{*}}} \rightarrow 0 .
$$

5.1. Case I

We shall first examine a special case $F(t, x, v)=G(v)$, now functional (4) takes the form

$$
\mathcal{I}(u)=\int_{I} G(\dot{u}) d t .
$$

Theorem 5.5. $\mathcal{I} \in C^{1}\left(\mathbf{W}^{1} \mathbf{L}^{G}, \mathbb{R}\right)$. Moreover

$$
\begin{equation*}
\mathcal{I}^{\prime}(u) \varphi=\int_{I}\langle\nabla G(\dot{u}), \dot{\varphi}\rangle d t . \tag{6}
\end{equation*}
$$

Proof. The proof follows similar lines as [2, th. 3.2] (see also [1, thm 1.4]). First, note that $\dot{u} \in \mathbf{L}^{G}$ implies

$$
0 \leq \mathcal{I}(u)<\infty .
$$

It suffices to show that \mathcal{I} has at every point u directional derivative $\mathcal{I}^{\prime}(u) \in$ $\left(\mathbf{W}^{1} \mathbf{L}^{G}\right)^{*}$ given by (6) and that the mapping $\mathcal{I}^{\prime}: \mathbf{W}^{1} \mathbf{L}^{G} \rightarrow\left(\mathbf{W}^{1} \mathbf{L}^{G}\right)^{*}$ is continuous. Let $u \in \mathbf{W}^{1} \mathbf{L}^{G}, \varphi \in \mathbf{W}^{1} \mathbf{L}^{G} \backslash\{0\}, t \in I, s \in[-1,1]$. Define

$$
H(s, t):=G(\dot{u}(t)+s \dot{\varphi}(t)) .
$$

By (5) we obtain

$$
\int_{I}\left|H_{s}(s, t)\right| d t=\int_{I}|\langle\nabla G(\dot{u}+s \dot{\varphi}), \dot{\varphi}\rangle| d t \leq \int_{I} G(\dot{u}+(s+1) \dot{\varphi})+\int_{I} G(\dot{u}+s \dot{\varphi}) d t<\infty .
$$

Consequently, \mathcal{I} has a directional derivative and

$$
\mathcal{I}^{\prime}(u) \varphi=\left.\frac{d}{d s} \mathcal{I}(u+s \varphi)\right|_{s=0}=\int_{I}\langle\nabla G(\dot{u}), \dot{\varphi}\rangle d t .
$$

By Proposition 5.2 and the Hölder inequality

$$
\left|\mathcal{I}^{\prime}(u) \varphi\right|=\left|\int_{I}\langle\nabla G(\dot{u}), \dot{\varphi}\rangle d t\right| \leq 2\|\nabla G(\dot{u})\|_{\mathbf{L}^{G^{*}}}\|\dot{\varphi}\|_{\mathbf{L}^{G}} \leq C\|\varphi\|_{\mathbf{W}^{1} \mathbf{L}^{G}} .
$$

To finish the proof it suffices to show that if $u_{n} \rightarrow u$ in $\mathbf{W}^{1} \mathbf{L}^{G}$, then $\mathcal{I}^{\prime}\left(u_{n}\right) \rightarrow$ $\mathcal{I}^{\prime}(u)$ in $\left(W^{1} L^{G}\right)^{*}$. Using the Hölder inequality and Proposition 5.4 we obtain

$$
\begin{aligned}
\left|\mathcal{I}^{\prime}\left(u_{n}\right) \varphi-\mathcal{I}^{\prime}(u) \varphi\right|=\left|\int_{I}\left\langle\nabla G\left(\dot{u}_{n}\right)-\nabla G(\dot{u}), \dot{\varphi}\right\rangle d t\right| & \leq \\
& \leq 2\left\|\nabla G\left(\dot{u}_{n}\right)-\nabla G(\dot{u})\right\|_{\mathbf{L}^{G^{*}}}\|\dot{\varphi}\|_{\mathbf{L}^{G}} \rightarrow 0
\end{aligned}
$$

5.2. Case II

We turn to general case. Suppose that $F: I \times \mathbb{R}^{N} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ satisfies
$\left(F_{1}\right) F \in C^{1}$,
$\left(F_{2}\right)|F(t, x, v)| \leq a(|x|)(b(t)+G(v))$,
$\left(F_{3}\right)\left|F_{x}(t, x, v)\right| \leq a(|x|)(b(t)+G(v))$,
$\left(F_{4}\right) G^{*}\left(F_{v}(t, x, v)\right) \leq a(|x|)\left(c(t)+G^{*}(\nabla G(v))\right)$.
where $a \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right), b, c \in \mathbf{L}^{1}\left(I, \mathbb{R}_{+}\right)$.
If $G(v)=|v|^{p}$ then conditions $\left(F_{2}\right),\left(F_{3}\right)$ and $\left(F_{4}\right)$ take the standard form (Theorem 1.4 from [1]). In [2] there are similar conditions with $G(v)=\Phi(|v|)$, where Φ is an N -function. In this case, condition $\left(F_{4}\right)$ takes the form $\left|F_{v}(t, x, v)\right| \leq$ $\tilde{a}(|x|)\left(\tilde{c}(t)+\Phi^{\prime}(|u|)\right)$. In anisotropic case we need to use G^{*}, because vector valued G-function is not necessarily monotone with respect to $|\cdot|$.
Lemma 5.6. If $u \in \mathbf{W}^{1} \mathbf{L}^{G}$, then $F_{x}(\cdot, u, \dot{u}) \in \mathbf{L}^{1}$ and $F_{v}(\cdot, u, \dot{u}) \in \mathbf{L}^{G^{*}}$.
Proof. Define non decreasing function

$$
\alpha(s)=\sup _{\tau \in[0, s]} a(\tau)
$$

Then, for $u \in \mathbf{W}^{1} \mathbf{L}^{G}$ we have

$$
\begin{equation*}
a(|u(t)|) \leq \alpha\left(\|u\|_{\mathbf{L}^{\infty}}\right) \leq \alpha\left(C\|u\|_{\mathbf{W}^{1} \mathbf{L}^{G}}\right) \tag{7}
\end{equation*}
$$

Let $u \in \mathbf{W}^{1} \mathbf{L}^{G}$. By (7) and $\left(F_{3}\right)$

$$
\begin{aligned}
\int_{I}\left|F_{x}(t, u, \dot{u})\right| d t \leq \int_{I} a(|u(t)|)(b(t) & +G(\dot{u})) d t \leq \\
& \leq \alpha\left(C\|u\|_{\mathbf{W}^{1} \mathbf{L}^{G}}\right) \int_{I}(b(t)+G(\dot{u})) d t<\infty .
\end{aligned}
$$

Moreover, by $\left(F_{4}\right)$ and Proposition 5.2

$$
\int_{I} G^{*}\left(F_{v}(t, u, \dot{u})\right) d t \leq \alpha\left(C\|u\|_{\mathbf{W}^{1} \mathbf{L}^{G}}\right) \int_{I}\left(c(t)+G^{*}(\nabla G(\dot{u}))\right) d t<\infty
$$

Theorem 5.7. $\mathcal{I} \in C^{1}\left(\mathbf{W}^{1} \mathbf{L}^{G}, \mathbb{R}\right)$. Moreover

$$
\begin{equation*}
\mathcal{I}^{\prime}(u) \varphi=\int_{I}\left\langle F_{x}(t, u, \dot{u}), \varphi\right\rangle d t+\int_{I}\left\langle F_{v}(t, u, \dot{u}), \dot{\varphi}\right\rangle d t \tag{8}
\end{equation*}
$$

Proof. By $\left(F_{2}\right)$

$$
|\mathcal{I}(u)| \leq \int_{I} a(|u|)(b(t)+G(\dot{u})) d t \leq \alpha\left(\|u\|_{\mathbf{W}^{1} \mathbf{L}^{G}}\right) \int_{I}(b(t)+G(\dot{u})) d t<\infty .
$$

It suffices to show that directional derivative $\mathcal{I}^{\prime}(u) \in\left(\mathbf{W}^{1} \mathbf{L}^{G}\right)^{*}$ exists, is given by (8) and that the mapping $\mathcal{I}^{\prime}: \mathbf{W}^{1} \mathbf{L}^{G} \rightarrow\left(\mathbf{W}^{1} \mathbf{L}^{G}\right)^{*}$ is continuous.

Let $u \in \mathbf{W}^{1} \mathbf{L}^{G}, \varphi \in \mathbf{W}^{1} \mathbf{L}^{G} \backslash\{0\}, t \in I, s \in[-1,1]$. Define

$$
H(s, t):=F(t, u+s \varphi, \dot{u}+s \dot{\varphi}) .
$$

By $\left(F_{3}\right)$, continuity of $\varphi,(7)$ and the fact that $u+s \varphi \in \mathbf{W}^{1} \mathbf{L}^{G}$ we obtain

$$
\begin{aligned}
& \int_{I}\left|\left\langle F_{x}(t, u+s \varphi, \dot{u}+s \dot{\varphi}), \varphi\right\rangle\right| d t \leq \int_{I}\left|F_{x}(t, u+s \varphi, \dot{u}+s \dot{\varphi})\right||\varphi| d t \leq \\
& \qquad \int_{I} a(|u+s v|)(b(t)+G(\dot{u}+s \dot{\varphi}))|\varphi| d t \leq \\
& \quad \leq \alpha\left(\|u+s \varphi\|_{\mathbf{W}^{1} \mathbf{L}^{G}}\right) \int_{I}(b(t)+G(\dot{u}+s \dot{\varphi}))|\varphi| d t<\infty .
\end{aligned}
$$

By the Fenchel inequality, $\left(F_{4}\right)$ and Lemma 5.6 we obtain

$$
\int_{I}\left|\left\langle F_{v}(t, u+s \varphi, \dot{u}+s \dot{\varphi}), \dot{\varphi}\right\rangle\right| d t \leq \int_{I}\left[G^{*}\left(F_{v}(t, u+s \varphi, \dot{u}+s \dot{\varphi})\right)+G(\dot{\varphi})\right] d t<\infty .
$$

It follows that

$$
\int_{I}\left|H_{s}(s, t)\right| d t=\int_{I}\left|\left\langle F_{x}(t, u+s \varphi, \dot{u}+s \dot{\varphi}), \varphi\right\rangle+\left\langle F_{v}(t, u+s \varphi, \dot{u}+s \dot{\varphi}), \dot{\varphi}\right\rangle\right| d t<\infty .
$$

Consequently, \mathcal{I} has a directional derivative and

$$
\mathcal{I}^{\prime}(u) \varphi=\left.\frac{d}{d s} \mathcal{I}(u+s \varphi)\right|_{s=0}=\int_{I}\left\langle F_{x}(t, u, \dot{u}), \varphi\right\rangle d t+\int_{I}\left\langle F_{v}(t, u, \dot{u}), \dot{\varphi}\right\rangle d t .
$$

By Lemma 5.6, the Hölder inequality and (3) we get

$$
\left|\mathcal{I}^{\prime}(u) \varphi\right| \leq\left\|F_{x}(\cdot, u, \dot{u})\right\|_{\mathbf{L}^{1}}\|\varphi\|_{\mathbf{L}^{\infty}}+\left\|F_{v}(\cdot, u, \dot{u})\right\|_{\mathbf{L}^{G^{*}}}\|\dot{\varphi}\|_{\mathbf{L}^{G}} \leq C\|\varphi\|_{\mathbf{W}^{1} \mathbf{L}^{G}}
$$

To finish the proof it suffices to show that \mathcal{I}^{\prime} is continuous. Since $u_{n} \rightarrow u$ in $\mathbf{W}^{1} \mathbf{L}^{G}$, it follows that $u_{n} \rightarrow u$ in $\mathbf{L}^{G}, \dot{u}_{n} \rightarrow \dot{u}$ in \mathbf{L}^{G} and there exists $M>0$ such that $\left\|u_{n}\right\|_{\mathbf{W}^{1} \mathbf{L}^{G}}<M$.

By Lemma 3.15 we have $G\left(\dot{u}_{n}\right) \rightarrow G(\dot{u})$ in $\mathbf{L}^{1}(I, \mathbb{R})$. Hence there exists a subsequence $\left\{u_{n_{k}}\right\}$ and $h \in \mathbf{L}^{1}(I, \mathbb{R})$ such that

$$
G\left(\dot{u}_{n_{k}}\right) \rightarrow G(\dot{u}) \text { a.e and } G\left(\dot{u}_{n_{k}}\right) \leq h .
$$

By $\left(F_{3}\right)$ and since $\left\{u_{n_{k}}\right\}$ is bounded, we obtain

$$
\left|F_{x}\left(t, u_{n_{k}}, \dot{u}_{n_{k}}\right)\right| \leq \alpha\left(\left\|u_{n_{k}}\right\|_{\mathbf{W}^{1} \mathbf{L}^{G}}\right)\left(b(t)+G\left(\dot{u}_{n_{k}}\right)\right) d t \leq \alpha(M)(b(t)+h(t))
$$

By $\left(F_{1}\right)$ we have

$$
F_{x}\left(t, u_{n_{k}}(t), \dot{u}_{n_{k}}(t)\right) \rightarrow F_{x}(t, u(t), \dot{u}(t))
$$

for a.e $t \in I$. Applying dominated convergence theorem we obtain

$$
\int_{I}\left\langle F_{x}\left(t, u_{n_{k}}, \dot{u}_{n_{k}}\right), \varphi\right\rangle d t \rightarrow \int_{I}\left\langle F_{x}(t, u, \dot{u}), \varphi\right\rangle d t
$$

Since this holds for any subsequence of $\left\{u_{n}\right\}$ we have that

$$
\int_{I}\left\langle F_{x}\left(t, u_{n}, \dot{u}_{n}\right), \varphi\right\rangle d t \rightarrow \int_{I}\left\langle F_{x}(t, u, \dot{u}), \varphi\right\rangle d t
$$

By $\left(F_{4}\right)$ and Lemma 5.6

$$
G^{*}\left(F_{v}\left(t, u_{n_{k}}(t), \dot{u}_{n_{k}}(t)\right)\right) \leq \alpha(M)\left(c(t)+G^{*}\left(\nabla G\left(\dot{u}_{n_{k}}(t)\right)\right)\right)
$$

In the same way as in the proof of Lemma 5.3 we obtain

$$
G^{*}\left(F_{v}\left(t, u_{n_{k}}(t), \dot{u}_{n_{k}}(t)\right)\right) \leq \alpha(M)\left(c(t)+C+K_{1} h(t)\right)
$$

By continuity of F_{v} we obtain

$$
G^{*}\left(F_{v}\left(t, u_{n_{k}}(t), \dot{u}_{n_{k}}(t)\right)\right) \rightarrow G^{*}\left(F_{v}(t, u(t), \dot{u}(t))\right)
$$

for a.e $t \in I$ and consequently

$$
\int_{I} G^{*}\left(F_{v}\left(t, u_{n_{k}}, \dot{u}_{n_{k}}\right)\right) d t \rightarrow \int_{I} G^{*}\left(F_{v}(t, u, \dot{u})\right) d t
$$

It follows that

$$
\int_{I} G^{*}\left(F_{v}\left(t, u_{n}, \dot{u}_{n}\right)\right) d t \rightarrow \int_{I} G^{*}\left(F_{v}(t, u, \dot{u})\right) d t
$$

Application of Lemma 3.16 to $R_{G^{*}}$ yields $\left\|F_{v}\left(\cdot, u_{n}, \dot{u}_{n}\right)-F_{v}(\cdot, u, \dot{u})\right\|_{\mathbf{L}^{G^{*}}} \rightarrow 0$. By the Hölder inequality

$$
\left|\int_{I}\left\langle F_{v}\left(t, u_{n}, \dot{u}_{n}\right)-F_{v}(t, u, \dot{u}), \dot{\varphi}\right\rangle d t\right| \leq 2\left\|F_{v}\left(\cdot, u_{n}, \dot{u}_{n}\right)-F_{v}(\cdot, u, \dot{u})\right\|_{\mathbf{L}^{G^{*}}}\|\dot{\varphi}\|_{\mathbf{L}^{G}} \rightarrow 0
$$

Finally,

$$
\int_{I}\left\langle F_{v}\left(t, u_{n}, \dot{u}_{n}\right), \dot{\varphi}\right\rangle d t \rightarrow \int_{I}\left\langle F_{v}(t, u, \dot{u}), \dot{\varphi}\right\rangle d t
$$

References

[1] J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, New York, 1989.
[2] S. Acinas, L. Buri, G. Giubergia, F. Mazzone, E. Schwindt, Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting, Nonlinear Anal. 125 (2015) 681-698.
[3] M. A. Krasnoselskiĭ, J. B. Rutickiĭ, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, 1961.
[4] M. M. Rao, Z. D. Ren, Theory of Orlicz spaces, New York: M. Dekker, 1991.
[5] M. M. Rao, Z. D. Ren, Applications of Orlicz spaces, M. Dekker, 2002.
[6] R. A. Adams, Sobolev spaces, Academic Press, New York-London, 1975.
[7] M. Skaff, Vector valued Orlicz spaces. I, Pacific J. Math. 28 (1969) 193-206.
[8] M. Skaff, Vector valued Orlicz spaces. II, Pacific J. Math. 28 (1969) 413-430.
[9] N. S. Trudinger, An imbedding theorem for $H_{0}(G, \Omega)$ spaces, Studia Math. 50 (1974) 17-30.
[10] W. Desch, R. Grimmer, On the wellposedness of constitutive laws involving dissipation potentials, Trans. Amer. Math. Soc. 353 (12) (2001) 5095-5120.
[11] G. Schappacher, A notion of Orlicz spaces for vector valued functions, Appl. Math. 50 (4) (2005) 355-386.
[12] M. Fuchs, V. Osmolovski, Variational integrals on Orlicz-Sobolev spaces, Z. Anal. Anwend. 17 (2) (1998) 393-415.
[13] A. Cianchi, A fully anisotropic Sobolev inequality, Pacific J. Math. 196 (2) (2000) 283-295.
[14] A. Cianchi, A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana Univ. Math. J. 45 (1) (1996) 39-65.
[15] A. Cianchi, Some results in the theory of Orlicz spaces and applications to variational problems, in: Nonlinear Analysis, Function Spaces and Applications, Czech Academy of Sciences, Mathematical Institute, 1999, pp. 50-92.
[16] P. Clément, B. d. Pagter, G. Sweers, F. Thélin, Existence of Solutions to a Semilinear Elliptic System through Orlicz-Sobolev Spaces, Mediterr. J. Math 1 (3) (2004) 241-267.
[17] T. K. Donaldson, N. S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal. 8 (1971) 52-75.
[18] P. Jain, D. Lukkassen, L.-E. Persson, N. Svanstedt, Imbeddings of anisotropic OrliczSobolev spaces and applications, Math. Inequal. Appl. 5 (2) (2002) 181-195.
[19] V. K. Le, On second order elliptic equations and variational inequalities with anisotropic principal operators, Topol. Methods Nonlinear Anal. 44 (1) (2014) 41-72.
[20] V. D. Radulescu, D. Repovs, Partial Differential Equations with Variable Exponents Variational Methods and Qualitative Analysis, Chapman and Hall/CRC, 2015.
[21] J. Hiriart-Urruty, C. Lemaréchal, Fundamentals of Convex Analysis, Springer Berlin Heidelberg, 2004.
[22] J.-P. Aubin, Optima and equilibria: an introduction to nonlinear analysis, Springer, 1998.
[23] Musielak, J., Orlicz Spaces and Modular Spaces, Springer, 1983.
[24] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functional, Proc. Amer. Math. Soc. 88 (3) (1983) 486-490.
[25] M. A. Khamsi, W. M. Kozlowski, Fixed point theory in modular function spaces, Birkhäuser/Springer, 2015.
[26] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer New York, 2011.

[^0]: *corresponding author
 Email addresses: mchmara@mif.pg.gda.pl (M. Chmara), jmaksymiuk@mif.pg.gda.pl (J. Maksymiuk)

