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Abstract

In this paper we study some properties of anisotropic Orlicz and Orlicz-Sobolev
spaces of vector valued functions for a special class of G-functions. We introduce
a variational setting for a class of Lagrangian Systems. We give conditions which
ensure that the principal part of variational functional is finitely defined and
continuously differentiable on Orlicz-Sobolev space.
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1. Introduction

In this paper we make some preliminary steps for variational analysis in
anisotropic Orlicz-Sobolev spaces of vector valued functions. We consider the
Euler-Lagrange equation

d

dt
Lv(t, u(t), u̇(t)) = Lx(t, u(t), u̇(t)), t ∈ (a, b) (1)

where Lagrangian is of the form L(t, x, v) = F (t, x, v) + V (t, x).
If F (v) = 1

2 |v|
2 then the equation (1) reduces to ü(t) +∇V (t, u(t)) = 0. One

can consider more general case F (v) = φ(|v|), where φ is convex and nonnegative.
In the above cases F does not depend on v directly but rather on its norm |v|
and the growth of F is the same in all directions, i.e. F has isotropic growth.
Equation (1) with Lagrangian L(t, x, v) = 1

p |v|
p + V (t, x) has been studied by
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many authors under different conditions. The classical reference is [1]. The
isotropic Orlicz-Sobolev space setting was considered in [2].

We are interested in anisotropic case. This means that F depends on all
components of v not only on |v| and has different growth in different directions.
A simple example of such function is F (v) =

∑N
i=1 |vi|pi or F (v) =

∑N
i=1 φi(|vi|),

where φi are N-functions. We wish to consider more general situation. We assume
that F : [a, b]× RN × RN → R satisfies

(F1) F ∈ C1,

(F2) |F (t, x, v)| ≤ a(|x|)(b(t) +G(v)),

(F3) |Fx(t, x, v)| ≤ a(|x|)(b(t) +G(v)),

(F4) G∗(Fv(t, x, v)) ≤ a(|x|)(c(t) +G∗(∇G(v))),

where a ∈ C(R+,R+), b, c ∈ L1(I,R+) and G : RN → R is a G-function. Con-
ditions (F1)–(F4) are direct generalization of standard growth conditions from
[1] (see also [2]). We show (see Theorem 5.7) that under these conditions the
functional I : W1 LG → R given by

I(u) =

∫
I
F (t, u, u̇) dt

is continuously differentiable.
We restrict our considerations to a special class of G-functions. Here G : Rn →

[0,∞) is convex, G(−x) = G(x), supercoercive, G(0) = 0 and satisfies ∆2 and
∇2 conditions. We define the anisotropic Orlicz space to be

LG(I,RN ) = {u : I → RN :

∫
I
G(u) dt <∞}.

The Orlicz space LG equipped with the Luxemburg norm

‖u‖LG = inf

{
α > 0:

∫
I
G
(u
α

)
dt ≤ 1

}
is a reflexive Banach space. An important example of Orlicz space is classical
Lebesgue Lp space, defined by G(x) = 1

p |x|
p. In this case, the Luxemburg norm

and the standard Lp norm are equivalent. Therefore, Orlicz spaces can be viewed
as a straightforward generalization of Lp spaces.

Properties of N-functions and Orlicz spaces of real-valued functions has been
studied in great details in monographs [3, 4, 5] and [6]. The standard references for
vector-valued case are [7, 8, 9] and [10, 11] for Banach-space valued functions. In
[7, 8] author considers a class of G-functions together with a uniformity conditions
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which, for example, excludes the function G(x) =
∑
|xi|pi unless 1 < p1 = · · · =

pN <∞. Moreover G is not necessarily assumed to be an even function. As was
pointed out in [11], if G is not even then LG is no longer a vector space (see also
[10, Example 2.1]).

Our strong conditions on G allow us to work in Orlicz spaces without worry
about some technical difficulties arising in general case. For example, it is well
known that the set LG(I,RN ) is a vector space if and only if G satisfies ∆2 con-
dition. Otherwise LG is only a convex set. Another difficulty is the convergence
notion. In Lebesgue spaces ‖un − u‖Lp → 0 means simply

∫
|un − u|p → 0.

For arbitrary G-function G, convergence in Luxemburg norm is not equivalent
to
∫
G(un − u) dt→ 0 unless G satisfies ∆2. The ∆2 condition is also crucial for

separability and reflexivity of LG.
The main consequence of anisotropic nature of G is the lack of monotonicity of

the norm. It is no longer true that |u| ≤ |v| implies ‖u‖LG ≤ ‖v‖LG . In anisotropic
case, standard dominance condition |un| ≤ f does not implies convergence in LG

norm and must be replaced by G(un) ≤ f (see Theorem 3.17).
For every G there exist p, q ∈ (1,∞) such that Lq ↪→ LG ↪→ Lp. If G(x) =∑
|xi|pi then LG can be identified with the product of Lpi but in many cases

an anisotropic Orlicz Space is not equal to the space Lp1 ×Lp2 ×... × LpN (see
Example 3.7).

To give a proper variational setting for equation (1) we introduce a notion
of an anisotropic Orlicz-Sobolev space W1 LG of vector-valued functions. It is
defined to be

W1 LG(I,RN ) = {u ∈ LG(I,RN ) : u̇ ∈ LG(I,RN )}

with the norm
‖u‖W1 LG = ‖u‖LG + ‖u̇‖LG

To the authors best knowledge there is no reference for the case of anisotropic
norm and vector-valued functions of one variable. The references for other cases
are [2, 9, 12, 13, 14, 15, 16, 17, 18, 19].

In [9] and [18] the space H0(G,Ω), Ω ⊂ Rn is defined as a completion of
C1

0 (Ω,Rn) under norm ‖u‖H0(G,Ω) = ‖Du‖G,Ω. It is classical result due to
Trudinger H0(G,Ω) ↪→ LA(Ω), where A is some N-function (see also Cianchi
[14]).

In [17] and [19] the anisotropic Orlicz-Sobolev space W 1LG is defined for G-
function G : Rn+1 → [0,∞] as a space of weakly differentiable functions u : Rn ⊃
Ω→ R such that (u,D1u,D2u, ...,Dnu) belongs to the Orlicz space generated by
G. A norm for W 1LG is given by

‖u‖1,G,Ω = ‖(u,Du)‖G,Ω.
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In [12] we can find definition of isotropic Orlicz-Sobolev space of real valued
functions

W 1
A(Ω) = {u ∈ Ω→ R measurable : u, |∇u| ∈ LA},

where LA is Orlicz Space and A is an N-function.
In [2] the isotropic Orlicz-Sobolev space of vector-valued functions is defined

to be a space of absolutely continuous functions u : [0, T ]→ Rd such that u and
u̇ belongs to Orlicz space generated by an N-function. Similar treatment can be
found in [20].

2. G-functions

Let 〈·, ·〉 denote the standard inner product on RN and | · | is the induced
norm. We assume that G : RN → [0,∞) satisfies the following conditions:

(G1) G(0) = 0,

(G2) G is convex,

(G3) G is even,

(G4) G is supercoercive:

lim
|x|→∞

G(x)

|x|
=∞,

(G5) G satisfies the ∆2 condition:

∃K1≥2 ∃M1>0 ∀|x|≥M1
G(2x) ≤ K1G(x), (∆2)

(G6) G satisfies the ∇2 condition:

∃K2≥1 ∃M2>0 ∀|x|≥M2
G(x) ≤ 1

2K2
G(K2x). (∇2)

A function G is a G-function in the sense of Trudinger [9]. In general, G-
function can be unbounded on bounded sets and need not satisfy conditions
(G4)–(G6) but only limx→∞G(x) = ∞. A G-function of one variable is called
N-function. Some typical examples of G are:

1. Gp(x) = 1
p |x|

p, 1 < p <∞,

2. G(x) =
∑N

i=1Gpi(xi), 1 < pi <∞,

3. G(x1, x2) = (x1 − x2)2 + x4
2.
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A function G can be equal to zero in some neighborhood of 0. So that a function

G(x) =

{
0 |x| ≤ 1

|x|2 − 1 |x| > 1

is also admissible. Condition ∆2 implies that G is of polynomial growth (see
Lemma 2.4 below and [3]). A function f : R2 → R f(x) = e|x| − |x| − 1 does not
satisfy ∆2.

Since G is convex and finite on Rn, G is locally Lipschitz and therefore con-
tinuous. Note that for every x ∈ RN

G(αx) ≤ αG(x), if 0 ≤ α ≤ 1,

αG(x) ≤ G(αx), if 1 ≤ α.

We get immediately that G is non-decreasing along any half-line through the
origin i.e. for every x ∈ RN

0 < α ≤ β =⇒ G(αx) ≤ G(βx). (2)

Our assumptions on G imply that for every x0 ∈ RN there exists a ∈ RN and
b ∈ R such that for all x ∈ RN

〈a, x0〉+ b = G(x0) and 〈a, x〉+ b ≤ G(x).

From this, we can easily obtain the Jensen integral inequality. Let I ⊂ R be a
finite interval and let u ∈ L1(I,RN ). Then

G

(
1

µ(I)

∫
I
u dt

)
≤ 1

µ(I)

∫
I
G(u) dt.

We will often make use of the following simple observation.

Proposition 2.1. For all α ∈ R there exists K1(α) > 0 such that

G(αx) ≤ K1(α)G(x)

for all |x| ≥M1.

In fact, the above proposition provides a characterization of ∆2 (see [7, 11]).
It follows that for every α ∈ R there exists Cα > 0 such that for x ∈ RN

G(αx) ≤ Cα +K1(α)G(x).

We recall a notion of Fenchel conjugate. Define G∗ : RN → [0,∞) by

G∗(y) := sup
x∈RN

{〈x, y〉 −G(x)}.
5
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A function G∗ is called Fenchel conjugate of G. As an immediate consequence of
definition we have the so called Fenchel inequality:

∀x,y∈RN 〈x, y〉 ≤ G(x) +G∗(y).

Consider arbitrary f : RN → [0,∞). It is obvious that the conjugate function
f∗ is always convex. But in general f∗ need not be continuous, finite or coercive,
even if f is. From the other hand, it is well known that if f is convex and l.s.c.
then f∗ 6≡ ∞ and (f∗)∗ = f .

Example 2.2.

1. If

g(x) =

{
0 |x| ≤ 1

∞ |x| > 1

then g∗(x) = |x|. Note that g and g∗ are G-functions but do not satisfy our
assumptions.

2. If Gp(x) = 1
p |x|

p, then G∗p(x) = 1
q |x|

q, 1
p + 1

q = 1.

3. If G(x) =
∑N

i=1Gpi(xi), then G∗(x) =
∑N

i=1G
∗
pi(xi),

4. If G(x, y) = (x− y)2 + y4, then

G∗(x, y) =
1

4
x2 +

3

4
(x+ y)

(
x+ y

4

) 1
3

.

More information on general theory of conjugate functions can be found in
standard books on convex analysis, see for instance [21, 22].

If a function G : Rn → [0,∞) satisfies conditions (G1)–(G6) then the same
is true for its conjugate G∗. This is main reason we want to restrict class of
considered functions.

Theorem 2.3. If G satisfies conditions (G1)–(G6) then G∗ also satisfies (G1)–
(G6) and (G∗)∗ = G.

Proof. It is evident that G∗ satisfies (G1), (G2) and (G3). It is well known that,
under our conditions, G∗ is finite (proposition 1.3.8, [21]), G∗ is supercoercive
(proposition 1.3.9, [21]) and G∗ satisfies (G5) and (G6) (remark 2.3, [10]). Cor-
rollary [21, cor. 1.3.6] gives (G∗)∗ = G.

In order to compare growth rate of G-functions we define two relations. Let
G1 and G2 be G-functions. Define

G1 ≺ G2 ⇐⇒ ∃M≥0 ∃K>0 ∀|x|≥M G1(x) ≤ G2(K x)
6
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and

G1 ≺≺ G2 ⇐⇒ ∀α>0 lim
|x|→∞

G2(αx)

G1(x)
=∞.

For conjugate functions we have (see [3, thm. 3.1])

G1 ≺ G2 ⇒ G∗2 ≺ G∗1.

Obviously G1 ≺≺ G2 implies G1 ≺ G2. Assumption (G4) implies |x| ≺≺ G.
It is true that |x| ≺ G holds under weaker assumption: G(x)→∞. Note that, if
p > 1 then |x| ≺≺ |x|p. Hence, if |x|p ≺ G then |x| ≺≺ G. Since G satisfies (G5)
and (G6) we have the following bounds for the growth of G.

Lemma 2.4 ([10, Lemma 2.4]). There exist p, q ∈ (1,∞) such that

|x|p ≺ G ≺ |x|q.

The exponents p and q depend on the constants in the ∇2 and ∆2 conditions

respectively. Immediately from the above we get |x|
q

q−1 ≺ G∗ ≺ |x|
p

p−1 .

3. Orlicz spaces

Let I ⊂ R be a finite interval. The Orlicz space LG = LG(I,Rn) is defined to
be

LG(I,Rn) =

{
u : I → Rn : u – measurable,

∫
I
G (u) dt <∞

}
.

As usual, we identify functions equal a.e. For u ∈ LG define:

‖u‖LG = inf

{
α > 0:

∫
I
G
(u
α

)
dt ≤ 1

}
.

The function ‖ · ‖LG is called the Luxemburg norm. It is easy to see that∫
I
G

(
u

‖u‖LG

)
dt = 1,

since G satisfies ∆2. Moreover∫
I
G
(u
k

)
dt ≤ 1 ⇐⇒ ‖u‖LG ≤ k.

Using Fenchel’s inequality we obtain the Hölder inequality∫
I
〈u, v〉 dt ≤ 2‖u‖LG‖v‖LG∗ , u ∈ LG and v ∈ LG

∗

7
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Similarly to [3] and [8] one can show that LG is a linear ([3, thm. 8.2])
and normed space ([8, thm. 2.3]). Completeness and separability of LG can
be obtained in the same way as in [11, thm. 6.1, thm. 6.3, cor. 6.1 ]. Since
LG ↪→ Lp ↪→↪→ Lp0 ↪→ L1 (see propositions 3.3 and 3.4 below) and 1 < p0 < p, it
follows that LG is reflexive space. The proof, in more general case, can be found
in [11].

According to above remarks, we have the following theorem.

Theorem 3.1. If G : Rn → [0,∞) satisfies (G1)–(G6), then (LG(I,Rn), ‖ · ‖LG)
is a separable, reflexive Banach space.

Remark 3.2.

1. All properties of LG remains true for LG
∗
, since G and G∗ belongs to the

same class of functions.

2. For an arbitrary G-function f : Rn → [0,∞) which does not satisfies ∆2

the set Lf is not a linear space but only a convex set. In fact, it is well
known that the set Lf is linear space if and only if a G-function f satisfies
∆2 condition.

3. It was pointed out by Schappacher [11, example 3.1] that if f is not bounded
on bounded sets (i.e. we allow f(x) = +∞ for some x ∈ Rn) then Lf need
not be a linear space, even if f satisfies ∆2 condition (see [3, 11]).

4. It is well known that if G-function does not satisfies ∆2 condition then LG

is not separable. One can define a subspace EG as the closure of bounded
functions under Luxemburg norm. In this case, the space EG is a proper
subset of LG and is always separable (see [3, 11]).

5. For every F ∈ (LG)∗ there exists unique v ∈ LG
∗

such that for every u ∈ LG

Fu =

∫
I
〈u, v〉 dt.

As a consequence we obtain that LG
∗ ' (LG)∗. Since G∗∗ = G, we also get

LG ' (LG
∗
)∗ (see [3, 8, 11]).

6. If G-function does not satisfies ∆2 and ∇2 conditions, then LG is not re-
flexive and (LG)∗ is not isomorphic to LG

∗
(see [3, 11]).

An important example of Orlicz space is a classical Lebesgue space (Lp, ‖·‖Lp),
p ∈ (1,∞) defined by G(x) = 1

p |x|
p. It is easy to check that in this case LG = Lp

and the Luxemburg norm and standard Lp norm are equivalent. Two important
examples of Lebesgue spaces are not covered in our setting, namely L1 and L∞.
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The space L1 is generated by f(x) = |x| and the space L∞ generated by f∗. We
exclude these two spaces because we want to have only reflexive spaces in the
class of Orlicz spaces we consider.

We will use the symbols ↪→ and ↪→↪→ for, respectively, continuous and com-
pact embeddings. Using the same methods as in [6, th. 8.12, 8.24] we obtain
basic embedding theorems for anisotropic Orlicz spaces.

Proposition 3.3. Assume that F ≺ G. Then LG ↪→ LF and

‖u‖LF ≤ K(Cµ(I) + 1)‖u‖LG

for some C > 0.

Proposition 3.4. If F ≺≺ G then LG ↪→↪→ LF .

Directly from Lemma 2.4 we obtain that Orlicz spaces can be viewed as
a spaces between two Lebesgue spaces determined by constants in ∆2 and ∇2

conditions.

Proposition 3.5. For every G there exist p, q ∈ (1,∞) such that

Lq ↪→ LG ↪→ Lp .

In particular L∞ ↪→ LG ↪→↪→ L1.

In some cases LG is simply a product of Lpi(I,R), but there exist Orlicz
spaces which are not in the form Lp(I,R)× Lq(I,R) (cf. [9, pp. 18-20]).

Example 3.6. Consider the Orlicz space LG = LG(I,R2) generated, by G(x) =
|x1|p1 + |x2|p2 , p1, p2 > 0. If u = (u1, u2) ∈ Lp1(I,R)× Lp2(I,R), then∫

I
G(u) dt =

∫
I
|u1|p1 dt+

∫
I
|u2|p2 dt <∞.

Conversely, if u = (u1, u2) ∈ LG then∫
I
|u1|p1 dt ≤

∫
I
G(u) dt <∞ and

∫
I
|u2|p2 dt ≤

∫
I
G(u) dt <∞.

Hence u ∈ Lp1(I,R)× Lp2(I,R).

Example 3.7. Consider the Orlicz space LG = LG(I,R2) generated, by G(x) =
(x1−x2)4 +x2

2. From Lemma 2.4 and Proposition 3.5 we obtain that L4(I,R2) ↪→
LG ↪→ L2(I,R2). Let u1 be a function in L2(I,R) such that u1 /∈ Lp(I,R), for
p > 2. Set u = (u1, u1), then∫

I
G(u) dt =

∫
I
|u1|2 dt <∞

9
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but ∫
I
|u|p dt =∞.

Therefore for every p > 2 there exists u ∈ LG such that u /∈ Lp(I,R2). Moreover,
u /∈ Lp(I,R) × L2(I,R) for any p > 2. From the other hand if u = (u1, u2) ∈
L4(I,R)× L4(I,R) then u ∈ LG. Therefore

L4(I,R)× L4(I,R) ↪→ LG ↪→ L2(I,R)× L2(I,R)

but LG cannot be identified with any

L4(I,R)× L4(I,R) ↪→ Lp(I,R)× Lq(I,R) ↪→ L2(I,R)× L2(I,R).

3.1. Convergence

Now we investigate relations between Luxemburg norm and the integral

RG(u) :=

∫
I
G(u) dt.

A functional RG is called modular. Theory of modulars is well known and is
developed in more general setting than ours. More information can be found in
[23, 5].

For Lebesgue spaces a notions of modular and norm are indistinguishable
because modular

∫
I |u|

p dt is equal to ‖u‖pLp . But in Orlicz spaces relation between
RG and ‖ · ‖LG is more complex.

There is remarkable difference between isotropic and anisotropic spaces. It is
clear that if u, v ∈ Lp (or more generally in isotropic Orlicz space) then |u(t)| ≤
|v(t)| a.e. implies ‖u‖Lp ≤ ‖v‖Lp . In anisotropic case it is no longer true, even if
G(u(t)) < G(v(t)). Next two examples illustrates this point.

Example 3.8. Let G(x, y) = (x − y)2 + y4, I = [0, 1], u(t) = (2, 0) and v(t) =
(2, 3/2). Then |u(t)| < |v(t)|, G(u(t)) < G(v(t)) and RG(u) ≤ RG(v), but
2 = ‖u‖LG > ‖v‖LG ' 1.6.

Example 3.9. Let G(x, y) = x2 + y4, u(t) = (1, 0) and v(t) = 11
10(cos t,

√
sin t).

In LG([0, π],R2) we have
√
π = ‖u‖LG > ‖v‖LG ' 1.7, but |u(t)| < |v(t)|,

G(u(t)) < G(v(t)) for all t ∈ [0, π] and RG(u) < RG(v).

Definition 3.10. We say that a subset K ⊂ LG is modular bounded if there
exists C > 0 such that

RG(u) ≤ C, for all u ∈ K.

Modular boundedness is sometimes called mean boundedness. It is evident
that RG(u) ≤ ‖u‖LG if ‖u‖LG ≤ 1 and RG(u) > ‖u‖LG if ‖u‖LG > 1.

10
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Lemma 3.11. Let u ∈ LG.

1. If RG(u) ≤ C then ‖u‖LG ≤ max{C, 1}.

2. If ‖u‖LG ≤ C then RG(u) ≤ µ(I)C̃ +K1(C) for some C̃ > 0.

Moreover, a set K ⊂ LG is modular bounded if and only if is norm bounded.

Proof. Assume that RG(u) ≤ C. If C ≤ 1 then ‖u‖LG ≤ 1. If C > 1 then∫
I
G
( u
C

)
dt ≤ 1

C

∫
I
G(u) dt ≤ 1.

This implies ‖u‖LG ≤ max{C, 1}. For the second statement, assume ‖u‖LG ≤ C.
Then

RG(u) =

∫
I1

G (u) dt+

∫
I\I1

G
(
C
u

C

)
dt ≤ µ(I1) C̃ +K1(C)

∫
I
G
( u
C

)
dt,

where I1 = {t ∈ I : |u(t)| ≤M1C} and C̃ > 0. To finish the proof observe that∫
I
G
( u
C

)
dt ≤

∫
I
G

(
u

‖u‖LG

)
dt = 1.

Definition 3.12. We say that a sequence of functions uk ∈ LG is modular
convergent to u ∈ LG if RG(uk − u)→ 0 as k →∞.

Modular convergence is sometimes called mean convergence. Norm conver-
gence always implies modular convergence. Let ‖uk‖LG → 0 as k →∞. We can
assume that ∀k ‖uk‖LG ≤ 1, then

1

‖uk‖LG

RG(uk) ≤ RG
( uk
‖uk‖LG

)
= 1.

Hence 0 ≤ RG(uk) ≤ ‖uk‖LG . In general, converse is not true unless G satisfies
∆2 condition (see [3, 11]).

Theorem 3.13. Norm convergence is equivalent to modular convergence.

Proof. We need only to prove that modular convergence implies norm conver-
gence. Fix ε > 0 and assume that {uk} is modular convergent to 0. Define

I1,k = {t ∈ I : |uk(t)| ≤M1}.

11
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Since G satisfies ∆2, for all k > 0 we have∫
I
G(uk/ε) dt ≤ µ(I1,k)C1/ε +K1(1/ε)

∫
I\I1,k

G(uk) dt ≤

≤ µ(I)C1/ε +K1(1/ε)

∫
I
G(uk) dt.

For sufficiently large k we have∫
I
G(uk) dt ≤

1

K1(1/ε)

and ∫
I
G(uk/ε) dt ≤ µ(I)C1/ε + 1 = C.

Finally, Lemma 3.11 shows that ‖uk‖LG ≤ Cε and hence ‖uk‖LG → 0.

It is standard result due to Riesz that for fn, f ∈ Lp

fn → f a.e. =⇒ (‖fn‖Lp → ‖f‖Lp ⇐⇒ ‖fn − f‖Lp → 0) .

Following lemmas establish Orlicz space version of this fact.

Lemma 3.14. For every k > 1 and 0 < ε < 1
k and x, y ∈ Rn

|G(x+ y)−G(x)| ≤ ε|G(kx)− kG(x)|+ 2G(Cεy)

where Cε = 1
ε(k−1)

The proof can be found in [24] (see also [25]).

Lemma 3.15. If un → u in LG then RG(un)→ RG(u).

Proof. In Lemma 3.14 set x+ y = un, x = u, k = 2. Then ε < 1/2, Cε = 1
ε and

|G(un)−G(u)| ≤ ε|G(2u)− 2G(u)|+ 2G

(
un − u
ε

)
.

Since un → u in LG, there exists n0 such that for n > n0 we have ‖un − u‖LG <
ε2 ≤ ε < 1. Thus ∫

I
G

(
un − u
ε

)
dt ≤ 1

ε
‖un − u‖LG < ε.

From this and inequality above we obtain

|RG(un)−RG(u)| ≤ ε
∫
I
|G(2u)− 2G(u)| dt+ 2ε.

Letting ε→ 0 we have RG(un)→ RG(u).
12

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


According to the above lemma, if un → u in LG then:

1. Since LG ↪→ L1 (see Lemma 3.5 below), we can extract a subsequence unk

such that
unk
→ u a.e and |unk

| ≤ h ∈ L1(I,R).

2. Since RG(un − u) → 0, G(un − u) → 0 in L1. Thus we can extract a
subsequence {unk

} such that

G(unk
− u)→ 0 a.e and G(unk

− u) ≤ h ∈ L1(I,R).

3. Since RG(un) → RG(u), G(un) → G(u) in L1. Hence there exists a subse-
quence {unk

} such that

G(unk
)→ G(u) a.e and G(unk

) ≤ h ∈ L1(I,R).

Lemma 3.16. Let {un} ⊂ LG and u ∈ LG. Suppose that

1. un → u a.e.,

2. RG(un)→ RG(u).

Then un → u in LG.

Proof. This lemma was proved in [4, p. 83] for N-functions. Since G is convex,

we get 1
2 (G(un(t)) +G(u(t)))−G

(
un(t)−u(t)

2

)
≥ 0. Continuity of G and un → u

a.e. implies

1

2
(G(un(t)) +G(u(t)))−G

(
un(t)− u(t)

2

)
→ G(u) a.e.

So that by the Fatou Lemma, we have∫
I
G(u) dt ≤ lim inf

n→∞

∫
I

1

2
(G(un) +G(u)) dt−G

(
un − u

2

)
dt ≤

≤ lim
n→∞

∫
I

1

2
(G(un) +G(u)) dt− lim sup

n→∞

∫
I
G

(
un − u

2

)
dt =

=

∫
I
G(u) dt− lim sup

n→∞

∫
I
G

(
un − u

2

)
dt.

This implies that ∫
I
G

(
uk(t)− u(t)

2

)
dt→ 0

and ‖uk − u‖LG → 0 by Theorem 3.13.
13
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As a consequence we obtain dominated convergence theorem for anisotropic
Orlicz spaces:

Theorem 3.17. Suppose that {un} ⊂ LG and

1. un → u a.e.

2. there exists h ∈ L1(I,R) such that G(un) ≤ h a.e.

Then u ∈ LG and un → u in LG.

Proof. Since G is continuous and un → u a.e., G(un)→ G(u) a.e. It follows that
G(u) ≤ h a.e. Thus G(u) ∈ L1(I,R) and hence u ∈ LG. In a standard way we
get RG(un)→ RG(u). Hence un → u in LG, by the Lemma 3.16.

In the above theorem, assumption G(un) ≤ h can be replaced by G(un) ≤
G(h), h ∈ LG. Consider a sequence {un} ⊂ LG convergent pointwise to measur-
able function u. Under standard dominance condition (i.e. |un| ≤ |g|, g ∈ LG) it
is not true in general that un → u ∈ LG.

Example 3.18. Let G(x, y) = x2 + y4, I = (0, 1), u(t) = (0, t−1/4) and h(t) =
(t−3/8, 0). Define

un(t) =

{
u(t) |u(t)| ≤ n
0 |u(t)| > n

Then un → u a.e., un, h ∈ LG and |un| ≤ |h| for every t. But G(u(t)) = t−1 /∈
L1(I,R). Hence u /∈ LG.

Remark 3.19. Modular RG is called monotone modular if |x| ≤ |y| implies
RG(x) ≤ RG(y). If RG is monotone modular then uk → u a.e and |uk| ≤ |g|,
g ∈ LG implies u ∈ LG and ‖uk−u‖LG → 0. We refer the reader to [25] for more
details.

4. Orlicz-Sobolev spaces

The Orlicz-Sobolev space W1 LG = W1 LG(I,Rn) is defined to be

W1 LG(I,Rn) := {u ∈ LG(I,Rn) : u̇ ∈ LG(I,Rn)}.

For u ∈W1 LG we define

‖u‖W1 LG := ‖u‖LG + ‖u̇‖LG

Define W1
0 LG = W1

0 LG(I,Rn) as the closure of C1
0 (I,Rn) in W1 LG with

respect to the ‖ · ‖W1 LG .
14
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Theorem 4.1. The space (W1 LG, ‖ · ‖W1 LG) is a separable reflexive Banach
space.

Proof is standard and will be omitted, see for instance [26]. If G(x) =
1
p |x|

p, then the Orlicz-Sobolev space W1 LG coincides with the Sobolev space

W1,p(I,Rn). Observe that un → u in W1 LG is equivalent to RG(un − u) → 0
and RG(u̇n − u̇)→ 0.

Since there exist p, q ∈ (1,∞) such that Lq ↪→ LG ↪→ Lp, the following
continuous embeddings exist

W1,q ↪→W1 LG ↪→W1,p

Using standard results from the theory of Sobolev spaces we get

1. W1 LG(I,Rn) ↪→↪→W1,1,

2. W1 LG(I,Rn) ↪→↪→ Lq, for all 1 ≤ q ≤ ∞,

3. W1 LG(I,Rn) ↪→↪→ C(I).

As a consequence we have

Theorem 4.2. A function u ∈W1 LG is absolutely continuous. Precisely, there
exists absolutely continuous representative of u such that for all a, b ∈ I

u(b)− u(a) =

∫ b

a
u̇(t)dt.

Directly from definition of W1
0 LG we obtain important property of functions

in W1
0 LG.

Theorem 4.3. If u ∈W1
0 LG, then u = 0 on ∂I.

Using embeddings mentioned above we have for every u ∈W1 LG

‖u‖L∞ ≤ C‖u‖W1 LG (3)

Theorem 4.4 (Sobolev inequality). For every function u ∈W1 LG

‖u− uI‖LG ≤ µ(I)‖u̇‖LG

where uI = 1
µ(I)

∫
I u.
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Proof. Since u is absolutely continuous, there exists t0 ∈ I such that u(t0) =
1

µ(I)

∫
I u and for every t ∈ I we have

u(t)− u(t0) =

∫ t

t0

u̇ dt.

By Jensen’s inequality,

G

(
u(t)− u(t0)

µ(I)‖u̇‖LG

)
= G

(
1

|t− t0|

∫ t

t0

|t− t0|
µ(I)

u̇

‖u̇‖LG

dt

)
≤

≤ 1

|t− t0|

∫ t

t0

G

(
|t− t0|
µ(I)

u̇

‖u̇‖LG

)
dt ≤ 1

µ(I)

∫
I
G

(
u̇

‖u̇‖LG

)
dt ≤ 1

µ(I)
.

Integrating both sides over I we get∫
I
G

(
u− u(t0)

µ(I)‖u̇‖LG

)
dt ≤ 1.

Thus ‖u− uI‖LG ≤ µ(I)‖u̇‖LG .

In similar way we get

Theorem 4.5 (Poincaré inequality). For every u ∈W1
0 LG

‖u‖LG ≤ µ(I)‖u̇‖LG

It follows that one can introduce equivalent norm in W1
0 LG:

‖u‖W1
0 L

G = ‖u̇‖LG .

Every linear functional F on W1
0 LG can be represented in the form

F (u) =

∫
I
〈u, v0〉+ 〈u̇, v1〉 dt,

where v0, v1 ∈ LG
∗
. Moreover, ‖F‖ = max{‖v0‖LG∗ , ‖v1‖LG∗}. In the case of

Sobolev space W1,p the proof is given in [26, proposition 8.14], but it remains
the same for Orlicz-Sobolev spaces. As was pointed out in [26], the first assertion
of the above proposition holds for every linear functional on W1 LG.
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5. Variational setting

In this section we examine the principal part

I(u) =

∫
I
F (t, u, u̇) dt (4)

of the variational functional associated with Euler-Lagrange equation

d

dt
Fv(t, u, u̇) = Fx(t, u, u̇) +∇V (t, u), t ∈ I

where u : I → RN and the Lagrangian L : I×RN×RN → R is given by L(t, x, v) =
F (t, x, v) + V (t, x).

In definition of the Orlicz space we need not to assume that G is differen-
tiable, but when we consider the functional I we need it to show that I ∈ C1.
Throughout this section we will assume, in addition to (G1)–(G6), that G satisfies

(G7) G is of a class C1.

Remark 5.1. Differentiability of f is not sufficient to differentiability of f∗. But
if f is finite, strictly convex, 1-coercive and differentiable then so is f∗. This
result is in close relation with Legendre duality (see [21, p. 239] and [1] for more
details).

It is well known that if G is continuously differentiable then for all x, y ∈ Rn

G(x)−G(x− y) ≤ 〈∇G(x), y〉 ≤ G(x+ y)−G(x) (5)

and
〈x,∇G(x)〉 = G(x) +G∗(∇G(x)).

Let y = x in (5). Then 〈∇G(x), x〉 ≤ G(2x)−G(x). Therefore, for all x ∈ RN

G∗(∇G(x)) ≤ G(2x).

Directly from the above we get

Proposition 5.2. If u ∈ LG then ∇G(u) ∈ LG
∗
.

Lemma 5.3 (cf. [16, lemma A.5]). If un → u in LG then RG∗(∇G(un)) →
RG∗(∇G(u)).

Proof. There exists a subsequence {unk
} such that unk

→ u a.e., G(unk
) →

G(u) a.e. and G(unk
) ≤ h ∈ L1(I,R). By continuity of ∇G and G∗ we have

∇G(unk
)→ ∇G(u) a.e. and

G∗(∇G(unk
))→ G∗(∇G(u)) a.e.

17
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Since G∗(∇G(x)) ≤ G(2x),

G∗(∇G(unk
)) ≤ G(2unk

) ≤ C +K1G(unk
) ≤ C +K1h.

By dominated convergence theorem RG∗(∇G(unk
)) → RG∗(∇G(u)). Since this

holds for any subsequence of {un} we have that

RG∗(∇G(un))→ RG∗(∇G(u)).

As a direct consequence of the above lemma and Lemma 3.16 we obtain

Proposition 5.4.

‖un − u‖LG → 0 =⇒ ‖∇G(un)−∇G(u)‖LG∗ → 0.

5.1. Case I

We shall first examine a special case F (t, x, v) = G(v), now functional (4)
takes the form

I(u) =

∫
I
G(u̇) dt.

Theorem 5.5. I ∈ C1(W1 LG,R). Moreover

I ′(u)ϕ =

∫
I
〈∇G(u̇), ϕ̇〉dt. (6)

Proof. The proof follows similar lines as [2, th. 3.2] (see also [1, thm 1.4]). First,
note that u̇ ∈ LG implies

0 ≤ I(u) <∞.

It suffices to show that I has at every point u directional derivative I ′(u) ∈
(W1 LG)∗ given by (6) and that the mapping I ′ : W1 LG → (W1 LG)∗ is contin-
uous. Let u ∈W1 LG, ϕ ∈W1 LG \{0}, t ∈ I, s ∈ [−1, 1] . Define

H(s, t) := G(u̇(t) + sϕ̇(t)).

By (5) we obtain∫
I
|Hs(s, t)| dt =

∫
I
|〈∇G(u̇+sϕ̇), ϕ̇〉| dt ≤

∫
I
G(u̇+(s+1)ϕ̇)+

∫
I
G(u̇+sϕ̇) dt <∞.

Consequently, I has a directional derivative and

I ′(u)ϕ =
d

ds
I(u+ sϕ)

∣∣∣
s=0

=

∫
I
〈∇G(u̇), ϕ̇〉dt.
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By Proposition 5.2 and the Hölder inequality

| I ′(u)ϕ| =
∣∣∣ ∫

I
〈∇G(u̇), ϕ̇〉dt

∣∣∣ ≤ 2‖∇G(u̇)‖LG∗‖ϕ̇‖LG ≤ C‖ϕ‖W1 LG .

To finish the proof it suffices to show that if un → u in W1 LG, then I ′(un) →
I ′(u) in (W 1LG)∗. Using the Hölder inequality and Proposition 5.4 we obtain

| I ′(un)ϕ− I ′(u)ϕ| =
∣∣∣∣∫
I
〈∇G(u̇n)−∇G(u̇), ϕ̇〉 dt

∣∣∣∣ ≤
≤ 2‖∇G(u̇n)−∇G(u̇)‖LG∗‖ϕ̇‖LG → 0.

5.2. Case II

We turn to general case. Suppose that F : I × RN × RN → R satisfies

(F1) F ∈ C1,

(F2) |F (t, x, v)| ≤ a(|x|)(b(t) +G(v)),

(F3) |Fx(t, x, v)| ≤ a(|x|)(b(t) +G(v)),

(F4) G∗(Fv(t, x, v)) ≤ a(|x|)(c(t) +G∗(∇G(v))).

where a ∈ C(R+,R+), b, c ∈ L1(I,R+).
If G(v) = |v|p then conditions (F2), (F3) and (F4) take the standard form

(Theorem 1.4 from [1]). In [2] there are similar conditions with G(v) = Φ(|v|),
where Φ is an N-function. In this case, condition (F4) takes the form |Fv(t, x, v)| ≤
ã(|x|)(c̃(t)+Φ′(|u|)). In anisotropic case we need to use G∗, because vector valued
G-function is not necessarily monotone with respect to | · |.

Lemma 5.6. If u ∈W1 LG, then Fx(·, u, u̇) ∈ L1 and Fv(·, u, u̇) ∈ LG
∗
.

Proof. Define non decreasing function

α(s) = sup
τ∈[0,s]

a(τ).

Then, for u ∈W1 LG we have

a(|u(t)|) ≤ α(‖u‖L∞) ≤ α(C‖u‖W1 LG). (7)

Let u ∈W1 LG. By (7) and (F3)∫
I
|Fx(t, u, u̇)| dt ≤

∫
I
a(|u(t)|)(b(t) +G(u̇)) dt ≤

≤ α(C‖u‖W1 LG)

∫
I
(b(t) +G(u̇)) dt <∞.
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Moreover, by (F4) and Proposition 5.2∫
I
G∗(Fv(t, u, u̇)) dt ≤ α(C‖u‖W1 LG)

∫
I
(c(t) +G∗(∇G(u̇))) dt <∞.

Theorem 5.7. I ∈ C1(W1 LG,R). Moreover

I ′(u)ϕ =

∫
I
〈Fx(t, u, u̇), ϕ〉dt+

∫
I
〈Fv(t, u, u̇), ϕ̇〉dt. (8)

Proof. By (F2)

| I(u)| ≤
∫
I
a(|u|)(b(t) +G(u̇))dt ≤ α(‖u‖W1 LG)

∫
I
(b(t) +G(u̇))dt <∞.

It suffices to show that directional derivative I ′(u) ∈ (W1 LG)∗ exists, is given
by (8) and that the mapping I ′ : W1 LG → (W1 LG)∗ is continuous.

Let u ∈W1 LG, ϕ ∈W1 LG \{0}, t ∈ I, s ∈ [−1, 1]. Define

H(s, t) := F (t, u+ sϕ, u̇+ sϕ̇).

By (F3), continuity of ϕ, (7) and the fact that u+ sϕ ∈W1 LG we obtain∫
I
|〈Fx(t, u+ sϕ, u̇+ sϕ̇), ϕ〉| dt ≤

∫
I
|Fx(t, u+ sϕ, u̇+ sϕ̇)||ϕ| dt ≤

≤
∫
I
a(|u+ sv|)(b(t) +G(u̇+ sϕ̇))|ϕ| dt ≤

≤ α(‖u+ sϕ‖W1 LG)

∫
I
(b(t) +G(u̇+ sϕ̇))|ϕ| dt <∞.

By the Fenchel inequality, (F4) and Lemma 5.6 we obtain∫
I
|〈Fv(t, u+ sϕ, u̇+ sϕ̇), ϕ̇〉|dt ≤

∫
I
[G∗(Fv(t, u+ sϕ, u̇+ sϕ̇)) +G(ϕ̇)]dt <∞.

It follows that∫
I
|Hs(s, t)|dt =

∫
I
|〈Fx(t, u+ sϕ, u̇+ sϕ̇), ϕ〉+ 〈Fv(t, u+ sϕ, u̇+ sϕ̇), ϕ̇〉|dt <∞.

Consequently, I has a directional derivative and

I ′(u)ϕ =
d

ds
I(u+ sϕ)

∣∣∣
s=0

=

∫
I
〈Fx(t, u, u̇), ϕ〉dt+

∫
I
〈Fv(t, u, u̇), ϕ̇〉dt.
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By Lemma 5.6, the Hölder inequality and (3) we get

| I ′(u)ϕ| ≤ ‖Fx(·, u, u̇)‖L1‖ϕ‖L∞ + ‖Fv(·, u, u̇)‖LG∗‖ϕ̇‖LG ≤ C‖ϕ‖W1 LG .

To finish the proof it suffices to show that I ′ is continuous. Since un → u in
W1 LG, it follows that un → u in LG, u̇n → u̇ in LG and there exists M > 0 such
that ‖un‖W1 LG < M .

By Lemma 3.15 we have G(u̇n) → G(u̇) in L1(I,R). Hence there exists a
subsequence {unk

} and h ∈ L1(I,R) such that

G(u̇nk
)→ G(u̇) a.e and G(u̇nk

) ≤ h.

By (F3) and since {unk
} is bounded, we obtain

|Fx(t, unk
, u̇nk

)| ≤ α(‖unk
‖W1 LG)(b(t) +G(u̇nk

))dt ≤ α(M)(b(t) + h(t)).

By (F1) we have
Fx(t, unk

(t), u̇nk
(t))→ Fx(t, u(t), u̇(t))

for a.e t ∈ I. Applying dominated convergence theorem we obtain∫
I
〈Fx(t, unk

, u̇nk
), ϕ〉dt→

∫
I
〈Fx(t, u, u̇), ϕ〉dt.

Since this holds for any subsequence of {un} we have that∫
I
〈Fx(t, un, u̇n), ϕ〉dt→

∫
I
〈Fx(t, u, u̇), ϕ〉dt.

By (F4) and Lemma 5.6

G∗(Fv(t, unk
(t), u̇nk

(t))) ≤ α(M)(c(t) +G∗(∇G(u̇nk
(t)))).

In the same way as in the proof of Lemma 5.3 we obtain

G∗(Fv(t, unk
(t), u̇nk

(t))) ≤ α(M)(c(t) + C +K1h(t)).

By continuity of Fv we obtain

G∗(Fv(t, unk
(t), u̇nk

(t)))→ G∗(Fv(t, u(t), u̇(t)))

for a.e t ∈ I and consequently∫
I
G∗(Fv(t, unk

, u̇nk
))dt→

∫
I
G∗(Fv(t, u, u̇))dt.
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It follows that ∫
I
G∗(Fv(t, un, u̇n))dt→

∫
I
G∗(Fv(t, u, u̇))dt.

Application of Lemma 3.16 to RG∗ yields ‖Fv(·, un, u̇n)−Fv(·, u, u̇)‖LG∗ → 0. By
the Hölder inequality∣∣∣ ∫

I
〈Fv(t, un, u̇n)−Fv(t, u, u̇), ϕ̇〉 dt

∣∣∣ ≤ 2‖Fv(·, un, u̇n)−Fv(·, u, u̇)‖LG∗‖ϕ̇‖LG → 0.

Finally, ∫
I
〈Fv(t, un, u̇n), ϕ̇〉dt→

∫
I
〈Fv(t, u, u̇), ϕ̇〉dt.
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