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Abstract

We consider the anti-plane shear waves in a domain consisting of an infinite
layer with thin coating lying on an elastic half-space. The elastic properties
of both part are assumed to be different. On the free upper surface, the com-
patibility condition within the Gurtin–Murdoch surface elasticity is assumed,
whereas at the plane interface we consider perfect contact conditions. For
this problem there exists two possible regimes related to waves exponentially
decaying in the half-space. The first one, called TE-TE regime, is related to
waves described by exponential in transverse direction functions; the second,
TH-TE regime, corresponds to waves which have the harmonic behaviour in
the transverse direction in the upper layer. Detailed analysis of the derived
dispersion equations for both regimes is provided. In particular, the effects
of surface stresses, the layer thickness as well as of the ratio of shear moduli
of the upper layer and half-space on the dispersion curves is analyzed.
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Introduction

Following Eremeyev et al. (2016); Mikhasev et al. (2022) in this paper
we discuss anti-plane surface waves in a multilayered medium which con-
sists of thin coating modelled within the Gurtin–Murdoch surface elasticity,
an elastic layer of finite thickness perfectly attached to an elastic half-space5

(Fig. 1). From the physical point of view, this medium describes a three-
layered medium with thickness of layers of thickness of different order of
magnitude. For example, it may describe a thin film with modified surface
properties attached to a substrate. The considered layered medium general-
izes recent results by Mikhasev et al. (2022) towards more realistic behaviour10

of substrate, which is now deformable and can transmit waves.
The paper is organized as follows. In Section 1 we formulate the statement

of the problem under consideration in the case of anti-plane motions. For
the layer two types of solutions are possible, that are expressed through
exponential and harmonic (trigonometric) functions, respectively. We call15

these solutions transverse exponential (TE) and transverse harmonic (TH),
respectively. As in Eremeyev et al. (2016), for the half-space there is only
exponentially decaying solutions. Detailed analysis of TE solutions is given
in Section 2, whereas harmonic waves are analyzed in Section 3. Finally, in
Section 4 we provide detailed analysis of dispersion curves.20

1. Setting the problem within linear Gurtin-Murdoch surface elas-

ticity

Let us consider a three-dimensional elastic isotropic plate-like body of
thickness h rigidly attached to an elastic isotropic half-space. The origin of
the used Cartesian coordinate system is chosen at the interface as shown in25

Fig. 1.
To study anti-plane waves we assume the vector of displacement u in the

form, see, e.g., Achenbach (1973),

u = u(x1, x2, x3, t) = u(x1, x2, t)i3, (1)

where t is time and ii are the base vectors, i = 1, 2, 3, see Fig. 1. In what
follows we restrict ourselves to isotropic homogeneous materials. So using
Hooke’s law for the anti-plane shear in both the plate and half-space, we
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Figure 1: Infinite elastic plate-like domain lying on elastic half-space and used Cartesian
coordinate system.

obtain

σ =2µje = σ13(i1 ⊗ i3 + i3 ⊗ i1) + σ23(i2 ⊗ i3 + i3 ⊗ i2), (2)

σ13 =2µjε13, σ23 = 2µjε23, j = 1, 2,

where σ and e are the stress and strain tensors, respectively, and µj is a
shear modulus, which will be assumed to be different for the upper layer and
half-space (µ1 and µ2, respectively). Hereinafter, the subscripts j = 1 and
j = 2 correspond to the upper layer and half-space, respectively. Taking into
account (1), the strain tensor reads

e =ε13(i1 ⊗ i3 + i3 ⊗ i1) + ε23(i2 ⊗ i3 + i3 ⊗ i2), (3)

ε13 =
1

2

∂u

∂x1
, ε23 =

1

2

∂u

∂x2
.

Here ⊗ stands for the dyadic product.
As a result, equations of motion for the two parts of the continuum take

the form of wave equations Achenbach (1973)

µj

(

∂2uj

∂x2
1

+
∂2uj

∂x2
2

)

= ρj
∂2uj

∂t2
, j = 1, 2, (4)

where ρj is the mass density in the bulk.
In what follows, we consider the following boundary conditions. On the

free surface x2 = h, the compatibility condition within the Gurtin-Murdoch
model of the surface elasticity is assumed Gurtin & Murdoch (1975):

µ1
∂u1

∂x2
= µ

(s)
1

∂2u1

∂x2
1

− ρ
(s)
1

∂2u1

∂t2
at x2 = h, (5)
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where µ
(s)
1 and ρ

(s)
1 are surface shear modulus and density, respectively. At

the interface x2 = 0, we consider the perfect contact which is expressed by
two equations, namely,

u1 = u2 at x2 = 0, (6)

µ1
∂u1

∂x2

= µ2
∂u2

∂x2

at x2 = 0. (7)

Also, for the half-space, we set the wave attenuation condition at infinity,

u2 −→ 0 as x2 −→ −∞. (8)

In the recently published contribution Mikhasev et al. (2022), an analysis
of the wave equation similar to (4) for a plate with at least one free surface30

revealed the existence of two different regimes of anti-plane shear waves: (a)
the TE regime for which waves decay exponentially from the upper and lower
surfaces of the plate and (b) the TH regime with the harmonic behaviour of
waves in the transverse direction. A similar analysis of Eqs. (4) for our
problem shows that there exist both the TE and TH regimes in the plate35

and only the TE regime in the half-space. Here, we refer to these regimes as
TE-TE and TH-TE, respectively.

2. TE-TE regime of anti-plane waves

Consider the TE-TE regime for which the amplitudes of anti-plane waves
decay exponentially from the upper surface of the plate and from the interface
in both directions. For this regime, a solution of Eqs. (4) can be sought in
the form

u1 = ei(kx1−ωt)
(

a1e
α1(x2−h1) + a2e

−α1x2

)

, u2 = bei(kx1−ωt)eα2x2 , (9)

where i =
√
−1, k is a wave number, ω is the circular frequency, and a1, a2, b

are constants that have to be determined from the boundary conditions.40

Substituting (9) in Eqs. (4) for j = 1, 2, we find

α1 = |k|
√

1− c2/c2T1, α2 = |k|
√

1− c2/c2T2 (10)

with

c =
ω

k
, cT1 =

√

µ1

ρ1
and cT2 =

√

µ2

ρ2
, (11)
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where c is the phase velocity, and cT1, cT2 are the shear wave speeds in the
upper layer and the half-space, respectively. Here, c < cT1, c < cT2.

Substituting (9) into the boundary conditions (5)–(7) and using (10), we
arrive at the dispersion equation

(

1

|k|ld

√

1− c2

c2T1

+
cs
c2T1

− c2

c2T1

)(

µ2

√

1− c2

c2T2

+ µ1

√

1− c2

c2T1

)

+

(

1

|k|ld

√

1− c2

c2T1

− cs
c2T1

+
c2

c2T1

)(

µ2

√

1− c2

c2T2

−µ1

√

1− c2

c2T1

)

e−2|k|h1

√
1−c2/c2

T1 = 0

(12)

and the two relations for the required constants

a1 =
µ1α1 − µ

(s)
1 k2 + ρ

(s)
1 ω2

µ1α1 + µ
(s)
1 k2 − ρ

(s)
1 ω2

e−α1h1a2, b =
µ1α1

µ2α2

(

a1e
−α1h1 − a2

)

(13)

where

cs =

√

√

√

√

µ
(s)
1

ρ
(s)
1

, ld =
ρ
(s)
1

ρ1
. (14)

Here cs is a shear wave speed in an elastic membrane associated to the Gurtin-
Murdoch elasticity, and ld is the so-called dynamic characteristic length.

Introducing the notations

m12 =
µ1

µ2
, kd = |k|ld, h = nld, (15)

and performing the scaling

v =
c

cT1
, vs =

cs
cT1

, vr =
cT2

cT1
, (16)
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we get the dispersion equation written in the dimensionless form as follows
(
√

1− v2

v2r
+m12

√
1− v2

)

(

1

kd

√
1− v2 + v2s − v2

)

+

(
√

1− v2

v2r
−m12

√
1− v2

)

(

1

kd

√
1− v2 − v2s + v2

)

e−2nkd
√
1−v2 = 0.

(17)
Let us consider some particular cases. If m12 → ∞ (i.e., µ2 → 0), then

(17) degenerates into the equation (compare with Eq. (3.15) in Mikhasev et al.
(2022))

1

kd

√
1− v2 + v2s − v2 −

(

1

kd

√
1− v2 − v2s + v2

)

e−2nkd
√
1−v2 = 0 (18)

for the layer with free bottom surface (see boundary condition (7)) without45

taking into account the surface effects.
On the other hand, when m12 → 0, we arrive at the dispersion equation

(see Eq. (3.7) in Mikhasev et al. (2022))

1

kd

√
1− v2 + v2s − v2 +

(

1

kd

√
1− v2 − v2s + v2

)

e−2nkd
√
1−v2 = 0 (19)

for the layer with the bottom layer clamped in the x3-direction.
Passing to the limit as n → ∞, we get the simple dispersion equation

1

kd

√
1− v2 + v2s − v2 = 0 (20)

for the half-space with the shear modulus µ1 and the density ρ1.
Finally, if n → 0, then we obtain the following simple equation

1

kd

√

1− v2

v2r
+m12(v

2
s − v2) = 0, (21)

which is similar to Eq. (20). Reverting to the initial dimensional variables,
it is easy to show that it coincides with the same dispersion equation as in
Eremeyev & Sharma (2019), see Eq. (5),

c2

c2T2

=
c2s
c2T2

+
ρ2

|k|ρs

√

1− c2

c2T2

, (22)

but for the half-space with the shear modulus µ2 and the density ρ2.
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3. TH-TE regime of anti-plane waves50

For the TH-TE regime, we seek solutions of Eqs. (4) in the form

u1 = ei(kx1−ωt) (a1 sinλx2 + a2 cos λx2) , u2 = bei(kx1−ωt)eαx2 , (23)

with a1, a2, b being constants.
Substituting (23) into Eqs. (4) gives

λ = |k|
√

c2

c2T1

− 1, α = |k|
√

1− c2

c2T2

. (24)

It can be seen that for the TH-TE regime cT1 < c < cT2, i.e., the velocity of
anti-plane shear wave is larger than the velocity of shear waves in the upper
layer and less than the velocity of shear waves in the half-space.

Satisfying the boundary conditions (5)–(7) with (24) taken into account,
we observe the following dispersion equation

m12

√

c2

c2T1

− 1

(
√

c2

c2T1

− 1 tan

(

|k|h
√

c2

c2T1

− 1

)

− |k|ld
(

c2s
c2T1

− c2

c2T1

)

)

=

√

1− c2

c2T2

(
√

c2

c2T1

− 1 + |k|ld
(

c2s
c2T1

− c2

c2T1

)

tan

(

|k|h
√

c2

c2T1

− 1

))

(25)
and the relations for the constants in (23) as

a2 = b, a1 =
µ2

µ1

α

λ
b. (26)

For the subsequent analysis, it is convenient to rewrite the dispersion
Eq. (25) in the dimensionless form

m12

√
v2 − 1

(√
v2 − 1 tan

(

nkd
√
v2 − 1

)

− kd
(

v2s − v2
)

)

−
√

1− v2

v2r

(√
v2 − 1 + kd

(

v2s − v2
)

tan
(

nkd
√
v2 − 1

))

= 0.

(27)

We note that, in contrast to the TE-TE regime, Eq. (27) does not have55

any solution if the shear wave velocities of the upper layer and half-space
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coincide (vr = 1). The limiting case when the upper layer degenerates into
the half-space (n → ∞) should also be excluded.

Let us consider again some particular cases. Let m12 → 0. Then Eq. (27)
admits a very simple form,

tan
(

nkd
√
v2 − 1

)

=

√
v2 − 1

kd (v2 − v2s )
, (28)

which coincides with equation (3.10) derived in Mikhasev et al. (2022) for
the TH regime in the single layer with the bottom face clamped in the x3-60

direction.
If m12 → ∞, then we get the novel equation

tan
(

nkd
√
v2 − 1

)

= −kd (v
2 − v2s)√
v2 − 1

, (29)

which goes for TH regime in the single elastic layer with free bottom face
without taking into account surface effects.

Finally, letting the upper layer vanish, i.e. n → 0, we again arrive at
Eq. (22), which is not valid for the TH regime, but can be used for the TE65

regime of the anti-plane waves in the half-space with the shear modulus µ2

and the density ρ2.

4. Dispersion curves analysis

4.1. TE-TE regime

Let us now consider the dispersion relation (17) corresponding to the70

TE-TE regime. First, we note that it has the root v = 1 (here c = cT1)
which should be excluded. Indeed, if c = cT1, then α1 = 0 and, as follows
from Eqs. (13), we get u1 = u2 = 0. Second, the numerical analysis of
the dispersion Eq. (17) reveals that it does not have any positive roots if
vr < 1, i.e., for cT1 > cT2. So, all subsequent calculations are performed for75

parameters satisfying the nonstrict inequality cT1 ≤ cT2.
In Figure 2, the dimensionless velocity v = c/cT1 versus the dimension-

less wave parameter kd is plotted at the fixed parameters vs = 0.25, m12 =
0.5, n = 20 and for different values of the ratio vr = cT2/cT1 = 1.005, 1.01,
1.05, 1.1 (curves 1, 2, 3 and 4, respectively) of the shear waves velocities in80

the half-space and the upper layer. In Fig. 2 a), the dashed line corresponds
to the case when the velocities of shear waves in the layer and half-space are
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the same, with mechanical properties being different. In the chosen scale,
curve 4 merges with all dispersion curves for vr ≥ 1.1. Thus, the dashed line
and the curve 4 can be considered as the lower and upper bounds, respec-85

tively, for the family of dispersion lines with different parameters vr. Figure 2
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Figure 2: Dimensionless phase velocity v = c/cT1 for TE-TE regime vs. wave number
kd = |k|ld for different ratios of the shear waves velocities in the half-space and the
upper layer: a) Curves 1,2,3 and 4 correspond to ratios vr = 1.005, 1.01, 1.05 and 1.1,
respectively; the dashed curve marked by vr = 1 corresponds to the case when the shear
wave velocities in the upper layer and the half-space are the same; b) Dispersion curves
for large values of kd.

b) shows that all dispersion curves asymptotically converge to the straight
line v = vs (here, vs = 0.25) as kd → ∞.

As expected, under fixed geometrical and physical parameters of the
medium, the velocity c is a monotonically decreasing function of the wave90

parameter kd. It is also seen that increasing the shear wave velocity cT2 in the
half-space results in increasing the velocity c of the anti-plane shear waves.

Another interesting observation coincides with similar results by Mikhasev et al.
(2022): for any fixed speed ratio vr, there exists such a wave parameter k∗

d,
that Eq. (17) does not have solutions at the segment kd ∈ [0, k∗

d]. The be-
haviour of the dispersion curve near the point (k∗

d, 1) can be approximated
by the linear function

v = 1−Aξ +O(ξ2) as ξ → 0, (30)
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where ξ = kd−k∗
d with a parameter k∗

d to be determined and A is a constant.
Substituting (30) into Eq. (17) and equating coefficients in powers of ξ1/2,

we obtain the asymptotic relation for the point

k∗
d =

√

m2
12(1− v2s)

2v2r + 4n(1− v2s )(v
2
r − 1)−m12vr(1− v2s)

2n(1− v2s )
√

v2r − 1
. (31)

The equation for the positive parameter A is not given here, since it is very
cumbersome.95

In Figure 3, the dispersion curves are drawn for vr = 2, vs = 0.25, m12 =
0.5 and different values of the parameter n = h/ld = hρ1/ρ

(s)
1 = 0.025, 0.25,

0.5, 1. The upper and lower dashed lines correspond to the cases when the
elastic layer vanishes (h → 0) or degenerates into a half-space (h → ∞).
These lines are plotted by solving Eqs. (21) and (20), respectively. It is seen
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v
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Figure 3: Dimensionless phase velocity v = c/cT1 for TE-TE regime vs. wave number kd =

|k|ld for different values of the parameter n = h/ld = hρ1/ρ
(s)
1 = 0.025, 0.25, 0.5, 1.1.

100

that the velocity of anti-plane waves decreases when the thickness of the
upper layer increases, and converges to the dashed line. Independent of the
value of n, all curves converge to the straight line v = vs.

Finally, Fig. 4 demonstrates the behaviour of the dispersion curves at dif-
ferent values of the ratio m12 = µ1/µ2 = 0.5, 1, 2, 5 and the fixed parameters105

vs = 0.25, n = 20, vr = 2. The upper and lower dashed lines plotted by solv-
ing Eqs. (19) and (18) are related to the limiting cases when m12 → 0 and
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m12 → ∞, respectively. It is of interest to note that the lower dashed line
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Figure 4: Dimensionless phase velocity v = c/cT1 for TE-TE regime vs. wave number
kd = |k|ld for different values of the parameter m12 = µ1/µ2 = 0.5, 1, 2, 5.

gives the phase velocities in the elastic layer with free surfaces, of which the
upper one has the surface enhancement (within the Gurtin-Murdoch model),110

while the lower one does not.

4.2. TH-TE regime

Let us analyze the dispersion curves for the TH-TE regime. Figure 5
displays the solution of Eq. (27) with respect to v as the function of the
wave parameter kd for different values of the wave velocities ratio vr =115

1.05, 1.1, 1.5, 1.5. The calculations were performed at vs = 0.5, m12 =
0.5, n = 5. The dashed curves correspond to the case when vr → +∞. The
curves lying above the straight line v = 1 are related to the TH-TE regime,
while the curves below this line go for the TE-TE regime. It is of interest to
note that the TE-TE curves plotted by solving Eq. (17) are continuations of120

the left family of the TH-TE curves.
In contrast to TE-TE regime, for each fixed value vr there are the family

(an infinite number) of the dispersion curves corresponding to TH-TE regime.
Each dispersion line begins from some point (k∗

d, vr) (which is removed). The
point k∗

d is readily found by the asymptotic estimation of the dispersion curve
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Figure 5: Dimensionless phase velocity v = c/cT1 for TH-TE and TE-TE regimes vs. wave
number kd = |k|ld for different ratios of the shear waves velocities in the half-space and
the upper layer. Curves 1,2,3, and 4 correspond to ratios vr = 1.005, 1.1, 1.25 and 1.5,
respectively. The dashed curves correspond to the limit case when vr → ∞.

behaviour in the neighbourhood of the point (k∗
d, vr). Let

v = vr − Aξ +O(ξ2), ξ = k − k∗
d. (32)

We substitute (32) into Eq. (27) and expand all parameters depending on ξ
into the series in powers of ξ1/2. Considering only the leading approximation,
we straightaway arrive at the equation with respect to the required k∗

d:

tan
(

nk∗
d

√

v2r − 1
)

=
k∗
d(v

2
s − v2r)

√

v2r − 1
. (33)

The constant A can be determined from the next two approximations, how-
ever because of cumbersome calculations we omit it here.

Figure 6 shows the behaviour of the dispersion curves, mainly for the
TH-TE regimes, for different values of the parameter n = 20, 10, 5 (blue,125

green and red lines marked by 1, 2 and 3, respectively) specifying the thick-
ness of the upper layer. Here the input parameters are the following: vs =
0.25, m12 = 0.5, vr = 2. The dashed black line, plotted by solving Eq. (22), is
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Figure 6: Dimensionless phase velocity v = c/cT1 for TH-TE and TE-TE regimes vs.
wave number kd = |k|ld for different values of the parameter n = 20, 10, 5 (curves 1, 2, 3,
respectively). The dashed black curve corresponds to the limit case when n → 0.

related to the case when the upper layer vanishes (h → 0). We note that the
left family of the TH-TE curves (which continuously transfer into the TE-130

TE lines below the straight line v = 1) starts from the point (0, vr) (here,
vr = 2) regardless of the thickness parameter n. The smaller the thickness
h, the rarer the corresponding family of dispersion curves beginning from
the point (k∗

d, vr) with k∗
d > 0 becomes. In the limit, as h → 0, all disper-

sion curves to right of the dashed line and corresponding to only the TH-TE135

regime degenerate into this dashed line, which, however, is not a dispersion
curve.

The effect of varying the elastic moduli ratio m12 = µ1/µ2 on the dimen-
sionless phase velocity v is shown in Figure 7. The input parameters are
vs = 0.25, n = 2 and vr = 2. The curves marked by 1, 2, 3 and 4 correspond140

to the ratios m12 equal to 0.03, 0.1, 1 and 2, respectively. The dashed black
curves are related to the limit case as m12 → ∞, and the black dash-dotted
lines go for the case when m12 → 0. The corresponding dispersion relations
for these cases are Eqs. (29) and (28), respectively. The curves above and
below the straight line v = 1 correspond to the TH-TE and TE-TE regimes,145

respectively. It may be seen that for the fixed values of the parameters
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Figure 7: Dimensionless phase velocity v = c/cT1 for TH-TE and TE-TE regimes vs. wave
number kd = |k|ld for different values of the parameter m12 = 0.03, 0.1, 1, 2 (blue, green,
red and brown curves marked by 1, 2, 3, and 4, respectively). The dashed black curves
correspond to the limit case when m12 → ∞, and the black dash-dotted lines are related
to the case m12 → 0.

vs, n, vr, the dispersion curves related to TH-TE regime for any ratio m12 get
into one of the series of narrow domains which are bounded by the dashed
and dash-dotted lines. The numerical experiments show that the thicker the
elastic layer attached to the half-space (under other fixed input parameters),150

the more narrow each of these domains become. As kd → ∞, all curves re-
lated only to TH-TE regime together with the dashed and dash-dotted lines
converge to the straight line v = 1, while the curves getting from the TH-
TE regime into TE-TE one converge to the line vs. Thus, with increasing
wavenumber, the influence of the moduli ratio m12 = µ1/µ2 on the phase155

velocity c of the anti-plane waves weakens.

Conclusions

We discussed the propagation of anti-plane surface waves, i.e. waves lo-
calized in the vicinity of a free surface, in a layered elastic medium which
consists of a layer of finite thickness perfectly attached to a half-space. In160
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addition we also assume action of surface stresses on the free surface of the
layer. The Gurtin–Murdoch model is utilized here. The latter play a crucial
role here, since they corresponds to the new type of shear surface waves. We
derived dispersion relations and presented the complete picture of disper-
sion curves. The presence of surface stresses brings additional characteristic165

length-scale parameters in the model. As a result, we have two regimes
called transversally exponential (TE) and transversally harmonic (TH) de-
scribed by exponential and trigonometric functions, respectively. TE regime
corresponds to surface waves propagated with lower speed than ones in TH
regime. Since TE regime is determined by surface properties, these could be170

useful experimental determination of surface moduli and of surface material
properties of multilayered coating, in general.
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