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We consider anti-plane motions of an elastic plate
taking into account surface energy within the linear
Gurtin–Murdoch surface elasticity. Two boundary-
value problems are considered that describe complete
shear dynamics of a plate with free faces or with
free and clamped faces, respectively. These problems
correspond to anti-plane dynamics of an elastic film
perfectly or non-perfectly attached to a rigid substrate.
Detailed analysis of dispersion relations is provided.
In particular, the influence of the ratio of a plate
thickness to characteristic length on the dispersion
curves is analysed.

This article is part of the theme issue ‘Wave
generation and transmission in multi-scale complex
media and structured metamaterials (part 1)’.

1. Introduction
Recent advances in nanotechnologies result in essential 
extension of applications of continuum mechanics and 
mechanics of structures towards modelling of material 
behaviour at small scales. Among various approaches 
used at micro- and nanoscale, it is worth mentioning the 
surface elasticity approach almost based on the Gurtin–
Murdoch [1,2] and Steigmann–Ogden [3,4] models, 
see also [5–10]. Within this approach in addition to 
constitutive relations in the bulk, we introduce a 
surface energy density and surface stresses. From the 
physical point of view, surface elasticity models describe
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coupled deformations of an elastic solid body with, perfectly attached to its surface, an elastic
membrane or shell. The existence of a surface energy leads to the possibility to properly describe
some phenomena such as various size-effects observed at the nanoscale [6,10].

From the mathematical point of view, related boundary-value problems (BVPs) include classic
equation of motion and non-classic boundary conditions. Let us note that discussed non-classic
boundary conditions are similar or even the same as derived for so-called stiff interfaces studied
by Benveniste and Miloh [11,12], Mishuris et al. [13–15], or to the case of so-called hard-skins in
plate theory [16], see also brief discussions in [17,18]. The surface elasticity approach is also closely
related to surface/interface localization phenomena, models of media with thin coatings and
non-local continua [19–24]. In particular, surface elasticity deeply correlates to Mindlin’s strain
gradient elasticity [25], e.g. [26], where straightforward comparison of the Mindlin–Toupin strain
gradient elasticity with the Gurtin–Murdoch model was provided. This approach has an origin
in the work by Korteweg [27] in the field of molecular capillarity. The Gurtin–Murdoch model
could be also introduced as a continuum limit of lattice dynamics [28] if a certain scaling law was
assumed.

Recently, surface elasticity models were widely used for the analysis of nanostructured
materials, e.g. [6,8,10] and the references therein. It was shown that effective properties of
nanostructured materials could essentially depend on the surface properties [6,8,29,30]. The
presence of surface stresses may significantly change the behaviour of stress and displacement
fields in the vicinity of geometrical singularities such as crack tips [18,31]. In addition to
modification of effective properties of nanocomposite materials and essential changes in solution
of corresponding BVPs, the surface elasticity approach results in new wave phenomena
such as an appearance of anti-plane surface waves in media with surface energetics [32].
This phenomenon is similar to Love waves in an elastic half-space with a coating of finite
thickness [33]. Nowadays, it is clear that surface elasticity may essentially change a picture
of surface waves, e.g. [17,34–39] and the references therein. Characteristics of the propagation
of anti-plane surface waves could be used for determination of surface elastic moduli
[40–42].

Let us note that within the Gurtin–Murdoch model we face two length-scale parameters that
are static and dynamic ones. The static length-scale parameter �s could be defined as a ratio of
a surface shear modulus μs to a shear modulus μ in the bulk, �s = μs/μ, whereas the dynamic
length-scale parameter �d is defined as the ratio of a surface mass density ρs to a mass density
in the bulk ρ, �d = ρs/ρ. Obviously, for multiple surfaces or interfaces with different properties,
we get more such parameters. These parameters bring a possibility to capture some size-effects,
when a size of an object under consideration is close to one of these parameters. Considering in
addition the roughness of a surface or interface, we get another length-scale parameter related to
a magnitude of roughness [39,43,44]. So a proper description of solids with surface energetics
constitutes a class of problems of multi-scale mechanics that requires additional attention to
analysis of strain/stress localization.

In this paper, we consider anti-plane waves in an elastic plate endowed with surface stresses on
at least one face. For this problem, we have at least three characteristic lengths such as �s, �d and
thickness of the plate h. The paper is organized as follows. First, we briefly recall the statement
of the problem using the linear Gurtin–Murdoch model for anti-plane shear in §2. Considering
harmonic stationary solutions, in §3, we derive dispersion relations for a plate with free-clamped
and free-free faces. Here, we consider two classes of solutions called transversally exponential
(TE) and transversally harmonic (TH). TE solutions are similar to ones in the case of half-space,
whereas TH ones are similar but not the same as Lamb waves. Finally, in order to underline an
influence of finite thickness on the phase velocity, in §4, we present some examples of dispersion
curves. It was shown that for thick enough plates a TE solution reduces to the case of an elastic
half-space, whereas for a relatively thin plate we observe more complex behaviour. In other
words, depending on the plate thickness and the wavelength we have some localized surface
waves propagating along plate free faces.
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Figure 1. Infinite elastic plate-like domain and used Cartesian coordinate system.

2. Anti-plane deformations within linear Gurtin–Murdoch surface elasticity
Let us consider a three-dimensional elastic plate-like body of thickness h occupying a three-
dimensional domain D = {−∞ < x1 < +∞, 0 ≤ x2 ≤ h, −∞ < x3 < +∞}, where xk and ik, k = 1, 2, 3,
are Cartesian coordinates and related unit base vectors, see figure 1. For anti-plane deformations,
the vector of displacement u takes a simple form, e.g. [33],

u = u(x1, x2, x3, t) = u(x1, x2, t)i3, (2.1)

where t is time. In the following, we consider a homogeneous isotropic medium. Using Hooke’s
Law for anti-plane shear we get

σ = 2με = σ13(i1 ⊗ i3 + i3 ⊗ i1) + σ23(i2 ⊗ i3 + i3 ⊗ i2)

and σ13 = 2με13, σ23 = 2με23,

}
(2.2)

where σ and ε are the stress and strain tensors, respectively and μ is a constant shear modulus.
For (2.1), the strain tensor is given by the formulae

ε =ε13(i1 ⊗ i3 + i3 ⊗ i1) + ε23(i2 ⊗ i3 + i3 ⊗ i2)

and ε13 = 1
2

∂u
∂x1

, ε23 = 1
2

∂u
∂x2

.

⎫⎪⎬
⎪⎭ (2.3)

Hereinafter ⊗ stands for the dyadic product.
As a result, the equation of motion in D takes the form of the wave equation [33]

μ

(
∂2u

∂x2
1

+ ∂2u

∂x2
2

)
= ρ

∂2u
∂t2 , (2.4)

where ρ is a mass density in the bulk.
In what follows, we consider two BVPs. On the free boundary x2 = h surface stresses are

assumed that are described within the Gurtin–Murdoch model of surface elasticity [1,2]. On the
boundary x2 = 0, we consider two types of boundary conditions

(1) clamping in the x3 – direction.
(2) the presence of surface stresses as on the face x2 = h.

We call these BVPs Problem I and Problem II, respectively. Problem I describes shear of a thin film
perfectly attached to a rigid substrate, whereas Problem II model describes anti-plane shear of
a free suspended or thin film debonded from a substrate. So we have the following boundary
conditions:

Problem I

μ
∂u
∂x2

= μsh
∂2u

∂x2
1

− ρsh
∂2u
∂t2 at x2 = h (2.5)
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and

u = 0 at x2 = 0. (2.6)

Problem II

μ
∂u
∂x2

= μsh
∂2u

∂x2
1

− ρsh
∂2u
∂t2 at x2 = h (2.7)

and

− μ
∂u
∂x2

= μs0
∂2u

∂x2
1

− ρs0
∂2u
∂t2 at x2 = 0, (2.8)

where μs0, μsh are surface shear moduli and ρs0, ρsh are surface mass densities for the planes x2 =
0, h, respectively, introduced in [2]. For example, the following material parameters of iron were
used in [2,6]: μsh = 2.5 N m−1, μ = 70 GPa, ρsh = 7 × 10−6 kg m−2, ρ = 7 × 103 kg m−3. Here,
�dh = = ρsh/ρ =10−9 m, cT = √

μ/ρ =3162.27 m s−1, csh = √
μsh/ρsh =597.61 m s−1. Here, we have

a difference in length-scale parameters as �d = 10−9 m and �s = 0.36 × 10−10 m. For derivation of
dynamic boundary conditions (2.5) and (2.8), we refer to [32]. Note that if μs0 = ρs0 = 0 or/and
μsh = ρsh = 0, then the surface shear stresses and inertia on a lower or/and upper surface(s) are
ignored. In this case, a boundary condition for an anti-plane wave on a correspondent surface
becomes classical, ∂u/∂x2 = 0.

3. Dispersion equations
An analysis of the wave equation (2.4) indicates the existence of two regimes of anti-plane
stationary waves: (a) waves decaying exponentially from the upper and lower surfaces and
(b) waves with harmonic behaviour in the transverse direction. In what follows, these two types
of running waves will be called the TE and TH regimes of anti-plane waves, respectively.

Considering the TE regime of anti-plane waves, we are looking for a solution of equation (2.4)
in the form

u = Uei(kx1−ωt)[a1 eα(x2−h) + a2 e−αx2 ], i = √−1, (3.1)

where U is a constant amplitude, a1, a2 are integration constants that have to be defined from
boundary conditions, k is a wavenumber and ω is the circular frequency. A positive parameter α

characterizes an attenuation rate of the wave amplitude. After substitution of (3.1) into (2.4), we
find α as follows:

α = |k|
√

1 − c2

c2
T

, (3.2)

where c = ω/k is the phase velocity, and cT = √
μ/ρ is the shear wave speed in an elastic medium.

Here, c < cT as for a half-space with surface stresses [32].
For TH anti-plane waves, a solution of equation (2.4) is sought in the form

u = U ei(kx1−ωt) (b1 sin λx2 + b2 cos λx2), (3.3)

with b1, b2 being constants, and

λ = |k|
√

c2

c2
T

− 1 > 0. (3.4)

So for the harmonic solution we have c > cT.
TE and TH regimes correspond to real and imaginary roots of the characteristic equations

related to (2.4).
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(a) Solution of Problem I
(i) TE regime of anti-plane waves

Substituting (3.1) into the boundary conditions (2.5) and (2.6), we arrive at the following two
equations with respect to a1 and a2:

(μα + μshk2 − ρshω
2)a1 + (μshk2 − ρshω

2 − μα) e−αha2 = 0 (3.5)

and
e−αha1 + a2 = 0. (3.6)

Using (3.2) with the latter equations, we get the dispersion equation written in the
dimensionless form as follows:

1
|k|�dh

√
1 − c2

c2
T

+ c2
sh

c2
T

− c2

c2
T

− exp

[
−2|k|h

√
1 − c2

c2
T

](
c2

sh

c2
T

− c2

c2
T

− 1
|k|�dh

√
1 − c2

c2
T

)
= 0, (3.7)

where �dh = ρsh/ρ is the dynamic length-scale parameter of the Gurtin–Murdoch model, and
csh = √

μsh/ρsh is the shear wave speed related to the elastic film attached to the face x2 = h.
Considering a fixed value of k and c < cT, we can prove that at h → +∞ equation (3.7)

degenerates into the dispersion equation for a half-space

1
|k|�dh

√
1 − c2

c2
T

+ c2
sh

c2
T

− c2

c2
T

= 0, (3.8)

which was studied in [32] in more detail. For a half-space with surface stresses, there is a unique
solution of (3.8) in the range

csh < c < cT. (3.9)

So an anti-plane surface wave exists only if csh < cT. Instead, for a plate of finite thickness,
equation (3.7) has two solutions corresponding to the TE regime of anti-plane waves. The first one
is trivial: c = cT. This root does not correspond to any wave. Indeed, this solution corresponds to
the multiple zero root of the characteristic equation related to (2.4). So u has the following form:

u = U ei(kx1−ωt)(c1 + c2x2),

with two unknown constants c1 and c2. As u = 0 at x2 = 0, we have c1 = 0. From (2.5), it follows
that c2 = 0. So u = 0 and in what follows we exclude this root. The second, non-trivial, solution
represents a dispersive wave. In figure 2, the dimensionless velocity v = c/cT is shown as a
function of dimensionless parameters δ1 = |k|ρsh/ρ and δ2 = |k|h for different values of vs =
csh/cT = 0.2, 0.4, 0.6. It is seen that c increases with the increase of vs. In addition, c → cT at h → 0
or/and if the wavelength 2π/|k| increases.

Let us note that without surface enhancement a TE solution does not exist. Indeed, if ρsh and
μsh vanish, from (3.5) and (3.6), we get the equation

μα(1 + e−2αh) = 0,

which has only one solution α = 0, that is c = cT.

(ii) TH regime of anti-plane waves

Substituting (3.3) into (2.5) and (2.6), we get b2 = 0. So u takes a sinusoidal in x2-direction form

u = Uei(kx1−ωt) sin λx2

with new constant U. As a result, we came to the following dispersion equation:

tan

(
h|k|

√
c2

c2
T

− 1

)
=

√
(c2/c2

T) − 1

|k|�d((c2/c2
T) − (c2

sh/c2
T))

. (3.10)
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Figure 2. The dispersion surfaces v = v(δ1, δ2) for an elastic plate with free and fixed faces for different values of a relative
velocity vs = csh/cT = 0.2, 0.4, 0.6, labelled by 3, 2, 1 (lower, middle and upper surfaces), respectively. (Online version
in colour.)

Obviously, in addition to the trivial root c = cT, which should be excluded, for any fixed k, this
equation has an infinite number of roots, c = cn(k). For n � 1, these roots could be represented by
the following asymptotic relation:

cn = cT

√
1 + 1

k2h2

[
πn + h

�dπn
− (3�d + h)h2

3(�dπn)3

]2

. (3.11)

Let us again consider a problem without surface stresses. Then (2.5) results in a simple

dispersion relation cos (h|k|
√

(c2/c2
T) − 1) = 0, which has the series of roots

cj = cT

√
1 + 1

k2h2

(
π j + π

2

)2
, j = 0, 1, 2, . . . (3.12)

Thus, Problem I admits a solution in the form of anti-plane waves harmonically varying in the
thickness direction.

(b) Solution of Problem II
(i) TE regime of anti-plane waves

Let us now consider anti-plane waves in a plate with free faces. Now instead of (3.6), we have

(μα − μs0k2 + ρs0ω
2) e−αha1 + (−μα − μs0k2 + ρs0ω

2) a2 = 0. (3.13)

With (3.2) equations (3.5) and (3.13) results in the following dimensionless dispersion equation:(
1

|k|�dh

√
1 − c2

c2
T

+ c2
sh

c2
T

− c2

c2
T

)(
− 1

|k|�d0

√
1 − c2

c2
T

− c2
s0

c2
T

+ c2

c2
T

)

−
(

1
|k|�dh

√
1 − c2

c2
T

− c2
sh

c2
T

+ c2

c2
T

)(
− 1

|k|�d0

√
1 − c2

c2
T

+ c2
s0

c2
T

− c2

c2
T

)
exp

[
−2|k|h

√
1 − c2

c2
T

]
= 0,

(3.14)

where �d0 = ρs0/ρ is the second dynamic length-scale parameter related to the face x2 = 0.
This equation also has a constant solution c = cT. As in the previous case, we exclude it from
consideration. In addition to it, there are another two roots of (3.14), in general. For fixed k and at
h → ∞, equation (3.14) degenerates into two dispersion relations similar to (3.8) as in the previous
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case. This situation describes a propagation of two surface waves localized in the vicinity of free
faces.

Let us consider one free surface without surface stresses. For example, we assume that ρs0 =
μs0 = 0, i.e. the surface effects on the lower surface are ignored. Then the dispersion equation
(3.14) takes the form

1
|k|�dh

√
1 − c2

c2
T

+ c2
sh

c2
T

− c2

c2
T

−
(

1
|k|�dh

√
1 − c2

c2
T

− c2
sh

c2
T

+ c2

c2
T

)
exp

[
−2|k|h

√
1 − c2

c2
T

]
= 0. (3.15)

Contrary to equation (3.14), this equation has only one root corresponding to an anti-plane wave.
Finally, if we neglect surface stresses on both faces, similarly to Problem I, we can show that

Problem II has no solution in the form of anti-plane waves.

(ii) TH regime of anti-plane waves

To study TH waves in Problem II, we substitute (3.3) into (2.7) and (2.8). As a result, we arrive
at a relation between b1 and b2

b2 =
√

(c2/c2
T) − 1

k�d0((c2
s0/c2

T) − (c2/c2
T))

b1, (3.16)

and come to the following dispersion equation:

tan

(
h|k|

√
c2

c2
T

− 1

)
=

|k|
√

(c2/c2
T) − 1[�d0((c2

s0/c2
T) − (c2/c2

T)) + �dh((c2
sh/c2

T) − (c2/c2
T))]

(c2/c2
T) − 1 − k2�d0�dh((c2

s0/c2
T) − (c2/c2

T))((c2
sh/c2

T) − (c2/c2
T))

. (3.17)

Again, we exclude here the trivial root c = cT. Other roots form an infinite series and grow up
together with the mode number n for any fixed wave parameter k. For n � 1, they could be
approximated by the following asymptotic relation:

cn = cT

√
1 + 1

(kh)2

{
πn + h(�d0 + �dh)

πn�d0�dh
− h2(�d0 + �dh)2[3�d0�dh + h(�d0 + �dh)]

3(πn�d0�dh)3

}2

. (3.18)

As above for the TE regime, simplified dispersion equations relating to cases where surface
effects are not taken into account on one or both surfaces could be easily derived from equation
(3.17). For brevity, they are not given here.

In what follows, we discuss the derived dispersion relations and corresponding dispersion
curves in more detail.

4. Dispersion curves

(a) Problem I. TE regime
Dispersion curves for anti-plane TE waves are given in figures 3 and 4. In figure 3, dispersion
relations are shown for relatively thin plates. Here, we present a relative velocity v = c/cT versus
a dimensionless wavenumber k̄ = k�d for various values of dimensionless thickness h̄ = h/�d,
�d ≡ �dh. Curves 1, 2 and 3 correspond to h̄ = 0.1, 1 and 5, respectively. The red dashed curve
(HS-curve) relates to the case of an elastic half-space (h → ∞), whereas two horizontal dashed
black lines are given by equations c = cT and c = cs ≡ csh, cs < cT. For calculation, we also assumed
that cs = 0.25 cT. We see that for any plate thickness dispersion curves lie between line c/cT = 1
and the HS-curve. All curves almost coincide with each other at k̄ → ∞, i.e. for short-length
waves. Instead, for long-length waves (k̄ → 0), we see an essential difference. For a plate of
finite thickness dispersion curves begin at line c = cT for a non-zero value of k̄ = k∗. So there is
a range k̄ ∈ (0, k∗) when waves related to the TE regime do not exist, whereas for a half-space the
dispersion curve begins at the point (0, cT) with horizontal tangent.
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Figure 3. Problem I (TE regime). Dimensionless phase velocity v = c/cT versus wavenumber k̄ = k�d . Curves 1, 2 and
3 correspond to thickness h= 0.1�d , �d and 5�d , respectively. The red dashed curve marked by HS describes the case of a
half-space (h→ ∞). Here, cs = 0.25cT , vs = cs/cT . (Online version in colour.)

3 2
1HS

1.00

0.98

0.96

n

0.94

0.92

0.90
0 0.1 0.2 0.3

k
0.4 0.5

–

Figure 4. Problem I (TE regime). Dimensionless phase velocity v = c/cT versus wavenumber k̄ = k�d . Curves 1, 2 and 3
correspond to thickness h= 20�d , 50�d and 100�d , respectively. Other data as in figure 3. (Online version in colour.)

In figure 4, dispersion curves are given for relatively thick plates. Here, the line c = cs is
not shown and h̄ = 20, 50, 100, the corresponding curves are marked by 1, 2 and 3, respectively.
The further analysis of figures 3 and 4 shows that the shorter the wavelength, the closer the
dispersion curve to the curve for a half-space. In other words, clamped face could be useful
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Figure 5. Problem I (TH and TE regimes). Dimensionless phase velocityv = c/cT versuswave number k̄ = k�d . For the TH
regime,wehave three series of curves 1, 2 and 3 shownas solid blue, dashed red and green curves,which correspond to thickness
h= 5�d , �d and 0.5�d , respectively. For the TE regime, we have three curves below the line v = qmarked again as 1, 2 and 3.
Here, cs = 0.25cT . (Online version in colour.)

approximation of anti-plane waves in a half-space in the case of short wavelength, i.e. when the
wavelength is much less than the plate thickness.

Behaviour of the dispersion curves, corresponding to the TE regime, in the neighbourhood of
the wavenumber k∗, can be approximated by a linear function

v = c
cT

= 1 − A1ξ + O(ξ2) and ξ = k − k∗

ldh
. (4.1)

Substituting (4.1) into equation (3.7) and equating coefficients at ξ1/2, we obtain the asymptotic
relations

k∗ ≈
√

1

h̄(1 − v2
s )

and A1 = ldh(1 − v2
s )3/2h̄1/2

(1 + h̄)
, (4.2)

where vs = csh/cT. Equation (4.2)1 gives a good estimate for k∗. For example, for vs = 0.25 and
h/ldh = 0.1 it gives k∗ ≈ 3.266 whereas the exact dispersion relation equation (3.7) results in
k∗ = 3.265986.

(b) Problem I. TH regime
Now we study solutions of equation (3.10) related to the TH regime. Figure 5 displays dispersion
curves for h = 0.5�d, �d and 5�d, respectively, and cs = 0.25cT. These curves lie above the horizontal
line v ≡ c/cT = 1. Let us note that the first curve in each series intersects the horizontal line v = 1
at the same point k̄ = k∗ determined by relations (4.2). These curves have a common tangent at
point (k∗, 1) with dispersion curves of the TE regime marked also as 1, 2, 3. It seems that these
curves are a continuation of the dispersion curves for the TE regime, but note that as v = 1 does
not correspond to any wave, so this point should be excluded. Without surface enhancement we
have only other dispersion curves lying above the line v = 1 and having limit 1 at k → ∞.
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Figure 6. Problem II (TE regime), symmetric case. Dimensionless phase velocity v = c/cT versus wavenumber k̄ = k�d .
Curves 1, 2 and 3 correspond to thickness h= 0.1�d ,�d and 5�d , respectively. The red dashed curvemarked by HS describes the
case of a half-space (h→ ∞). Here cs = 0.25cT , vs = cs/cT . (Online version in colour.)

(c) Problem II. TE regime
Figures 6–8 display solutions of (3.14), corresponding to the TE regime for plates with free faces,
i.e for Problem II. First, in figure 6, we present dispersion curves for a symmetric in the thickness
direction plate. In other words, we assume the same properties for faces, �dh = �d0 = �d and csh =
cs0 = cs. Here, we see that for each k̄, we have a couple of dispersion curves lying symmetrically
below and above the HS-curve. These curves again almost coincide at k̄ → ∞ (for short-length
waves), whereas for small values of k̄ they diverge. The curves lying above the HS-curve behave
similarly to the previous case, whereas others begin with an initial value v0 on the vertical line
k̄ = 0.

For a non-symmetric case dispersion curves are given in figure 7. One can see a separation of
curves related to free faces with different properties. Here, we used the value cs0 = 0.5csh, whereas
�dh = �d0 = �d. In figure 8, cs0 = 2csh. We see that dispersion curves almost coincide with ones for
half-spaces at k → ∞, i.e. for short-length waves. So depending on surface properties one can
expect two localized waves for a plate with two free faces.

We give also asymptotic relations for parameters v0, k∗ that are valid for both symmetric and
non-symmetric cases. For curves lying under the HS-curve, the initial value of the phase velocity
can be calculated by the following asymptotic relation:

v0 ≈
√

h̄ + v2
s0 + v2

sh

2 + h̄
< 1. (4.3)

Similarly to Problem I, for curves lying above the HS-curve, there is a range k̄ ∈ (0, k∗] when anti-
plane waves corresponding to TE regime do not exist. The asymptotic behaviour of the dispersion
curves near the point k∗ can be also estimated by equations (4.2). In particular, for ld = ld0 = ldh,
we obtain the following approximate formula:

k∗ ≈
√√√√ 2 − v2

s0 − v2
sh

h̄(1 − v2
s0)(1 − v2

sh)
. (4.4)
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Figure 7. Problem II (TE regime), non-symmetric case. Dimensionless phase velocity v = c/cT versus wavenumber
k̄ = k�d . Here, csh = 0.25cT and cs0 = 0.5csh, vs0 = cs0/cT , vsh = csh/cT . Other data as in figure 6. (Online version in colour.)
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Figure 8. Problem II (TE regime), non-symmetric case. Dimensionless phase velocity v = c/cT versus wavenumber
k̄ = k�d . Here, csh = 0.25cT and cs0 = 2csh, vs0 = cs0/cT , vsh = csh/cT . Other data as in figure 7. (Online version in colour.)

(d) Problem II. TH regime
In figure 9, we present dispersion curves for a symmetric in the thickness direction plate, �dh =
�d0 = �d and csh = cs0 = cs, and for h = �d. Here, one can see blue curve 1, which begins at point
(0, 1), red curve 2, which intersects the horizontal line v = 1 at k = k∗, and a series of green dashed
curves all labelled by mark 3. Curves 1 and 2 exist only in the case of surface enhancement.
Without surface stresses and inertia we have only a series of curve 3. Note that curve 1 appears in
the problem with two free faces, in the case of clamped face this solution does not exist.

In figure 10, we present a rather complex picture of dispersion curves for the non-symmetric
case. Here, we consider three values of the thickness, h = 5�d, �d and 0.5�d. Corresponding
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Figure 9. Problem II (TH regime), symmetric case. Dimensionless phase velocity v = c/cT versus wavenumber k̄ = k�d .
Here, csh = 0.25cT and cs0 = csh, h= �d . (Online version in colour.)
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Figure 10. Problem II (TE and TH regimes), non-symmetric case. Dimensionless phase velocity v = c/cT versus
wavenumber k̄ = k�d . Here, csh = 0.25cT and cs0 = 2csh,vs0 = cs0/cT ,vsh = csh/cT . Curves 1, 2 and 3 correspond to thickness
5�d , �d and h= 0.5�d , respectively. The magenta dashed curve marked by HS describes the case of a half-space (h→ ∞).
(Online version in colour.)

dispersion curves are marked with labels 1, 2 and 3, respectively. For larger values of h, these
curves are more close to the vertical axis k = 0. Curves lying below line v = 1 are similar to ones
shown in figure 8.
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As in the case of Problem I, we see that the lowest dispersion curves correspond to the lowest
phase speed of propagating waves and are entirely determined through the surface elastic
modulus and surface mass density, i.e. determined through the surface enhancement. In other
words, without surface energy we have only a harmonic regime with waves propagating with a
speed higher than the transverse wave speed in the bulk.

5. Conclusion
The dispersion equations for anti-plane waves in an elastic layer (plate) have been derived for two
different cases: for free-fixed faces and for free-free faces considering the linear Gurtin–Murdoch
surface elasticity. The first case relates to modelling of waves propagating in a thin film perfectly
attached to a rigid substrate, whereas the second one models a free suspended film or a film
detached from a rigid substrate.

As in the case of elastic half-space with surface energy [32], we found a new class of waves
called here exponential whose existence are determined through the presence of surface stresses
and mass density. Indeed, a harmonic regime exists with or without surface enhancement,
whereas an exponential regime exists only in the case of surface elasticity. Let us note that
the discussed harmonic regime is similar to Lamb waves in an elastic layer [33], but not the
same, as here we consider anti-plane waves. For a given wavenumber (or wavelength), we
observe a series of waves propagating in an elastic layer. The waves with lowest phase speed
relate to the exponential regime. The exponential regime could be interesting for experimental
determination of surface properties studying the lowest speed waves in a relatively thick elastic
layer or short-length waves.

For the TE regime, we conclude that the phase velocity of an anti-plane shear wave is highly
sensitive to both plate thickness and boundary conditions. In particular, we have shown that

— if the wavelength is much less than the plate thickness, an anti-plane wave propagates
with a velocity close to a velocity of anti-plane shear wave in a half-space;

— for a thick enough plate with free faces, we observe two anti-plane waves localized in the
vicinity of faces and propagating with different speeds, in general;

— the decrease in plate thickness results in the increase in the velocity of an anti-plane shear
wave;

— long-length anti-plane shear waves propagate with a velocity close to the velocity of shear
wave in the bulk;

— the velocity of an anti-plane shear wave propagating along a free face with another fixed
is higher that the corresponding velocity for a plate with both free faces.

The presented study may be applied to an experimental determination of surface shear moduli
within the Gurtin–Murdoch surface elasticity, as was discussed in [40–42] and/or to the non-
destructive evaluation of a possible delamination of thin films deposited on a rigid substrate
using the difference in phase velocities.
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