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a b s t r a c t   

Nitrous oxide (N2O) is a key parameter for evaluating the greenhouse gas emissions from wastewater 
treatment plants. In this study, a new method for predicting liquid N2O production during nitrification was 
developed based on a mechanistic model and machine learning (ML) algorithm. The mechanistic model was 
first used for simulation of two 15-day experimental trials in a nitrifying sequencing batch reactor. Then, 
model predictions (NH4-N, NO2-N, NO3-N, MLSS, MLVSS) along with the recorded online measurements 
(DO, pH, temperature) were used as input data for the ML models. The data from the experiments at 20 °C 
and 12 °C, respectively, were used for training and testing of three ML algorithms, including artificial neural 
network (ANN), gradient boosting machine (GBM), and support vector machine (SVM). The best predictive 
model was the ANN algorithm and that model was further subjected to the 95% confidence interval analysis 
for calculation of the true data probability and estimating an error range of the data population. Moreover, 
Feature Selection (FS) techniques, such as Pearson correlation and Random Forest, were used to identify the 
most relevant parameters influencing liquid N2O predictions. The results of FS analysis showed that NH4-N, 
followed by NO2-N had the highest correlation with the liquid N2O production. With the proposed ap-
proach, a prompt method was obtained for enhancing prediction of the liquid N2O concentrations for short- 
term studies with the limited availability of measured data. 

© 2022 Published by Elsevier Ltd on behalf of Institution of Chemical Engineers. 
CC_BY_4.0   

1. Introduction 

Nitrous oxide (N2O) is one of the most significant greenhouse 
gases (GHGs) with an extremely high global warming potential 
(GWP), which is almost 300 times higher than that of carbon dioxide 
(IPCC, 2014). Wastewater treatment plants (WWTPs) are responsible 
for 3–5% of worldwide anthropogenic N2O emissions (Mannina et al., 
2019). In WWTPs, N2O is primarily produced during biological ni-
trogen removal processes, including autotrophic nitritation (aerobic 
ammonium oxidation to nitrite) and heterotrophic denitritation 
(reduction of nitrite) (Su et al., 2019). 

Moreover, carbon footprint (CF) is a measure of GHG emissions 
(Delre et al., 2019). The amount of N2O produced in wastewater 
treatment operations has a significant impact on the overall CF of 

WWTPs (Maktabifard et al., 2020). High shares of N2O emissions in 
the CF have been observed in biological nutrient removal (BNR) 
plants (Koutsou et al., 2018). Hence, an accurate estimation of N2O 
can help in better understanding of the process behavior and con-
sequently, mitigation and control of this GHG in WWTPs. An N2O 
emission factor is a vital indicator of the long-term sustainability of 
WWTPs and environmental protection (Chen et al., 2020a; Vasilaki 
et al., 2019). 

Mathematical models are a strong tool for process simulation, 
prediction, and optimization (Wisniewski et al., 2018). There are two 
possible approaches for N2O modeling, including mechanistic 
models and machine learning (ML) techniques. In the area of was-
tewater treatment, the Activated Sludge Models (ASMs) (Henze 
et al., 2006) are the most common mechanistic models, which 
mathematically describe a hypothetical base for biological waste-
water treatment processes. There has been a growing number of 
successful applications of mechanistic modeling for N2O prediction 

https://doi.org/10.1016/j.psep.2022.04.058 
0957-5820/© 2022 Published by Elsevier Ltd on behalf of Institution of Chemical Engineers. 
CC_BY_4.0  

]]]] 
]]]]]] 

⁎ Corresponding author. 
E-mail address: mohammad-javad.mehrani@pg.edu.pl (M.-J. Mehrani). 

Process Safety and Environmental Protection 162 (2022) 1015–1024 

http://www.sciencedirect.com/science/journal/09575820
www.elsevier.com/locate/psep
https://doi.org/10.1016/j.psep.2022.04.058
https://doi.org/10.1016/j.psep.2022.04.058
http://crossmark.crossref.org/dialog/?doi=10.1016/j.psep.2022.04.058&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.psep.2022.04.058&domain=pdf
mailto:mohammad-javad.mehrani@pg.edu.pl
https://doi.org/10.1016/j.psep.2022.04.058


in real WWTPs (Massara et al., 2018; Su et al., 2019; Wang et al., 
2016; Zaborowska et al., 2019). However, these models have a few 
limitations. First of all, prediction of N2O requires an extensive 
knowledge of biological nitrogen transformations for model identi-
fication and calibration (Zaborowska et al., 2019). No generic me-
chanistic model is available, while various expansions and 
modifications have been added to the existing models (Vasilaki et al., 
2019; Chen et al., 2020b). In addition, the traditional mechanistic 
models are over parameterized, highly sensitive to the changes in 
operational condition, and demand extensive efforts for calibration 
and validation. A calibration procedure for N2O is especially chal-
lenging as N2O is only an intermediate in the nitrogen transforma-
tion chain and its contribution to the nitrification process is low 
(Hwangbo et al., 2021). 

On the other hand, ML is a tool for data analysis that can learn 
from input data and make decisions accordingly without any process 
equations and pathways (Al-Jamimi et al., 2018). ML algorithms re-
cognize a specific pattern (during a training process) based on de-
fined data (input data) for the prediction and/or classification 
purposes, which results in a more accurate output (Bagherzadeh 
et al., 2021; Osarogiagbon et al., 2021). In WWTPs, the ML prediction 
models have primarily been used for modeling influent/effluent 
wastewater characteristics. Those models are mainly artificial neural 
network (ANN) (Ryan et al., 2004; Shaahmadi et al., 2017) and 
support vector machine (SVM) (Alejo et al., 2018; Shaahmadi et al., 
2017; Vasilaki et al., 2020b), while gradient boosting machine (GBM) 

has been used less frequently (Bagherzadeh et al., 2021). In addition, 
there are very limited studies on hybrid models (mechanistic models 
combined with the ML techniques) for forecasting influent/effluent 
wastewater components (Haimi et al., 2013; Hvala and Kocijan, 
2020), but there has been no such a hybrid model applied for N2O 
prediction yet. 

In terms of N2O, a predictive ML model of N2O emission, based on 
experimental data from an anoxic/aerobic bioreactor with ANN, was 
proposed by Sun et al. (2017). Moreover, two algorithms, including 
random forest (RF) and SVM, were used by Vasilaki et al. (2020b) to 
determine N2O emission factors. The SVM models performed better 
than RF in the training of the model to predict the expected range of 
N2O emission in WWTPs. Very recently, data-driven-based models, 
including long short-term memory (LSTM) and deep neural network, 
have been used to predict liquid N2O concentrations by big data from 
a full-scale WWTP (Hwangbo et al., 2021). 

In this study, a predictive hybrid model for liquid N2O production 
was developed based on the data from a laboratory-scale nitrifying 
sequencing batch reactor (SBR). The new model overcame limita-
tions of the pure mechanistic models or ML algorithms. This ap-
proach includes two major steps: i) mechanistic model simulation 
for expanding the short-term experimental data into an extensive 
data set with a very small interval (similar to the recordings of a 
liquid N2O sensor, and ii) liquid N2O predictions using three pow-
erful ML algorithms (ANN, SVM, and GBM) to achieve a highly ac-
curate model by producing input data from the previous step. To the 

Fig. 1. The procedure of the implementation, training and test, and comparison of prediction ML models.  
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best of our knowledge, this hybrid approach has been used for the 
first time for N2O prediction in short-term studies. This research 
demonstrates a prompt method for enhancing prediction of liquid 
N2O concentrations with the limited availability of measured data. 

2. Materials and methods 

The modeling procedure includes two separate steps for the 
mechanistic model and ML algorithms. The first step was carried out 
for expanding the data-set, i.e., converting the communication in-
terval of analytical data similar to the sensor data. The complete 
process of calibration and validation of the mechanistic model using 
GPS-X 8.0 software can be found in our previous study (Mehrani 
et al., 2021). In the second step, liquid N2O concentrations were 
predicted by three ML algorithms based on the data generated by the 
mechanistic model. The diagram in Fig. 1 presents the full modeling/ 
prediction approach. 

2.1. Data collection for simulation 

Two series of long-term washout experimental trials were car-
ried out in the SBR. The experiments aimed at washing out NOB at 
decreasing solids retention times (SRTs) from 4d to 3d. The inoculum 
biomass was taken from the “Czajka” WWTP in Warsaw, Poland 
during winter and summer periods. The working volume of the SBR 
was 10 L and the reactor was operated for 15 days at the tempera-
tures typical for winter and summer conditions, i.e., 12 °C and 20 °C. 
The temperature was kept constant during the experiment with a 
tolerance of ±  1.5 for 20 ℃ and ±  1.0 for 12 ℃. 

The experiments at 20 °C and 12 °C were selected for training and 
testing the ML algorithms, respectively (Table 1). The initial mixed 
liquid suspended solids (MLSS) and volatile fraction (MLVSS) con-
centrations were approximately 2000 mg/L and 1200 mg/L for the 
experiment at 12 °C, and 2500 mg/L and 1500 mg/L for the experi-
ment at 20 °C. 

The SBR was fed with ammonium-rich synthetic wastewater, 
including tracer elements, but without organic substrate (Mehrani 
et al., 2021). The volumetric nitrogen loading rates (NLRs) were kept 
stable at 0.02  ±  0.01 and 0.05  ±  0.01 g N/(L.d) at 12 °C and 20 °C, 
respectively. During the experiments, pH, temperature, DO con-
centration, and liquid N2O concentration were recorded every 30 s 
by online sensors (Table 1). 

2.2. Simulations with a mechanistic model 

For both experiments, simulations with the mechanistic model 
(two-step nitrification with comammox) were run with a commu-
nication time of 30 s (similar to the online sensor data). GPS-X 8.0 
software (Hydromantis, 2021) was used as a simulation platform. 
The details of calibration and validation of the mechanistic model 
can be found in the previous study (Mehrani et al., 2021). 

Simulation results, including nitrogen species (NH4-N, NO2-N, 
and NO3-N) and biomass components (MLSS, MLVSS), were selected 
as input data (> 50k data for each parameter) of the ML algorithms.  

Table 1 shows a brief representation of the acquiesced input data set 
from the mechanistic model and online sensors data, separately for 
the training and testing data sets. 

2.3. Data pre-processing for ML algorithms 

Before ML prediction, the data obtained from the mechanistic 
model and online sensors were subjected to data engineering, i.e., 
cleaning the information with care taken to the missing or irregular 
records (Halim et al., 2021; Ranjan et al., 2021). Moreover, input data 
for training and testing the models were normalized and scaled 
between 0.0 and 1.0 values as: 

= Xi Xmin
Xmax Xmin

Xn (1) 

where Xn is normalized data, Xmax, and Xmin are the maximum 
and minimum values of the considered variable, and Xi is the value 
of the variable in each record. The normalization helps assign re-
levant weights for the ML models considering the value of each 
feature. 

2.4. Feature selection for ML algorithms 

Pearson correlation. Pearson correlation coefficient (PCC) is a 
feature selection (FS) filter method and is considered one of the most 
straightforward FS strategies. The PCC defines the linear relationship 
between two variables that range from + 1 to − 1, with 1 indicating 
total positive correlation, 0 indicating no correlation, while − 1 
showing the negative correlation (Ali et al., 2021; Alver and Altaş, 
2017). The PCC is computed as: 

=
Cov f f

Var f Var f

( , )

( ) ( )
ij

i j

i j (2) 

where ij is a correlation coefficient between a given feature fi and 
all other features of the data set fj, Cov is covariance, and Var is a 
variance. 

Random Forest. The random forest (RF) is a ML filter method for 
ranking input variables according to their significance (Breiman, 
2001). In this technique, several decision trees are created using 
random feature extraction and data set observations. The trees are 
de-correlated as a result of this random collection of records and 
features (bootstrapping). Each bootstrap is used to train a tree when 
there is a T number of trees in total (Breiman, 2001; Masmoudi et al., 
2020). A small portion of data in each bootstrap is kept out of the 
box (oobi) to evaluate the feature importance. Moreover, feeding the 
input feature f observations randomly to the tree will result in oobi

f . 
Ultimately, the tree is able to predict the new values of the box by 
applying the mean squared error, MSE oob( )i

f , and the feature im-
portance is calculated as: 

=
=

I f
T

MSE oob MSE oob

MSE oob
( )

1 ( ) ( )
( )i

T
i
f

i

i1 (3)  

Higher importance values show that the feature is more relevant 
to the target, and it can improve the prediction output. 

Table 1 
Statistical summary report of the input and output data used for the ML algorithms.             

Data Function Mechanistic model predictions Online measurements 

NH4-N (mg N/L) NO3-N (mg N/L) NO2-N (mg N/L) MLSS (mg/L) MLVSS (mg/L) DO (mg O2/L) Temp (℃) pH - N2O (mg N/L)  

Training data Min  2.00  4.86  4.92  545.4  350.9  0.20  18.74  7.11  0.00 
Max  49.06  37.29  12.97  2151.0  1351.0  2.22  21.51  8.35  0.57 
Mean  31.81  29.45  8.44  1176.5  744.54  0.61  20.08  7.55  0.15 

Testing data Min  0.00  19.22  0.00  545.4  350.9  0.150  11.74  7.09  0.00 
Max  119.30  127.40  53.33  2151  1351.0  2.17  13.11  8.65  0.11 
Mean  38.89  93.11  22.57  1176  744.54  0.65  12.29  7.45  0.07 
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2.5. Prediction of liquid N2O concentrations with ML models 

After mechanistic modeling and data pre-processing, the ML al-
gorithms were constructed for liquid N2O prediction during the two 
experimental trials in the SBR. Python 3.8 open source programming 
language was used, while applying various libraries, such as Pandas, 
Matplotlib, Keras, and Scikitlearn. Each prediction algorithm is out-
lined in the following subsections and the details are given in the SI. 

ANN algorithm. To locate the useful connection among dependent 
and independent variables, fully connected neural networks can be 
built up for prediction analysis (Yegnanarayana, 2009). For each 
neuron, a linear equation between its input and output is assumed. 
Due to the unpredictability of a non-linear model, more neurons are 
expected to anticipate the objective variable with a satisfactory 
precision (Eq. (4)): 

= + + + …+y X X X( )n n0 1 1 2 2 (4) 

where y is the output of the ANN, is the sigmoid function, Xi is the 
input number in each neuron, 0 is the sum of biases of each neuron, 
and i is the weight (trainable parameter) of the neuron. 

An ANN is a multilayer perceptron (MLP) with three layers: input, 
hidden, and output (Kazemi et al., 2021). In a straightforward ap-
proach, the number of input layer neurons is the same as the size of 
a model dimensionality. To guarantee a smooth and precise link 
between the layers, the rectified linear unit (ReLU) technique was 
utilized for selecting a suitable number of the layers. The con-
structed ANN algorithm consists of seven input layers (MLSS was 
ignored due to a high correlation with MLVSS), three hidden layers 
with 10, 10, and 5 neurons respectively, and one neuron in the 
output layer. The optimization algorithm and the loss criterion were 
Adam and MSE, respectively. 

SVM algorithm. The SVM is a versatile ML model that can do 
linear and nonlinear predictions, and even outlier detection (Vapnik 
et al., 1995; Géron, 2019). This method was originally designed to 
solve classification problems before being expanded to solve pre-
diction problems. Since the cost function criteria for model building 
do not refer to attribute values that lie outside the margin, a model 
generated by the SVM is extremely depended on the subset of 
training data (Arshad et al., 2021). As shown in Fig S1, data points 
outside of the decision boundary will be ignored for developing the 
hyperplane (removing outliers). Similarly, the SVM model is only 
based on a subset of the training results (Vapnik et al., 1995). Any 
training data which are close to the model prediction (hyperplane) 
are ignored by the cost function method to prevent overfitting issues 
(Steinwart and Christmann, 2008). 

SVM prediction (SVR) is a supervised learning model that uses 
the same SVM (classification) manner with minor editions. As it is 
difficult to predict a real number (infinite possibilities), a margin of 
error is considered for the prediction. The SVR transforms an input 
matrix to a higher dimensional feature space via a kernel. The fol-
lowing equation expresses the non-linear SVR function F x( ) in a 
mathematical format (Eq. 5) (Awad and Khanna, 2015; Park 
et al., 2021): 

= +
=

F x K X X( ) ( *) ( , )
i

M

i i i
1 (5) 

where M is the number of training records, i , *i are Lagrange 
multipliers, K is the transformation kernel that contains the dot 
product of mapped vectors of the support vectors (X1 …. Xi), and is 
the sum of biases (Smola and Schölkopf, 2004). 

GBM algorithm. The gradient boosting machine (GBM) is a kind of 
decision-tree ML model with a distinct ensemble formation of 
supportive technique (Ayyadevara, 2018). In this method, new trees 
are added to the ensemble sequentially based on the overall en-
semble prediction error (Natekin and Knoll, 2013). The estimation 

error for the dependent variable shrinks continuously by adding new 
trees until it reaches the highest possible accuracy (Bagherzadeh 
et al., 2021). The algorithm produces a new decision tree to mini-
mize the prediction error, and finally, the output of all trees will be 
aggregated: 

= =
=

Data set x Y Minimizing L F x Y{ , } ( ( ), )i i
i
N

i

N
i i

1
1 (6) 

where N is the number of records, xi are independent variables, Y i is 
the target variable in the training data set, L is the error function, and 
F x( )i is the model output (Xenochristou et al., 2020). 

The ultimate goal of GBM is to develop one strong model from 
several weak and smaller learning models (decision tree models). 
Considering Eq. (6), the GBM algorithm takes the training data and 
tries to minimize the error value. Decision trees divide the data set at 
each branch (node) to maximize the entropy. Each tree has several 
nodes and will split the data set until fulfilling the given hy-
perparameters (maximum tree depth). 

Adjusting the hyper-parameters is a crucial step in designing a 
GBM model. Therefore, after many trial-and-error attempts, the 
following values were used in this study: a learning rate of 0.05, the 
number of 2000 trees for the forest, subsampling of 0.8, a tree depth 
of 6, a min sample leaf of 50, and minimum split samples as a 600. 

2.6. Evaluation and comparison of the efficiency of ML models 

The model performance can be evaluated with statistical 
methods. The dependent variable data are assumed as …y y y, n1 2 with 
the mean value y and estimated values of this variable as …f f f, n1 2
(collectively known as yi and fi). Then the sum square of residuals 
(SSres) and the total sum of squares (SStot) are calculated, and the 
coefficient of determination (R-squared) indicates ”goodness-of-fit” 
between the predicted feature and real values. Moreover, the mean 
absolute error (MAE), root mean square error (RMSE), and Janus 
coefficient describe the model errors and accuracy (Eqs. (7)–(12)) 
(Hauduc et al., 2015; Verma et al., 2013): 

=SS y y( )tot
i

i
2

(7)  

=SS y f( )res
i

i i
2

(8)  

=R
SS
SS

1 res

tot

2

(9)  

=MAE
n

y f
1

( )
i

i i
(10)  

=RMSE
SS

n
res

(11)  

=J
RMSE

RMSE
validation

calibration

2
2

2 (12) 

where yi is the observed data in the data set, fi is the model pre-
diction, y is the mean value of the observed data, and n is the 
number of observation samples. 

2.7. Calculation of the confidence interval for the selected ML model 

The confidence interval (CI) is a valuable measure to indicate the 
estimated range of error. In this study, there is a large number of 
observations with a normal error distribution. Therefore, the 95% CI 
was calculated with a z-score (Eq. (13)), considering that the stan-
dard deviation of the population is known due to having a high 
number of records (Hogg, 2012): 
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= ±CI X z
n (13) 

where X is the sample mean, z is the value from the standard 
normal distribution for the selected confidence level, is the stan-
dard deviation, and n is the total number of observations. If all the 
test points are within the 95% CI, it indicates a high level of precision 
(Abbas et al., 2018). 

3. Results 

3.1. Predictions of the mechanistic model (ML input data acquisition) 

The results of predicted biomass concentrations (MLSS and 
MLVSS) and nitrogen species by the calibrated mechanistic model 
are shown in Fig. 2 and Fig. 3, respectively. The MLSS and MLVSS 
concentrations revealed a decreasing trend in both experiments due 
to the continuous biomass washout conditions (Fig. 2). Concerning 
the nitrogen species, in the experiment at 12 °C (Fig. 3a), NO3-N 
started to dilute after the first week resulting from biomass and NOB 
washout, while NO2-N stabilized at around 12–15 mg N/L to the end 
of the experiment. In the experiment at 20 °C (Fig. 3b), the NLRs 
were approximately doubled (0.05  ±  0.01 g N/(L.d)) in response to 
the higher activity of bacteria at higher temperature and NO3-N 
dilution started after 10 days resulting from biomass and NOB 
washout, while NO2-N stabilized at around 40–45 mg N/L. The NO3- 
N and NO2-N production were more than double in Fig. 3b in com-
parison to Fig. 3a based on higher activity of bacteria in higher 
temperature. 

3.2. Feature selection for ML algorithms 

Fig. 4 shows a heatmap of the PCC between the variables (N 
species, biomass components, and online measurements) and N2O 
concentration (target variable). The highest positive and negative 
correlation, 0.82 and − 0.56, was obtained for NH4-N and NO2-N, 

respectively. The biomass components (MLSS and MLVSS) with the 
correlation factor of 0.48 were the next highest correlated variables. 
However, both parameters (MLSS and MLVSS) had a perfect corre-
lation of 1.0 between each other, and thus only one of them (MLSS) 
was considered in the final subset of features to avoid multi-
collinearity issues. 

The results of the RF method were in line with the Pearson 
correlation concerning the highest importance level of the nitrogen 
species with the target variable (Fig. 5). The maximum importance 
levels were obtained for NH4-N (0.71) and NO2-N (0.37). Moreover, 
among the online measurements, DO concentration had the highest 
correlation with N2O concentration for both examined methods. 

3.3. ML modeling results 

3.3.1. Model predictions against training data 
All three examined prediction models were trained and tested 

based on the data from the experiment at 20 °C and 12 °C, respec-
tively. The comparative results for all the training models are shown 
in Fig. 6a. The overall performance of the models was within an 
acceptable range (Table 2) The noisy data points were not predicted 
accurately as they were treated as outliers. 

Each algorithm required a specific approach and trial-and-error 
attempt to obtain the optimum parameter set, which ensured a high 
prediction accuracy. The ANN model was developed after looping 
over 300 epochs on the training data set. The SVM model was built 
with the regularization parameter (C=1), and SVR epsilon tube (ep-
silon=0.1). For the GBM, the following setting was selected: 4000 
estimators, the learning rate of 0.01, min. sample leaf of 40, min. 
sample split of 30, and max. depth of 40. 

3.3.2. Model predictions against test data 
The trained prediction models were tested by another data set 

(experiment at 12 °C) (Fig. 6b). The SVM and GBM were overfitted, 

Fig. 2. Measured vs. predicted MLSS and MLVSS concentrations by the mechanistic 
model: A) Experiment at 12 ℃, B) Experiment at 20 ℃. Fig. 3. Measured vs. predicted concentrations of nitrogen species by the mechanistic 

model: A) Experiment at 12 ℃, B) Experiment at 20 ℃. 
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even though they were able to capture the train data patterns. On 
the other hand, the ANN demonstrated its versatility under the 
different operational conditions and process patterns. As shown in  
Fig. 6b, the SVM overestimated the N2O peak with a 6-day delay, and 
the GBM failed to predict any distinguishable climax. 

3.3.3. Model efficiency evaluation and comparison 
Table 2 presents the efficiency and error of each prediction al-

gorithm. The ANN had the highest coefficient of determination, i.e., 
R2

Train=0.93, R2
Test=0.67, and the lowest error indexes. These measures 

confirm that the ANN is the best model for predicting liquid N2O 
concentrations during the experimental trials under different op-
erational conditions. The SVM failed to predict the N2O concentra-
tions of unseen test data and the GBM partially detected the pattern 

of the real data at the beginning and end of the experiment. The high 
values of R2

Train and low values of R2
Test show that both SVM and GBM 

are overfitted and failed to predict the target variable. Among all the 
examined models, the ANN had also the best J2, i.e., closest value to 

Fig. 4. Heatmap of Pearson correlation coefficient for input data with the target variable (N2O).  

Fig. 5. RF feature selection importance level of the features related to N2O production.  

Fig. 6. Training and test results of the prediction models, (A) Train data (experiment 
at 20 °C), and (B) Test data (experiment at 12 °C). 
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1.0. This confirms the ability of that model in finding data patterns 
under a highly dynamic behavior of the online measurements. 

In Fig. 7, it can be seen that at the beginning of the experimental 
trial (days 2–4), the model outputs had considerable errors due to a 
sudden increase in N2O production. After 4 days, when the stability 
in N2O production was achieved, the errors (except for the SVM) 
became more stable. The ANN model output error was below the 
doubled standard deviation (2 σ) during the entire experiment, 
which indicated a valid and proper prediction (Fig. 7). Moreover, the 
variance of the prediction error in the ANN model was significantly 
lower than the SVM and GBM for the test data. 

3.3.4. Confidence interval for the selected model (ANN) 
The result of CI was evaluated based on the z-score as there was a 

large number of population and the Gaussian shape of the error 
distribution. Overall, the data values are mostly within the error 
range of ±  0.13 N2O mg/L as an upper and lower band of 95% CI 
(Fig. 8). Moreover, the variance of ANN model prediction is located in 
the confidence region (95% CI), showing its accuracy. This confirms 
that the ANN model predicted the measured data with 95% of the 
observed uncertainty. 

3.3.5. Effect of mechanistic modeling (data acquisition) on the 
prediction performance 

For evaluation of the effect of the mechanistic model on the ML 
prediction performance, the models were fed with the direct ex-
perimental data (without mechanistic modeling). It can be seen in 
the SI (Fig. S4) that only the SVM could train the model with the 
acceptable accuracy (R2 =0.76), but failed to predict the test data set 
(R2 =0.0). The ANN and GBM could not train the models nor predict 
the test data-set. Table S1 shows the efficiency and error for each 
prediction ML algorithm without considering the mechanistic 
model. Mechanistic modeling prior to the ML procedure had a sig-
nificant impact on the accuracy of training and testing the N2O 
prediction. In the ANN model, after applying mechanistic modeling 
before the ML prediction, the accuracy increased dramatically from 
R2

Test= −0.06 (Table S1) to R2
Test= 0.67 (Table 2). This improvement can 

be justified by the fact that ML models need a sufficiently large data- 
set first to train and then predict accurately the test data-set. 

4. Discussion 

Results of the feature selection analysis on N2O production show 
that the behavior of NH4-N and NO2-N plays an important role in 
predicting N2O accumulation during nitrification. This finding was 
supported by the results of other studies (Duan et al., 2020; Li et al., 
2015; Song et al., 2020). Song et al. (2020) observed that NH4-N and 
the sum of NO2-N and NO3-N had the highest effect on N2O emis-
sions in a feature selection study of a full-scale WWTP. Strong po-
sitive correlations between NH4-N oxidation and N2O production 
during nitrification were also reported in a pilot-scale SBR (Li et al., 
2015) and full-scale SBR (Duan et al., 2020). Moreover, in the study of 
(Duan et al., 2020), a strong positive correlation was also found 
between liquid N2O and NO2-N concentration (Pearson correlation 
of 0.93). 

Furthermore, Duan et al. (2020) observed that N2O emission 
exhibited a clear pattern that followed the DO profile in an inter-
mittent aeration mode (Pearson correlation of 0.74). In the present 
study, a weak negative correlation (−0.29) was also found between 
the DO concentration and N2O production during continuous aera-
tion at the low DO setpoint of 0.6 mg O2/L. It should be emphasized, 
however, that the well-established favorable conditions for liquid 
N2O production comprise low DO and high NO2-N concentrations 
(Mannina et al., 2017; Massara et al., 2018; Peng et al., 2014; Vasilaki 
et al., 2020a). 

In the present study, the observed correlation of N2O production 
with pH and temperature was lower than other evaluated para-
meters. N2O production presented a weak positive correlation of 0.18 
with pH which was kept in the range of 7.0–7.5 (Fig. 4). Law et al. 
(2011) reported that N2O production fluctuated with pH in the range 
of 6.0 and 8.5 while keeping the pH between 6.4 and 7.0 reduced 
N2O production in a partial nitrification system with aerobic con-
ditions (Law et al., 2011). It can be seen in Fig. 5 that the online 
measurement data (temperature, DO, and pH) had a lower im-
portance level than nitrogen species and biomass concentrations for 
the prediction of N2O production. Vasilaki et al. (2020a) found that 
under similar DO and pH concentrations, the average liquid N2O 
conditions can vary substantially. 

The trend of N2O production was different in experiments for 
train and test of ML Algorithms. However, the ANN model success-
fully predict the N2O production in a test experiment (Fig. 6a,b). This 
higher production of N2O (up to 1.0 mg N/L) in the first week of train 
experiment (Fig. 6a) can due to higher NLR of 0.05  ±  0.01 g N/(L.d) in 
compare to the test experiment (0.02  ±  0.01 g N/(L.d)) (Fig. 6b). 

Table 3 presents various N2O prediction studies with different 
modeling approaches (mechanistic and ML) in lab-scale, pilot-scale, 
or full-scale WWTPs. The mechanistic models were mostly used for 
the prediction of lab-scale or pilot-scale systems, while the ML 

Table 2 
Model efficiency criteria for the examined prediction models.            

Model Training data Test data  

R2 MSE RMSE MAE R2 MSE RMSE MAE J2  

ANN  0.92  0.002  0.048  0.006  0.67  0.012  0.09  0.002  1.87 
SVM  0.88  0.003  0.062  0.12  0.06  0.057  0.239  0.23  3.71 
GBM  0.97  0.007  0.077  1.23  0.12  0.027  0.266  0.11  3.45 

0

Fig. 7. Prediction errors of liquid N2O concentrations for the examined prediction 
models from the test data (σ is the standard deviation of the test data set). 

Fig. 8. Measured data, ANN model predictions and 95% confidence interval of the 
predictions. 
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methods considered data from full-scale systems. In general, the 
accuracy of N2O prediction was higher for the pure ML models than 
the pure mechanistic models, and the developed hybrid model of 
this study revealed one of the highest prediction accuracies in 
comparison with the studies shown in Table 3. 

An accurate prediction of N2O can play a significant role in the 
mitigation of N2O from WWTPs (Solís et al., 2022; Maktabifard et al., 
2022). Hence, the proposed approach, i.e., expanding a data set by a 
mechanistic model and prediction with ML algorithms, can be useful 
for the limited amounts of data collected during N2O measurement 
campaigns towards a mitigation of this hazardous gas from the 
WWTPs. With sufficiently big data set, the ML algorithms can ensure 
predictions with a satisfactory level of performance (without ex-
panding the data by a mechanistic model). 

The present approach still has some limitations. Only the limited 
experimental data from a lab-scale system were considered, while 
the hybrid model still requires validation based on experimental 
data from full-scale WWTPs. Furthermore, nitrogen transformations 
were only evaluated with respect to nitrification, whereas deni-
trification may also be an important source of N2O production in 
full-scale WWTPs. Expanding the input data of ML algorithms by 
external software, such as GPS-X, requires experiments to validate 
the mechanistic model. Furthermore, applicability of the hybrid 
models still requires further validation with more variety of 
data-sets. 

For future studies, a comparison between mechanistic modeling 
and ML predictions for liquid N2O production and gas N2O emission 
in a bigger data set is suggested. Future ML algorithms can be de-
veloped for prediction of specific N2O production pathways, al-
though this function is now applicable only by mechanistic models. 
In addition, estimation of an N2O emission factor, EFN2O, can be 
another interesting and useful application for full-scale WWTPs. This 
factor plays a critical role in determining the WWTP carbon footprint 
(Maktabifard et al., 2020). 

5. Conclusions 

A hybrid model, combining mechanistic and ML (ANN) models, 
accurately predicted the liquid N2O concentrations during two 15- 
day experimental trials in a nitrifying SBR. This approach is novel in 
comparison with the previous attempts for finding a predictive 
model of N2O production during nitrification. The hybrid model 
successfully predicted unknown test data with an acceptable coef-
ficient of determination (R2

TEST = 0.67), showing its versatility in 
terms of variable operating conditions and the ability to generalize 
process patterns more accurately than the other two examined 
models (SVM, GBM). On the other hand, the SVM overfitted in the 
estimation of the test data and GBM failed to predict an acceptable 
model. Moreover, accounting for the level of uncertainty for the ANN 
model, the predicted values with more than 95% accuracy are reli-
able enough for delivering valuable information regarding the phe-
nomenon for further research and practical applications. A hybrid 
modeling concept that combines mechanistic models of WWTPs 
(e.g., ASMs) with ML can be further expanded to predict N2O pro-
duction/emission in full-scale WWTPs for N2O mitigation strategies. 
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