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Abstract 

Present study is dealt with the applicability of shifted Chebyshev polynomial based Rayleigh-

Ritz method and Navier’s technique on free vibration of Functionally Graded (FG) beam with 

uniformly distributed porosity along the thickness of the beam. The material properties such as 

Young’s modulus, mass density, and Poisson’s ratio are also considered to vary along the 

thickness of the FG beam as per the power-law exponent model. The porous FG beam is 

embedded in an elastic substrate; namely, the Kerr elastic foundation and the displacement field 

of the beam is governed by a Refined Higher Order Shear Deformation Theory (RHSDT). The 

effectiveness of the Rayleigh-Ritz method is due to the use of the shifted Chebyshev polynomials 

This is a post-peer-review, pre-copyedit version of an article published in ENGINEERING WITH COMPUTERS. 
The final authenticated version is available online at: http://dx.doi.org/10.1007/s00366-020-01018-7

mailto:sne_chak@yahoo.com
http://dx.doi.org/10.1007/s00366-020-01018-7


2 

as a shape function. The orthogonality of shifted Chebyshev polynomial makes the technique 

more computationally efficient and avoid ill-conditioning for the higher number of terms of the 

polynomial. Hinged-Hinged (HH), Clamped-Hinged (CH), Clamped-Clamped (CC), and 

Clamped-Free (CF) boundary conditions have been taken into account for the parametric study.  

Validation of the present model is examined by comparing it with existing literature in special 

cases showing remarkable agreement. A pointwise convergence study is also carried out for 

shifted Chebyshev polynomial based Rayleigh-Ritz method and the effect of power-law 

exponent, porosity volume fraction index, and elastic foundation on natural frequencies are 

studied comprehensively.   

Keywords 

Functionally graded porous beam; Vibration analysis; Kerr foundation; RHSDT; Rayleigh-Ritz 

method 

1. Introduction

Over the years, functionally graded materials (FGMs) as new engineering materials have drawn 

the attention of many researchers. The primary purpose of making and expanding these materials 

is to increase the efficiency and different structural components and to control unwanted stresses 

and strains. Suitable properties of functional materials such as high strength, low weight and 

appropriate resistance to chemical conditions and high temperatures have led to the development 

of the use of these materials in various fields. In these materials, the properties of each point are 

defined by a proper mixing law as a function of the component properties and their volume 

fraction at each point. Graded materials are mainly used in a combination of metal and ceramics. 

In recent years, the use of FGMs in high-temperature environments such as nuclear reactors, 

chemical plants, and in the manufacture of high-speed vessels has become increasingly 

important. Also, a member with a metal-ceramic cross-section has a higher bearing capacity than 

a material made of only a single metal or ceramic member and also with a larger cross-sectional 

area. Most engineers today are looking for efficient methods to help them reduce the weight of 

the structure. As a result, by combining different materials on a functional scale, the bearing 

capacity can be substantially increased, and the weight of the structure reduced at the same time. 

This is very important in terms of economic savings. Given the precise determination of the 

buckling load and the natural frequency of vibration of linear elastic systems, especially for 
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beams, as a major member of the structure is of particular importance in the design. In this study, 

we will analyze the vibrational analysis of local beam made of functionally graded materials. 

Analysis of the natural frequency of the beam made of FGMs has a very much publication in 

engineering and academic research. In the literature, Sina et al. [1] considered a first-order shear 

deformation beam approach in combination with an analytical method to study vibrations of an 

FGM beam. Ke et al. [2] analyzed FGM beams based on nonlinear vibration studies using an 

analytical examination. They utilized the classical beam hypothesis and solved the achieved 

constitutive equation for three different boundary condition cases, namely hinged-hinged, fixed-

hinged, and fixed-fixed. Hein and Feklistova [3] assumed FGM beams with the non-uniform 

geometrical section in a vibrational situation and a variety of edge conditions. They employed 

the Euler-Bernoulli beam model and solved their obtained relations with Haar Wavelets 

numerical technique. Shooshtari and Rafiee [4] modeled nonlinear frequencies of an FGM beam 

with fixed edge conditions based on the outer excitations. The classical beam theory, in 

conjunction with the Galerkin solution method, gave numerical outcomes. Wattanasakulpong et 

al. [5] studied the thermal effects on an FGM beam beside resonant vibrations on the basis of a 

third-order shear deformation beam approach and solved the harvested vibrational relation based 

on the Ritz variational technique. In another work, Wattanasakulpong et al. [6], this time, 

employed experimental validation to compare with the numerical results of vibrations of an 

FGM beam with assuming the beam as a laminated composite as well. The used beam model in 

their theoretical part was a higher-order shear deformation one, and the obtained characteristic 

relation was solved with the Ritz method. They also applied various models of edge conditions 

and got good approval from their experiment with just 10 percent discrepancies between 

theoretical and experiments sections averaged for all boundary conditions. Thai and Vo [7] 

developed vibration analysis of FGM beams for different higher-order beam models. The 

constitutive equation of vibration was solved analytically, and the natural frequencies were 

computed using the Navier approach. Fallah and Aghdam [8] embedded an FGM beam with 

several edge conditions on a nonlinear elastic substrate and studied the vibrational response of 

the modeled system based on the temperature variations of the environment. The influences of 

the foundation were assumed as a linear transverse effect, shear, and nonlinear transverse impact. 

Pradhan and Chakraverty [9] investigated an FGM beam based on both classical and 

Timoshenko models and calculated the natural frequencies utilizing the Rayleigh-Ritz solution 
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technique. Rahimi et al. [10] evaluated the response of an FGM beam to the vibrational condition 

based on the first-order shear deformation beam theory. The achieved governing equations were 

solved by imposing fixed and hinged edge conditions in accurate modal analysis. Vo et al. [11] 

numerically analyzed a sandwich FGM beam in both stability and vibrational states with the help 

of a higher-order shear deformation beam model. The numerical results were captured by 

applying various boundary conditions based on the finite element method. Kanani et al. [12] 

studied the effects of a nonlinear elastic matrix on an FGM beam placed in a vibrational state 

with considering large amplitudes. The characteristic relation was derived based on the classical 

beam approach and solved by a variational iteration technique. There also many published works 

on the FGM beams in various conditions, considering new deformation beam models [13], using 

dynamic stiffness solution technique [14], a two-parameter elastic medium [15], and geometrical 

non-uniformity as well [16]. Chen et al. [17] in a diverse study, investigated an FGM beam with 

some porosity imperfections. The constitutive relation was derived in the framework of the 

Timoshenko beam model, and the Ritz trial function helped them to compute excited 

frequencies. They evaluated two kinds of porosity and confirmed that the type of porosity affects 

fundamentally the frequencies. Jing et al. [18] combined the Timoshenko beam theory with finite 

element formulation to extract natural frequencies of an FGM beam. They considered three kinds 

of shear corrections factors to modify and refine the shear stresses along the thickness. Sedighi et 

al. [19-21] promoted various analytical approaches such as Homotopy Perturbation Method with 

an Auxiliary Term, Max–Min Approach (MMA), Iteration Perturbation Method (IPM), etc. to 

study dynamical characteristics of structural elements. Esmaeili and Tadi Beni [22] analyzed 

dynamical characteristics of flexoelectric nanobeam composed of functionally graded materials. 

Karami et al. [23] employed generalized DQM to investigate free vibration characteristics of two 

dimensional FG tampered nanobeam exposed to thermal environment based on Timoshenko 

beam theory while size dependent behavior was captured by nonlocal strain gradient model. 

Again, Karami et al. [24] studied guided wave propagation of clamped-clamped FG nanoplate 

with porosity by utilizing the first-order shear deformation theory and nonlocal elasticity theory. 

In the pioneering works, She et al. studied nonlinear bending behavior [25] of curved nanotubes 

made up of FG poous material while thermal snap-buckling [26] was carried out by using 

uniform temperature distributions across the thickness. Free vibration of FG porous nanoplate 

exposed to hygrothermal environment embedded in Kerr elastic foundation was studied by 
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Karami et al. [27].  In the work [28], resonance behavior of Kirchhoff nanoplate made up of 3D-

FG materials was analyzed by using Navier’s method and incorporating bi-Helmholtz nonlocal 

strain gradient theory. Karami et al. [29] employed second-order shear deformation theory in 

combination with nonlocal strain gradient model to study wave propagation analysis of FG 

porous nanoplate subjected to thermal and magnetic environment embedded in Winkle-Pasternak 

elastic foundation.  Karami and Janghorban [30] utilized G-DQM to analyze free vibration of 

porous nanotube based on Timoshenko beam theory. The size dependent behavior was studied 

by nonlocal strain gradient model while the porosity of the nanotube was evenly distributed 

which was governed by modified power-law rule. Alimirzaei et al. [31] used finite element 

method to study static and dynamic analysis of viscoelastic micro-composite beam having 

geometrical imperfection. The microstructural effect was handled by the modified coupled stress 

theory. Karami et al. [32] used Galerkin’s approach to investigate buckling behavior of 

functional graded nanoplate using nonlocal strain gradient theory. Tounsi et al. [33] investigated 

static behavior of advanced functionally graded (AFG) ceramic-metal plates exposed to a 

nonlinear hygro-thermo-mechanical load using a four-variable trigonometric integral shear 

deformation model placed in a two-parameter elastic foundation. Addou et al. [34] 

comprehensively studied the influence of different types of porosities on coupled vibration 

response of FG plates embedded in different types of elastic substrates using a quasi 3D HSDT. 

Chaabane et al. [35] analtcally investigated the static and dynamic analysis of functionally 

graded beams resting on Winkler-Pasternak elastic foundation using hyperbolic shear 

deformation theory. Some other studies related to FG structures embedded in elastic foundations 

are discussed in [36-37]. Kaddari et al. [38] used a quasi-3D model to investigate bending and 

free vibration of founctionally graded plates having porosity. Bourada et al. [39] utilized a 

trigonometric deformation theory to investigate vibrational behavior of FG beam considering 

perfect and porosity condition for simply supported edge support. Khiloun et al. [40] analytically 

investigated static and dynamic analysis of FG plates using high-order shear and normal 

deformation theory. Bousahla et al. [41] used a novel integral first order shear deformation 

theory to investigate the buckling and vibrational characteristics of the composite beam armed 

with single-walled carbon nanotubes resting on elastic foundation of Winkler-Pasternak type. 

Boussoula et al. [42] employed nth-order shear deformation theory to investigate the thermo-

mechanical flexural behavior of sandwich plates composed of functionally graded material. 
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 Paul and Das [43], in a new work, modeled pre-stresses into an FGM beam by taking the 

Timoshenko beam theory. They considered large deflections for various classic edge conditions. 

they, first, analyzed statically the problem and then studied the model dynamically with keeping 

the static stresses as pre-stressed in the beam. Wang and Li [44] discussed the vibration of an 

FGM beam based on the Levinson beam model. The simple-simple boundary conditions were 

gained by an approximate solution technique and the accurate results were obtained in terms of 

natural frequencies by the aforementioned beam model. The finite element method, in 

conjunction with the first-order theory of shear deformation, was employed to attain natural 

frequencies of an FGM beam by Kahya and Turan [45]. Nguyen et al. [46] investigated the 

excited vibrational state of an FGM Timoshenko beam based on the two-directional 

functionality. Deng et al. [47] presented a double-FGM Timoshenko beams system with 

assuming the Winkler-Pasternak elastic matrix. The frequencies of this system were showed on 

the basis of the dynamics stiffness solution method for a variety of edge conditions. Celebi et al. 

[48] derived a complementary function method to study the natural frequencies of a hinged-

hinged beam. Sinir et al. [49] studied nonlinearly excited and natural frequencies of an FGM 

Euler-Bernoulli beam model with considering a non-uniform cross-section. Differential 

quadrature method was associated to discretize the frequency equation, and an eigenvalue 

solution made the results graphically. Banerjee and Ananthapuvirajah [50] in the framework of 

the dynamic stiffness method investigated the free vibration of an FGM classical beam. 

Karamanli [51] assumed bi-directional functionality for an FGM beam and presented natural 

frequencies of the beam for several boundary conditions based on a third-order of shear 

deformation theory. Fazzolari [52] examined three different higher-order shear deformation 

theories, namely trigonometric, polynomial, and exponential models, to investigate a laminated 

sandwich FGM beam. The porosity was taken into consideration as two types, and finally, the 

characteristic equation of vibration was solved on the basis of the Ritz solution approach. Cao 

and Gao [53] used an asymptotic development method to present natural frequencies of an FGM 

beam with taking non-uniformly geometry into account. The basic model of the beam, namely 

Euler-Bernoulli, was utilized, and a perturbation technique showed the numerical results. 

As can be seen from the above literature, there is huge number of research to investigate the 

vibrational behavior of functionally graded porous beam, but only a few have employed higher 

order shear deformation theory to examine the vibration characteristic of these materials. The 
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porous FG beam is embedded in the Kerr elastic foundation and the displacement field of the 

beam is governed by a Refined Higher Order Shear Deformation Theory (RHSDT). Several 

classical boundary conditions such as HH, CH, CC, and CF boundary conditions have been taken 

into account by using the shifted Chebyshev polynomials Rayleigh-Ritz method. The advantage 

of the shifted Chebyshev polynomials is due to the orthogonal properties that makes the 

technique more computationally efficient by avoiding ill-conditioning for the higher number of 

terms of the polynomial. The results of this numerical method are also validated with the results 

of the Navier’s method for HH edge support. Further, a parametric study is also conducted to 

analyze the effects of various parameters such as power-law exponent, porosity volume fraction 

index, and elastic foundation on natural frequencies.   

2. Mathematical formulation of the proposed model 

A Functionally graded beam consisting of ceramic and metal components, having a length  L , 

breadth  b  , and thickness  h  are considered in this study. It is assumed that the material 

composition at the top surface  2hz   is ceramic-rich and consistently varies to the metal-rich 

surface at the bottom  2hz  . In this analysis, the FG beam is presumed to have even 

porosity distribution with porosity volume fraction   1 , scattering equally throughout the 

metal and ceramic constituents, as illustrated in Fig. 1.  
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Fig 1.a Schematic representation of Rectangular FGM beam rested on the Kerr elastic 

foundation in 3D 

 

Fig 1.b Schematic representation of the rectangular cross-section of the FGM beam with evenly 

distributed porosity 

So, the modified rule of the mixture is stated as [54-56] 
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                                                  mcmmcc PPVPVPP 
2


                                                    (1) 

Here cP , cV  and mP , mV  are the material properties and volume fractions of the ceramic and 

metal components, respectively.  

The volume fractions of the ceramic and metal constituents are given by [54-56] 
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In which k  is the non-negative parameter that determines the distribution of material all across 

the thickness of the beam, namely power-law exponent and z  is the distance from the mid-plane 

of the FG beam. Combining Eq. (1), Eq. (2), and Eq. (3) the material properties of the FG beam 

with porosity can be expressed as [54-56] 
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Therefore, Young’s modulus  zE , material density  z , and Poisson’s ratio of the FG beam can 

be represented graphically as Figs. (2-4) and mathematically as [54-56] 
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Fig. 2 Power-law variation of Young’s modulus 

 

 

 

Fig. 3 Power-law variation of mass density 
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Fig. 4 Power-law variation of Poisson’s ratio  

 

According to the refined higher-order shear deformation theory, the displacement field can be 

represented as [7, 57-58] 
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In which u , bw , and sw  are the axial displacement, bending, and shear components of transverse 

displacement on the mid-plane of the FG beam, respectively.  

The normal and shear strains of the FG beam for this beam theory are stated as 
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Considering that the material constituents of the FG beam comply with the generalized Hooke’s 

law, the stress components yield [9] 
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2.1 Formulation of governing equations for Rayleigh-Ritz method 

The strain energy  eS  of the proposed model can be expressed as  
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The Kinetic energy  e  can be stated as 
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The external work done  eW  by the Kerr foundation can be expressed as [55, 59]                            
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Here sk , uk , and lk  are shear, upper, and lower layers elastic parameters of the Kerr foundation, 

respectively. 

Assuming the motion of the FG beam as sinusoidal, the displacement components can be 

represented as [9] 

     txUtxu cos,  ,      txWtxw bb cos,  , and      txWtxw ss cos,                               (14) 

In which  xU ,  xWb , and )(xWs are the amplitudes of axial displacement, bending and shear 

components of transverse displacement, respectively, and   denotes the natural frequency of the 

proposed model. 

Utilizing Eq. (14) into Eq. (11), Eq. (12), and Eq. (13), the maximum strain energy  Max

eS , 

kinetic energy  Max

e , and work done by Kerr foundation  Max

eW  can be portrayed as 
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 By removing the upper spring, the Kerr foundation will be changed into Winkler-Pasternak 

foundation and the maximum work done by the Winkler-Pasternak foundation can be stated 

as  
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 Likewise, if the upper spring and shear layer will be removed from the Kerr foundation, the 

model will be converted into Winkler elastic foundation and the maximum work done by the 

Winkler foundation can be modified as  
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 2.2 Formulation of governing equations for Navier’s method 

The variation in strain energy  eS can be represented as  
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Likewise, the variation in kinetic energy  e can be expressed as  
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Where     dAfzffzzzKJJIII
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The variation in external work done  eW  can be portrayed as [55, 59] 
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Substituting Eqs. (20-22) into the extended Hamilton’s principle   

T

eee dtWS
0

0  and  

collecting the coefficients of u , bw , and sw , we have 
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Using generalized Hooke’s law, the local stress resultants can be written as 
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Combining Eqs. (23-25) and Eqs. (26-29), the governing equations of motion in terms of 

displacements can be obtained as 
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 When the upper spring is removed into the Kerr foundation, the proposed model will be 

converted for Winkler-Pasternak foundation and the governing equations of motion can be 

given as   
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(31.b) 
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                (31.c) 

 If the upper spring and shear layer are detached from the Kerr foundation, the proposed 

model will be changed for Winkler foundation and the governing equations of motion can be 

depicted as   
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3. Solution methodology 

In the present analysis, Navier’s method [60-62] and shifted Chebyshev polynomial based 

Rayleigh-Ritz method [63] have been utilized to solve governing differential equations for free 

vibration of the FG beam. Navier’s technique has been exploited for Hinged-Hinged (HH) 

boundary condition, whereas the shifted Chebyshev polynomial based Rayleigh-Ritz is adopted 

to solve Hinged-Hinged (HH), Clamped-Clamped (CC), Clamped- Hinged (CH), and Clamped-

Free (CF) boundary conditions. Further descriptions of each approach are presented in the 

subsections below. 

3.1 Implementation of Navier’s method 

According to the Navier’s technique the axial displacement  txu , , bending  txwb ,  and shear 

 txws , components of transverse the displacement endorse the solution as shown below [58]; 
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In which ,mu bmw , and smw  are arbitrary parameters and  is the natural frequency of vibration. 

Substituting Eq. (33) into the governing equations of motion, i.e., Eq. (30), Eq. (31), Eq. (32), 
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generalized Eigenvalue problem for free vibration of Kerr, Winkler-Pasternak, and Winkler 

foundation, respectively will take the form as given in Eq. (34). But, the results for Kerr 

foundation are only considered (except for comparison) in this investigation as other two 

foundations are the special cases of Kerr.  

                                                                  XX  2                                                        (34) 
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3.2 Implementation shifted Chebyshev polynomial based Rayleigh-Ritz method 

In this study, the shifted Chebyshev polynomial of the first kind is considered as shape function 

over algebraic polynomials because of the fact that Chebyshev polynomials are the orthogonal 

polynomials which reduce the computational effort, and for the larger value of  10nn , the 

system avoids ill-conditioning. First few terms of shifted Chebyshev polynomials of the first 

kind can be expressed as [63],  

   10 x  

  121  xx                                                                                                                               (35) 
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        ,3,2,122 21   nxxxx nnn   

The axial displacement  txu , , bending  txwb ,  and shear  txws , components of transverse 

displacement  can be stated as [9, 63-65]                                      

                                                         



n
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ii

qp xcxLxxU
1

1 )(                                              (36.a) 
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qp

b xdxLxxW
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1 )(                                            (36.b)   

                                                        



n

i

ii

qp

s xexLxxW
1

1 )(                                             (36.c) 

Here sci ' , sd i ' , and sei ' are unknown parameters,  xn  is the shifted Chebyshev polynomial of 

index n ,  qp xLx  is the admissible functions and p , q are the exponent that regulate the 

boundary conditions as shown in Table 1. 

Table 1 qp and for different boundary conditions [9, 63, 65]. 

B.C. p  q  

H-H 1 1 

C-H 2 1 

C-C 2 2 

C-F 2 0 

 

Plugging Eq. (36) into maximum strain energy  Max

eS , kinetic energy  Max

e , and work done by 

Kerr foundation  Max

eW ,i.e., Eqs. (15-17) and equating as Max

e

Max

e

Max

e WS   and minimizing 

the natural frequency  2  with respect to the coefficients sci ' , sd i ' , and sei ' , ni 3,2,1 , 

yield the generalized eigenvalue problem as 

                                                                   XX  2                                                      (37) 

where    Tnnn eeeeddddccccX  ,,,,,,,,,,, 321321321 ,    denotes the stiffness matrix 

and    represents the mass matrix. 
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4. Numerical results and discussion 

In this study, the functionally graded beam is assumed to be composed of Stainless steel 

(SUS304) as a metal constituent and Silicon nitride (Si3N4) as a ceramic constituent with their 

mechanical properties as [66, 67] 

Silicon nitride (Si3N4): GPa43.348cE , 3Kg.m2370 c , and 24.0c  

Stainless steel (SUS304): GPa04.201mE , 3Kg.m8166 m , and 3262.0m . 

The dimension of the FG beam is taken as width  m05.0b  thickness  m0125.0h  length

 m1L . Natural frequencies    for four essential boundary conditions such as Hinged-Hinged 

(HH), Clamped-Hinged (CH), Clamped-Clamped (CC), and Clamped-Free are taken into the 

investigation in this investigation by employing Navier’s technique for HH boundary condition 

and shifted Chebyshev polynomial based Rayleigh-Ritz method for all the boundary conditions 

mentioned above.  

4.1 Validation 

Through this subsection, the present model is validated in two ways. Firstly, the current results 

are compared with other existing works present in literature, in special cases. In this regard, the 

first three non-dimensional frequency parameters of the present model are compared with [7, 68] 

for different power-law index by neglecting the elastic foundation and porosity effect from the 

present investigation. For the validation purpose, all the parameters are kept the same as [7, 68] 

and the tabular results are depicted in Table 2. Secondly, natural frequencies of the first four 

modes of Hinged-hinged boundary condition are computed by using an analytical method, i.e., 

Navier’s method and numerical method, such as shifted Chebyshev polynomial based Rayleigh-

Ritz method with porosity index 1.0 , GPakk lu 1 , GNk s 1  and other parameters are 

taken as given as above section. A comparison of the natural frequencies is demonstrated in 

Table 3. From these results, one may perceive that the current model goes well with other 

established outcomes. 

Table 2 Validation of the present model for HH boundary condition with [7, 68] in special cases. 

Mode 0k  1k  2k  5k  10k  

1 [7] 5.1531    3.9907    3.6263    3.3998    3.2811 
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[68] 5.1531 3.9907 3.6263 3.3998    3.2811 

Present 5.1531 3.9906 3.6263 3.9997 3.2811 

2 [7] 17.8868   14.0138   12.6411   11.5324   11.0216 

 Present 17.8868   14.0137  12.6411   11.5324   11.0215 

3 [7] 34.2344   27.1152   24.3237   21.6943   20.5581 

 Present 34.2344   27.1152   24.3236   21.6943   20.5581 

 

Table 3 Comparisons of results between Navier’s method and shifted Chebyshev polynomial 

based Rayleigh-Ritz method for HH boundary condition 

 ( k ) 
1 in kHz 

2 in kHz 
3 in kHz 4 in kHz 

NM SC-RR NM SC-RR NM SC-RR NM SC-RR 

0 6.7509 6.7509 13.5018 13.5018 20.2527 20.2531 27.0036 27.1808 

0.5 4.3689 4.3688 8.7365 8.7364 13.1014 13.1027 17.4623 17.5788 

1 3.7310 3.7308 7.4606 7.4601 11.1875 11.1881 14.9102 15.0088 

1.5 3.4230 3.4227 6.8448 6.8440 10.2641 10.2643 13.6798 13.7695 

2 3.2397 3.2393 6.4783 6.4775 9.7149 9.7148 12.9483 13.0328 

 

4.2 Convergence 

This subsection is dedicated to analyzing the convergence of natural frequencies of the first four 

modes of HH, CH, CC, and CF boundary conditions by employing the shifted Chebyshev 

polynomial based Rayleigh-Ritz method. The use of shifted Chebyshev polynomial as a shape 

function makes the methods more efficient because of orthogonal properties and avoids the 

system from becoming an ill condition for the higher number of terms. This study is conducted 

by considering the power-law exponent   5k , porosity volume fraction   1.0 , 

GPakk lu 1 , and GNk s 1  and the graphical results are illustrated in Figs. 5-7.  From these 

results, it is very much evident that the number of polynomials plays a very vital role in the 

convergence of frequencies. Lower modes frequencies require less number of polynomials 

whereas higher mode frequencies need more number of terms. It is also observed that first and 

second mode frequencies are converging with 5n   while third and fourth modes are attending 
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convergence at  6n , which is almost the same for all the boundary conditions mentioned in 

this study. 

 

Fig. 5 Convergence of natural frequency for HH boundary condition 

 

 

Fig. 6 Convergence of natural frequency for CH boundary condition 
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Fig. 7 Convergence of natural frequency for CC boundary condition 

 

 

Fig. 8 Convergence of natural frequency for CF boundary condition 
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4.3 Effect of Power-law exponent  k  

Through this subsection, the effect of the power-law index has been studied on the first four 

modes of natural frequencies of the FG beam considering HH, CH, CC, and CF boundary 

conditions. Both the tabular and graphical results are computed with porosity volume fraction

  1.0 , GPakk lu 1 , GNk s 1   and power-law exponent are varied as 0, 0.2, 0.5, 1, 2, 3, 

5, and 10, which are illustrated in Table 4 and Figs. 9-12. From this study, it is quite evident that 

with the rise in the power-law exponent, the natural frequencies of all the modes decrease and 

this reduction is more remarkable when 2k . This can be explained by the fact that at 0k , 

the beam is purely ceramic possesses the highest natural frequencies while at k , the beam is 

pure metal having the lowest natural frequencies i.e., as we go on increasing the power-law 

exponent  k , Young’s modulus of the FG beam decreases which leads to higher flexibility and 

lower natural frequencies. 

Table 4 Variation of natural frequencies    with power-law exponent  k  

B.C. k  
1 in kHz 

2 in kHz 
3 in kHz 4 in kHz 

HH 0 6.7509 13.5018 20.2527 27.0036 

0.2 5.2715 10.5423 15.8115 21.0784 

0.5 4.3689 8.7365 13.1014 17.4623 

1 3.7310 7.4606 11.1875 14.9102 

2 3.2397 6.4783 9.7149 12.9483 

3 3.0302 6.0596 9.0876 12.1133 

5 2.8386 5.6768 8.5142 11.3504 

10 2.6772 5.3543 8.0311 10.7074 

CH 0 6.8350 13.6678 20.5057 27.3626 

0.2 5.3373 10.6721 16.0100 21.3604 

0.5 4.4233 8.8439 13.2662 17.6967 

1 3.7774 7.5520 11.3279 15.1098 

2 3.2798 6.5575 9.8363 13.1208 

3 3.0678 6.1337 9.2010 12.2743 

5 2.8739 5.7463 8.6205 11.5011 
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10 2.7105 5.4200 8.1313 10.8497 

CC 0 6.8756 13.8042 20.6180 27.6540 

0.2 5.3691 10.7787 16.0978 21.5878 

0.5 4.4498 8.9324 13.3393 17.8854 

1 3.8001 7.6279 11.3907 15.2713 

2 3.2996 6.6234 9.8910 13.2612 

3 3.0862 6.1954 9.2521 12.4057 

5 2.8911 5.8040 8.6681 11.6240 

10 2.7267 5.4742 8.1760 10.9654 

CF 0 3.4290 10.2850 17.1439 23.9586 

0.2 2.6776 8.0311 13.3859 18.7046 

0.5 2.2192 6.6558 11.0926 15.4981 

1 1.8952 5.6839 9.4724 13.2336 

2 1.6456 4.9354 8.2253 11.4916 

3 1.5392 4.6163 7.6938 10.7497 

5 1.4418 4.3246 7.2079 10.0718 

10 1.3598 4.0787 6.7985 9.5005 
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Fig. 9 Variation of the natural frequency with the power-law index for HH boundary condition 

 

Fig. 10 Variation of the natural frequency with power-law index for CH boundary condition 

 

 

Fig. 11 Variation of the natural frequency with the power-law index for CC boundary condition 
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Fig. 12 Variation of the natural frequency with the power-law index for CF boundary condition 

4.4 Effect of porosity volume fraction    

In the present investigation, the FG beam is considered as a porous beam with evenly distributed 

porosity along the thickness of the beam.  Graphical and tabular results are computed by 

considering GPakk lu 1 , GNk s 1  and by varying both the power-law index  k  and 

porosity volume fraction   . From these results, it can be concluded that with the increase in 

porosity index   , natural frequencies also increase when the FG beam is purely ceramic, i.e., 

at 0k . This is due to the fact that the beam becomes stiffer, which ultimately gives rise to the 

natural frequencies. On the other hand, for different values of power-law index i.e., 10,2,1k

etc., this trend is completely opposite, that means, natural frequencies reduce with the rise in 

porosity volume fraction. Also, this trend is more significant in the case of higher values of k . 

Based on these observations, it may be concluded that the rise or fall of natural frequencies 

depends upon the power-law index even if the porosity index follows an increasing or decreasing 

trend. Since the trend is similar for other boundary conditions, only results of HH edge support is 

exclusively provided in the study. 
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Table 5 Variation of natural frequencies    porosity volume fraction    for HH boundary 

condition 

k    
1 in kHz 

2 in kHz 
3 in kHz 4 in kHz 

0 0 6.2450 12.4901 18.7351 24.9802 

0.1 6.7509 13.5018 20.2527 27.0036 

0.2 7.5944 15.1888 22.7833 30.3777 

0.3 9.2896 18.5793 27.8690 37.1586 

0.4 15.1862 30.3725 45.5588 60.7451 

1 0 3.7618 7.5225 11.2808 15.0355 

0.1 3.7310 7.4606 11.1875 14.9102 

0.2 3.7040 7.4064 11.1054 14.7995 

0.3 3.6807 7.3593 11.0338 14.7021 

0.4 3.6607 7.3188 10.9716 14.6163 

5 0 2.9433 5.8863 8.8286 11.7698 

0.1 2.8386 5.6768 8.5142 11.3504 

0.2 2.7224 5.4444 8.1653 10.8849 

0.3 2.5889 5.1773 7.7645 10.3499 

0.4 2.4291 4.8575 7.2844 9.7091 

10 0 2.7930 5.5859 8.3786 11.1708 

0.1 2.6772 5.3543 8.0311 10.7074 

0.2 2.5479 5.0957 7.6432 10.1901 

0.3 2.3987 4.7972 7.1953 9.5928 

0.4 2.2192 4.4381 6.6565 8.8742 
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Fig. 13 Variation of the natural frequency with porosity index for 1st mode 

 

 

Fig. 14 Variation of the natural frequency with porosity index for 2nd mode 
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Fig. 15 Variation of the natural frequency with porosity index for 3rd mode 

 

 

Fig. 16 Variation of the natural frequency with porosity index for 4th mode 

4.5 Effect of elastic foundation  
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This subsection is aimed at analyzing the effect of the Kerr elastic foundation along with 

Winkler-Pasternak and Winkler foundations in special cases on the natural frequencies of HH, 

CH, CC, and CF boundary conditions. For the computational purpose, the power-law index  k is 

taken as 0.5, and the porosity volume fraction    is considered as 0.1. For Kerr elastic 

foundation, the elastic moduli of upper and lower springs are equally varying as 

12963 10,10,10,10,0  Pa, while the elastic modulus of shear layer is considered as 

12963 10,10,10,10,0  N. Likewise, for the computation of Winkler-Pasternak model,  elastic 

moduli of lower spring and shear layer are taken as 12963 10,10,10,10,0  Pa,  and 

12963 10,10,10,10,0  N, respectively. Finally, for Winkler foundation model, elastic moduli of 

lower spring  is varies as  12963 10,10,10,10,0  Pa.  The tabular results of all the above-mentioned 

boundary conditions are listed in Table 6. Based on this analysis, we conclude that, with the rise 

in elastic modulus of Kerr foundation, the natural frequencies of the FG beam display a mixed 

behavior that means, natural frequencies decrease initially and then increase up to the elastic 

moduli attain 1 GPa and then exhibit very less change in natural frequencies as we go on 

increasing elastic moduli. Also, for higher values of elastic constants, natural frequencies for the 

three types elastic models are almost equal. 

Table 6 Variation of natural frequencies    in kHz with various elastic foundations such as 

Kerr, Winkler-Pasternak, and Winkler elastic foundations   

B.C. 

 
lu kk  in Pa  

and sk in N  

Kerr Foundation 

 slu kkk ,,  

Winkler-Pasternak 

Foundation  sl kk ,  

Winkler Foundation  lk  

  
1  

2  
3  1  

2  
3  1  

2  
3  

HH 0 0.0489 0.1946 0.4376 0.0489 0.1946 0.4376 0.0489 0.1946 0.4376 

 310  
0.0483 0.1940 0.4370 0.0477 0.1934 0.4365 0.0488 0.1945 0.4376 

 610  
0.5694 3.7199 4.3835 3.2941 4.3783 5.6509 0.1647 0.4252 0.8017 

 910  
4.3688 8.7363 13.1026 4.3688 8.7363 13.1024 2.5099 4.3749 5.5333 

 1210  
4.3688 8.7362 13.1022 4.3688 8.7362 13.1022 4.3688 8.7362 13.1022 

CH 0 0.0761 0.2462 0.5133 0.0761 0.2462 0.5133 0.0761 0.2462 0.5133 

 310  
0.0757 0.2458 0.5128 0.0752 0.2453 0.5123 0.0760 0.2462 0.5133 
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 610  
0.8614 1.8483 4.4219 1.2565 4.4214 6.9309 0.2234 0.5028 0.8735 

 910  
4.4233 8.8439 13.266. 4.4233 8.8438 13.2660 4.4212 6.9453 8.8526 

 1210  
4.4232 8.8437 13.2657 4.4232 8.8437 13.2657 4.4233 8.8437 13.2658 

CC 0 0.1103 0.3038 0.5944 0.1103 0.3038 0.5944 0.1103 0.3038 0.5944 

 310  
0.1100 0.3034 0.5940 0.1097 0.3030 0.5935 0.1103 0.3038 0.5944 

 610  
0.2702 0.8935 2.1698 1.6699 2.8667 4.4501 0.0380 0.2856 0.5854 

 910  
4.4497 8.9324 13.3392 4.4497 8.9323 13.3391 1.7526 4.4500 8.9335 

 1210  
4.4497 8.9323 13.3389 4.4497 8.9323 13.3389 4.4497 8.9323 13.3389 

CF 0 0.0173 0.1086 0.3040 0.0173 0.1086 0.3040 0.0173 0.1086 0.3040 

 310  
0.0164 0.1078 0.3033 0.0154 0.1070 0.3026 0.0170 0.1086 0.3040 

 610  
1.0636 2.2196 6.6472 0.0280 2.2194 6.1669 0.0328 0.2858 0.5865 

 910  
2.2191  6.6557 11.0926 2.2191 6.6557 11.0925 2.2193 6.6485 7.1460 

 1210  
2.2191 6.6557 11.0923 2.2191 6.6557 11.0923 2.2191 6.6557 11.0924 

 

5. Conclusion 

In this investigation, the shifted Chebyshev polynomial based Rayleigh-Ritz method is 

implemented to analyzing the vibration characteristics of the FG beam placed on the Kerr 

foundation, having evenly distributed porosity along the thickness. Energy equations are 

developed for the use shifted Chebyshev polynomial based Rayleigh-Ritz method, and Navier’s 

solution based model has also been implemented to solve the governing equations of motion in 

terms of displacement derived from Hamilton’s principle. A parametric analysis is also 

conducted, and followings are the main results; 

 Lower modes frequencies such as first and second mode require number of polynomials 

5n   for the convergence while higher mode frequencies i.e.,  third and fourth modes need 

more number of terms, i.e., 6n  for achieving the convergence.  

 With the increase in the power-law exponent  k , the natural frequencies of all the modes 

decrease, and this reduction is more remarkable when 2k . Also, at 0k , the beam is 

purely ceramic possesses the highest value natural frequencies while at k , the beam is 

purely metallic with the lowest value natural frequencies. 
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 With the rise of porosity volume   , natural frequencies at 0k  , i.e., purely ceramic, 

while for other values of the power-law index, i.e., 10,2,1k etc., this trend is opposite, that 

means, natural frequencies reduce with the rise in porosity volume fraction.  

 With the increase in elastic modulus of Kerr foundation, the natural frequencies of the FG 

beam display a mixed behavior, natural frequencies decrease initially, and then increase up to 

the elastic moduli attain 1 GPa and then exhibit very less change towards the natural 

frequencies as we go on increasing elastic moduli. Also, for higher values of elastic 

constants, natural frequencies for the three types of elastic models are almost equal. 
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