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ABSTRACT
Optical methods of measurement do not require contact of a probe and the object under study, and thus have
found use in a broad range of applications such as nondestructive testing (NDT), where noninvasive measure-
ment is crucial. Measuring the refractive index of a material can give a valuable insight into its composition.
Low‑coherence radiation sources enable measurement of the sample’s properties across a wide spectrum, while
simultaneously measuring the absolute value of optical path difference between interfering waves, which is nec-
essary to calculate the refractive index.

The measurement setup used in this study consists of a fiber‑based Fabry‑Pérot interferometer, illuminated
by a low‑coherence infrared source. The samples under measurement are located in the cavity of the interfer-
ometer, and their transmission spectra are recorded using an optical spectrum analyzer. Additional reference
measurements are performed with the cavity filled with air, in order to precisely measure the geometrical length
of the cavity.

The purpose of the study was to develop a digital signal processing algorithm to improve the resolution of
analysis of the spectra of radiation measured at the output of the interferometer. This goal was achieved by
decreasing the broadening of the signal in the Fourier domain caused by dispersion of the medium filling the
cavity. The Fractional Fourier Transform is a generalization of the Fourier transform allowing arbitrary rotation
of the signal in the time-frequency domain, allowing more precise analysis of signals with variable frequency.
This property makes this transformation a valuable tool for the analysis of interferometric signals obtained from
measurements of dispersive media, as the variable rate of change of the optical path length with respect to
wavenumber in such media results in varying frequency of the modulation of measured spectra. The optical path
difference inside the material under measurement is used together with the geometrical length obtained from
the reference measurement in order to determine the refractive index. The parameters of the transformation are
found by iterative adjustment to the signal under analysis.

The developed algorithm was tested using both real measured spectra and simulated signals based on a
theoretical model of the interferometric setup, and its effectiveness was compared to previously used methods of
analysis. It was found to increase the resolution of analysis up to the Fourier limit that occurs in signals with
no dispersion.

Keywords: interferometry, Fabry-Pérot interferometer, optical fibers, Fractional Fourier Transform, time-
frequency analysis

Further author information: (Send correspondence to Marcin Mrotek)
E-mail: marmrote@student.pg.gda.pl

Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017,
edited by Ryszard S. Romaniuk, Maciej Linczuk, Proc. of SPIE Vol. 10445, 1044511

© 2017 SPIE · CCC code: 0277-786X/17/$18 · doi: 10.1117/12.2281017

Proc. of SPIE Vol. 10445  1044511-1

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 9/7/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


1. INTRODUCTION
Measurement of the refractive index of materials as a function of wavelength provides insight into their composi-
tion. Among the practical uses of refractive index measurements are hematocrit sensors and biological weapon
detectors.1–3 The real part of the complex refractive index of a material analysed in a cavity of a Fabry‑Pérot
interferometer can be obtained by locating the maxima of the Fourier transform of the measured spectrum.4 One
of the factors influencing the precision of this measurement is the width of the located peak of the transform,
especially if the optical path length in the material inside the interferometer’s cavity is short compared to the
resolution of the spectral analyser used, or if signals from multiple interferometers with similar optical path
lengths are connected in one optical fiber.

1.1 Measurement setup

Figure 1. Measurement setup

The measurement setup, presented in fig. 1, consists of a fiber-based Fabry‑Pérot interferometer, with a cavity
formed between the ending of an optical fiber and a mirror. A single optical fiber is used to deliver the source
radiation from a superluminescent diode, and to measure the output characteristic using an optical spectrum
analysis.

2. THEORETICAL BASIS
2.1 Fractional Fourier Transform
The Fractional Fourier Transform is defined as an integral transformation (more specifically, a special case of
the linear canonical transformation) of complex functions of a single variable5

fa(u)
def
=

∫ ∞

−∞
Ka(u, t)f(t)dt, (1)

where the kernel Ka(u, t) is

Ka(u, t) = Aα exp
(
iπ
(
cot(α)u2 − 2 csc(α)ut+ cot(α)t2

))
, (2)

where α = aπ
2 , and
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Aα =
√
1− i cotα. (3)

The square root in the above equation is defined such that the artument of the result lies in the interval
(
−π

2 ,
π
2

]
.

2.2 Computation
The Fractional Fourier Transform can be more easily computed by relating it to the oridinary Fourier transforam-
tion. By combining equations (1), (2), and (3), and grouping the factors containing u2, ut, and t2 respectively,
one can obtain

fa(u) = Aα exp(πi cot(α)u2)

∫ ∞

−∞
exp(−2πi csc(α)ut) exp(πi cot(α)t2)f(t)dt, (4)

By substituting u′ = u cscα

fa(u
′) = Aα exp

(
πi cot(α) u′2

csc2 α

)∫ ∞

−∞
exp(−2πiu′t) exp(πi cot(α)t2)f(t)dt, (5)

one can obtain a form using the oridinary Fourier transform, denoted asF {·}

fa(u
′) = Aα exp

(
πi cot(α) u′2

csc2 α

)
F
{

exp(πi cot(α)t2)f(t)
}
(u′). (6)

Substituting back u = u′

csc α

fa(u) = Aα exp
(
πi cot(α)u2

)
F
{

exp(πi cot(α)t2)f(t)
}
(u cscα). (7)

For a = 1 and thus α = π
2 the above equation reduces to the oridinary Fourier transformation. Thus, the

computation of the FrFT can be broken down into three steps:

• premultiplication with a t domain complex chirp,

• calculation of the oridinary Fourier transform,

• scaling in the u domain,

• postmultiplication with a u domain complex chirp,

A similar procedure can be used to efficiently compute the discrete FrFT using the Fast Fourier Transform
algorithm.6
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2.3 Fractional Fourier Transform of a Gaussian signal modulated with a chirp
Transfer functions of fiber-based Fabry-Pérot interferometers can be approximated (disregarding the Gouy phase
shift) as infinite sums of sinusoids7,8

Iout(k) = Iin(k)

∞∑
m=0

Am cos (π2mnLk) , (8)

where Iin and Iout are the input and output signals respectively, Am are the amplitudes (dimensionless, in relation
to the intensity of the zero frequency component) of the components of the transfer function, n is the refractive
index of the medium, L is the geometric length of the interferometer cavity, and k is the wavenumber. If the
spectrum of the radiation source is Gaussian, the second component of the transfer function (for m = 1) will take
the form of a Gaussian envelope modulated with a sinusoid. If the refractive index varies with the wavenumber
but the range of variation is small in the analyzed part of the spectrum centered around a chosen wavenumber
k0, it can be approximated with the Taylor expansion n(k0+∆k) ≈ n(k0)+

dn(k0)
dk ∆k. The phase term can then

be approximated by

2πn(k)Lk ≈ 2πLn(k0)k0 + 2πL

(
n(k0) +

dn(k0)

dk
k0

)
∆k + 2πL

dn(k0)

dk
∆k2 (9)

In that case, the second component of the output signal is a linear chirp with a Gaussian envelope

x(k0 +∆k) = exp
(
−1

2

(
k0 +∆k

σ

)2
)

cos
(
2πLn(k0)k0 + 2πL

(
n(k0) +

dn(k0)

dk
k0

)
∆k + 2πL

dn(k0)

dk
∆k2

)
,

(10)
where σ is the width of the Gaussian envelope. As the first step of calculating the Fractional Fourier Transform
is a multiplication with a linear chirp

x′(k) = x(k) exp
(
πi cot(α)

(
∆k

∆ks

)2
)
, (11)

where ∆ks is the sample rate, the positive frequency component of the signal from eq. (10) after the multiplication
becomes

x′(k) = exp
(
−1

2

(
k0 +∆k

σ

)2
)
· (12)

· exp
(
i2πLn(k0)k0 + i2πL

(
n(k0) +

dn(k0)

dk
k0

)
∆k + i

(
π

cot(α)
∆k2s

+ 2πL
dn(k0)

dk

)
∆k2

)
. (13)

For the α parameter such that
cotα = −2L

dn(k0)

dk
∆k2s (14)

the chirp disappears and the function is reduced to a complex Gaussian impulse modulated by constant frequency
2πL

(
n(k0) +

δn(k0)
δk k0

)
. Thus it can be seen that the broadening of the spectrum due to the chirp present in

the signal can be mitigated by the appropriate choice of α. Moreover, finding the appropriate α determines the
value of δn(k0)

δk , which can be used to calculate the n(k0) from the frequency of the modulation of the spectrum,
and possibly also provide further insight into the material’s composition on its own.
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3. NUMERIC ALGORITHM
In order to find the value of α that nullfies the chirp rate of the signal under analysis, it is enough to find
the local maximum of the signal’s Fractional Fourier Transform, similarly to results obtained for the chirplet
transformation as detailed in.4 As the analysed signal is given as a sequence of samples, the elaborated algorithm
locates the maximum of the discrete-time analog of the fractional Fourier transform of the signal.

f(α, u) =

N∑
n=0

xn

√
1− i cotα exp

(
iπ
(
cot(α)u2 − 2 csc(α)un+ cot(α)n2

))
, (15)

The maximum of the transform is located by using the gradient descent method. The gradient of fa(u) with
respect to α and u was computed with the forward-mode automatic differentiation algorithm. This method
takes advantage of dual numbers defined as (a + bϵ), where a and b are real numbers, while ϵ ̸= 0 and ϵ2 = 0.
The algebraic properties of the dual numbers, together with the definitions of trigonometric functions of a dual
variable

cos(a+ ϵb) = cos a− ϵb sin a,

sin(a+ ϵb) = sin a+ ϵb cos a,
cot(a+ ϵb) = cot a− ϵb csc2 a,
csc(a+ ϵb) = csc a− ϵb csc a cot a, (16)

allow computation of the derivatives of any function composed of elementary functions by evaluating it for a
dual argument: {

f(α+ ϵ, u) = f(α, u) + ϵ δf(α,u)δα

f(α, u+ ϵ) = f(α, u) + ϵ δf(α,u)δu

. (17)

As the gradient descent algorithm can converge on any local maximum near the starting point, this point must
be chosen carefully. It was determined that using the local maximum of the regular Fourier Transform of the
signal corresponding to the chosen frequency component is an adequate starting point.

4. RESULTS
The elaborated algorithm was used to analyze signals obtained by mesuring the output spectra of the interferom-
eter with a cavity filled with water, with geometric lengths of 150 µm and 200 µm, and using a superluminescent
diode with a central wavelength of 1310 nm. Each measurement was paired with a reference measurement, which
was performed with the same geometric length of the interferometer cavity which was filled with air.

In accordance with expectations, the results show that the sample measurements consistently show the
presence of dispersion, while the reference measurement do not. In order to analyse the resulting data, initially
the peak of the regular Fourier Transform corresponding to the lowest frequency of modulation was located. Two
analyses were performed in order to measure the effect of using the FRFT: measuring the value of the transform
in function of α across a chosen range, and locating points at half this value, in order to measure the FWHM of
the peak of the transform.

The analysis results are presented in table 1. As the considered values of α are close to π
2 (i.e. the FRFT

is close to the regular Fourier transformation), ∆α in the table and the figures is defined in relation to the α
parameter of the FRFT as

∆α = α− π

2
. (18)

As it seen from the results and figures 2 and 4 , the value of ∆α at the maximum of the FRFT of the signal
depends on the chromatic dispersion of the material of the sample, and on the geometric length of the sample.
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Table 1. Results of the analysis
geometric length [µm] material chromatic dispersion9,10 [µm−1] ∆α of maximum FWHM reduction

150 air -0.0000013774 −3.33 · 10−8 0.0%
150 water -0.015000 −9.393 · 10−8 0.5%
200 air -0.0000013774 −3.393 · 10−8 0.0%
200 water -0.015000 −1.06 · 10−7 0.5%

In every case, it was found that using the FRFT leads to a reduction in the FWHM of the signal’s transform, as
shown in figures 3 and 5. In the fig. 6 a comparison of analyses of both water samples is shown.
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Figure 2. Comparison of the absolute value of the maximum of the Fractional Fourier Transforms of signals obtained from
150 µm water sample measurement and a reference measurement (with the interferometer cavity filled with air). The
reference signal’s maximum is located at α = 0, while the sample signal’s maximum is shifted due to dispersion.
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Figure 3. Comparison of the mimimum width of the Fractional Fourier Transforms of signals obtained from 150 µm water
sample measurement and a reference measurement (with the interferometer cavity filled with air). The reference signal’s
minimum width is located at α = 0, while the sample signal’s minimum width is shifted due to dispersion.
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Figure 4. Comparison of the absolute value of the maximum of the Fractional Fourier Transforms of signals obtained from
200 µm water sample measurement and a reference measurement (with the interferometer cavity filled with air). The
reference signal’s maximum is located at α = 0, while the sample signal’s maximum is shifted due to dispersion.
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Figure 5. Comparison of the mimimum width of the Fractional Fourier Transforms of signals obtained from 200 µm water
sample measurement and a reference measurement (with the interferometer cavity filled with air). The reference signal’s
minimum width is located at α = 0, while the sample signal’s minimum width is shifted due to dispersion.
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Figure 6. Comparison of the absolute value of the maximum of the Fractional Fourier Transforms of signals obtained from
150 µm and 200 µm water samples measurements.

5. CONCLUSION
The elaborated algorithm provides a means of detecting dispersion in measured spectrograms, compensating the
widening of the spectrum and shift of the modulation frequency that is caused by it.

While the decrease of the width of the peaks in the Fourier transform is small, the α parameter of the
transform’s maximum, corresponding to the difference between the fractional Fourier transformation and the
regular Fourier transformation, was found to be dependent on the chromatic dispersion and geometric length of
the samples.

It is conjectured that using a radiation source with wider spectrum, samples with longer geometric lengths,
and a spectral analyser with a higher resolution, could lead to more pronounced decrease in the width of the
peaks. Moreover, the results obtained during the research show possibility of measuring the dispersion of analysed
materials using the developed method. Further study is required to investigate the feasibility of these proposals.
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