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Abstract
This paper deals with modelling ship speed and fuel consumption using artificial neural network (ANN) techniques. These

tools allowed us to develop ANN models that can be used for predicting both the fuel consumption and the travel time to

the destination for commanded outputs (the ship driveline shaft speed and the propeller pitch) selected by the ship operator.

In these cases, due to variable environmental conditions, making decisions regarding setting the proper commanded outputs

to is extraordinarily difficult. To support such decisions, we have developed a decision support system. Its main elements

are the ANN models enabling ship fuel consumption and speed prediction. To collect data needed for building ANN

models, sea trials were conducted. In this paper, the decision support system concept, input and variables of the ship

driveline system models, and data acquisition methods are presented. Based on them, we developed appropriate ANN

models. Subsequently, we performed a quality assessment of the collected data set, data normalization and division of the

data set, selection of an ANN model architecture and assessment of their quality.

Keywords Artificial neural network � Modelling � Ship speed � Engine fuel consumption

1 Introduction

Ship owners and operators of different types of ships are

interested in decreasing the costs related to the effective-

ness of their operation. These costs are mainly associated

with fuel consumption and operational losses, e.g. exces-

sive travel time to the destination. In the case of ships

equipped with a combustion engine (CE) coupled to a

controllable pitch propeller (CPP), effectively managing

both the fuel consumption and travel time to the destination

is related to the optimal choice of commanded outputs

determining the work of such a driveline system. This

system generates thrust to move a ship across the water at

the desired speed with different levels of fuel consumption

for various combinations of the commanded outputs,

namely the driveline shaft speed and the CPP pitch. The

optimal combination of speed and pitch depends on several

operational conditions and, therefore, must be subjected to

dynamic optimization. For this purpose, the most operated

ships used speed/pitch ratio controllers. In such a ship

driveline system, the commanded torque is controlled to

maintain a certain shaft speed.

However, there are ships which are not equipped with

this kind of controller and the shaft speed or the CPP pitch

ratio is used to control the propeller thrust indirectly. In

such cases, due to variable environmental conditions

(mainly weather conditions at sea), making decisions about

setting the commanded outputs to ensure rational fuel use

and the desired ship speed is extraordinarily difficult.

A literature review carried out in [1] showed that there

are some methods that could support selection of the

commanded outputs for a ship’s propulsion system equip-

ped with the CPP. They are mainly based on models

developed by use of polynomial or regression equations.

As a rule, algorithms for solving of such equations in both

types of models are too complex. For this reason, many

assumptions are used that simplify these models and sig-

nificantly decrease usefulness of these methods. Moreover,
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their disadvantages are the difficulties with estimating sea

conditions. Nonetheless, knowledge of these conditions is

essential to selecting the appropriate propeller pitches and

engine rotational speeds.

For this reason, it would be useful to develop computer-

based tools to support such decisions. The base of such

tools should be mathematical models connecting fuel

consumption and travel time to the destination with the

commanded outputs and operational conditions subjected

to the propulsion thrust. An analysis of bibliographic ref-

erences concerning methods of setting the commanded

outputs of this kind of ship drivelines was presented by

Rudzki [1], who showed that the existing methods do not

include models that allow formalizing the required

heuristic knowledge. In our opinion, artificial neural net-

work (ANN) techniques can be used for obtaining such

models and can be used for better predicting both the fuel

consumption and travel time to the destination for the

selected commanded outputs and the observed parameters

of operational conditions owing to their high accuracy,

adequacy and quite promising applications in practice.

In this case, an important advantage of the ANN method

is that it does not require mathematical relations of the

input data and output data. Moreover, this technique allows

to solve our problem that is not very well formulated

formally.

This paper deals with the selected issues of developing

ANN models combining the mentioned parameters. In our

approach, to collect data needed for building ANN models,

sea trials were conducted.

2 Literature review

Two ANN models are needed to develop a computer-aided

system supporting decision-making regarding setting the

ship driveline commanded outputs to ensure rational fuel

use and the desired ship speed. The first ANN model

should connect a fuel consumption process to factors that

influence this process, and the second ANN model con-

nects ship speed to factors that influence this speed.

In a mathematical description of these kinds of phe-

nomena, two fundamental approaches are used:

• White box modelling,

• Black box modelling.

In practice, most developed models are obtained using

gray box modelling that combines a partial theoretical

structure with data to complete the models.

White box models, also called cause–effect models, deal

with the variables impacting the distribution of a phe-

nomenon and describe a physical process. They integrate

existing knowledge about processes into a set of

relationships (equations) for quantifying those processes.

The most commonly used method to develop white box

models of dynamic systems is the balance method. In

systems where we must deal with physical quantities,

balancing is carried out for parameters that are subordinate

to the laws of conservation of energy and momentum.

Nevertheless, applying the balance method to modelling

both fuel combustion and the ship motion processes to

obtain a decision-making model supporting decision-mak-

ing regarding the commanded outputs of the ship driveline

system is practically impossible. This is because the

equations describing these processes are so complex that

for the given conditions of explicitness, they are not

solvable. Moreover, processes running in the considered

systems are dependent on many parameters at the same

time and they influence the observed phenomenon in

varying degrees (for example, meteorological conditions).

With some simplifying assumptions, we could try to

bring these equations to more simple forms such as linear,

parabolic or hyperbolic equations. Unfortunately, the

equations describing the considered processes cannot be

subjected to linearization procedures or they are simple

enough for presentation in an unsophisticated mathematical

form. In addition, analytical solutions of these equations

are possible only by using such approximations, so that the

results lose their practical utility.

Therefore, we should look for alternative modelling

methods. For example, we could build the necessary

models using the black box modelling method.

In general, black box models help us in understanding

underlying processes. We can receive their descriptions

without necessarily analysing or providing their causes. A

procedure for setting up this kind of model is as follows:

• Carrying out measurements,

• Analysing the obtained results and seeking essential

parameters for the considered issue.

• Checking which initial conditions can be neglected or

not,

• Finding a functional dependency or simply guessing it

based on our intuition,

• Fitting parameters to the selected function,

• Comparing the received model with the results of

measurements.

If the conformity is not acceptable, we should take one

or several steps back (we can also conduct additional

measurements).

The starting point for using this procedure is to collect

appropriate data by carrying out measurements or using

historical records. As a rule, we should divide the collected

data into those that will be estimated, which is dependent

variables, and those that will be used as necessary condi-

tions, which is independent variables.
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There are a lot of scientific research papers that applied

similar procedures in various areas of science. Most of

them are based on new achievements in ANN, for example

[2–6], whereas some of them were applied in maritime

industry, for example [7–9].

In the classical approach for modelling similar phe-

nomena, statistical models are most commonly used. In the

field of ocean engineering, interpolating and predicting hull

resistance from model experiments and tank testing have

traditionally been done using statistical regression equa-

tions. For example, such models are used to determine

parameters characterizing ship propulsion efficiency in the

early stages of its design [10, 11]. Analysing application

regression relationships for modelling the selection of

optimal drive propulsion parameters was presented by

Rudzki and Tarelko [12].

To receive models that could be used in the considered

decision-making system, a black box model in the form of

multiple regressions was developed [1]. The same data

needed for building ANN models were used to build the

regression models. These data directly connect both the

fuel consumption and the travel time to the destination with

the commanded outputs and parameters of operational

conditions subjected to the propulsion thrust.

However, the obtained results show some limitations.

• There is no certainty that the analysed set of indepen-

dent variables is sufficient,

• The regression function type is not known; therefore, it

is a problem of selecting the regression function shapes

and a set of independent variables,

• All attempts to select the most appropriate form of

polynomial regression models for both dependent

variables showed that such trials slightly increased

model adequateness.

In contrast, ANN models enhance the generalizability

and extrapolation capability and do not require a priori

assumptions of function forms. Therefore, they can be used

to develop a computer-aided system supporting decision-

making regarding setting the ship driveline commanded

outputs to ensure rational fuel use and the desired ship

speed.

Applying ANN models for predicting ship fuel con-

sumption or ship speed for various operational conditions is

not presented in many publications.

Historical data acquired from ship logs (records of

important events in the management, operation, and navi-

gation of a ship) were used in all considered ANN models

to predict ship fuel consumption.

In Arslan, Bal Beşikçi and Ölçer [13] and Bal Beşikçi,

Arslan, Turan and Ölçer [14], decision support systems

employing ANN based on fuel prediction models were

developed. These models used operating data called ‘noon

data’ obtained from ship noon reports.1 The input param-

eters were seven variables, a ship’s speed, the rotational

speed of the main engine, mean draft, trim, cargo quantity

on board, wind and sea effects, and the output variable of

the ANN model was ship fuel consumption. In both studies,

neural network models were implemented using the Neural

Network Toolbox in MATLAB 2010a. To design and

construct the ANN, the data set derived from 233 [14] and

3646 (7 tanker ships) [13] noon reports was used. Initially,

70% of the noon reports were randomly selected for

training, and the remaining 30% was used for validation.

The modelling method for ANN was based on the back-

propagation learning algorithm used in feedforward with

one hidden layer. The learning algorithm used in these

studies was Levenberg–Marquardt, the activation function

was hyperbolic tangent sigmoid transfer functions, and the

number of epochs was set to 10,000. Additionally, the

performance of the developed ANN model was compared

with the multiple regression model [13]. For both training

and validation data, the correlation between the actual and

predicted fuel consumption for the ANN model was shown

to be much higher than for the linear regression model.

Pedersen and Larsen [15] presented a method using

ANN to predict propulsive power from theoretical vari-

ables influencing ship resistance, such as a ship speed,

relative wind speed and direction, air temperature and

seawater temperature. Three data input sources were used

to train and predict the propulsive power, onboard mea-

sured, noon report data and weather and sea state infor-

mation based on the hindcast approach.2 To design the

ANN, a data set was derived from 323 samples of the noon

reports. It was only trained for 5 and 20 hidden layers as

these are the extremes as justified by Pedersen and Larsen.

The ANN used noon report data to predict the specific fuel

consumption with an accuracy of about 7%. It was noted

that this accuracy was obtained using ‘time’ as an input

variable; this indicates that it is possible to detect a trend in

fuel consumption over time.

Du and Meng [16, 17] proposed a model that complies

with the fundamentals of ship propulsion and can precisely

quantify the synergetic influence of several determinants

on ship fuel efficiency. It also develops a ship fuel con-

sumption management scheme based on tangible ANN

models. They adopted a two-step procedure for ship fuel

consumption assessment, estimating the ship engine rota-

tional speed and then estimating engine power based on the

1 Noon reports—daily data sheets prepared by the ship chief

engineer. They provide the vessel position and other data necessary

to evaluate the ship performance based on its speed and environ-

mental forces including information on daily fuel consumption.
2 A hindcast approach—atmospheric and ocean response models for

a historical period to develop the specification of climate and

extremes used in some applications.
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obtained speed. The fuel consumption was calculated as a

product of the estimated parameters. The ANN model input

variables were speed, displacement, wind force, wind wave

height, swell height, sea current factor and trim. The data

set necessary to design and construct the ANN model was

acquired from noon reports of 3 ships, 121, 160 and 153

reports, respectively. In conclusion, they stated that an

ANN model with a simple model structure (1 hidden layer)

exhibits the best (surely practically acceptable) fit

performance.

Applying ANN models to predict ship speed for various

operational conditions was not presented directly in the

subject publications. In practice, the power required to

move the ship hull at a given speed in the absence of

propeller action can be determined from towing tank

experiments at various speeds of a model ship. Therefore,

we analysed ANN models that combine the ship resistance

or power with parameters that influence these ship

characteristics.

The applicability of ANN to the ship resistance pre-

diction as an alternative to more traditional statistical

regression models was investigated by Couser, Mason,

Mason, Smith and von Konsky [18]. The ANN network

was used as an interpolation tool to predict the residual

resistance for a series of catamaran-type vessels. ANN was

able to produce results of sufficient accuracy to be useful

for the preliminary prediction of vessel resistance. To

design and construct the ANN model, Couser et al. used a

single hidden layer and 15 neurons in the hidden layer. In

their opinion:

• The addition of further hidden layers did not appear to

improve the accuracy of the ANN and only added to its

complexity and required training time,

• The use of dedicated software makes it very quick and

easy to produce and train an ANN capable of modelling

hull resistance problems compared to traditional statis-

tical methods.

A similar approach to predict ship’s resistance using

ANN is presented by Grabowska and Szczuko [19]. Their

research used the parameters of 7 already built off shore

vessels, with model parameters available as a result of tests

conducted on a towing tank (a physical basin used to carry

out hydrodynamic tests with ship models). The input and

output layers were determined based on the input data

dimensionality and required output; thus, the number of

hidden layer neurons was estimated as a geometric mean

using the formula proposed by Bishop [20]. The automatic

network architecture exploration revealed that 24 neurons

give the best accuracy. Therefore, several hidden layer

configurations were tested to investigate the possible

impact of architecture on the results. Grabowska and

Szczuko evaluated seven training algorithms. They chose

the Quick Propagation algorithm for further study because

it gave the most promising results for correlation between

target and output values, correlation coefficient (R2) and

absolute validation error. To find the best network archi-

tecture, several cases were considered with 4, 6, 9, 12, 15,

18 and 24 neurons in a hidden layer; 24 neurons give the

lowest absolute validation error; therefore, the network

architecture 20-24-1 was used in the follow-up study. In

conclusion, they stated that the proposed and trained net-

work showed satisfactory accuracy compared with the

results from the model tests. Nevertheless, the architecture

might be improved, and further study on this approach

should be undertaken.

In Mason, Couser, Mason, Smith and von Konsky [21],

ANN was fitted directly to the original towing tank test

data and different ANN architectures were investigated.

The data used for the investigation originated from a series

of tank tests using Holtrop and Mennen’s method [11]. The

initial test network architectures were constrained to three

layers, one each for input, hidden and output layers.

Training runs used a quasi-Newton method for 50,000

iterations, and 10 retrains were performed for each network

topology to minimize error. The range of architectures

searched was from 4 inputs, 4 hidden layer neurons and 1

output to 4 inputs, 17 hidden layer neurons and 1 output. In

Mason et al.’s opinion, the study demonstrated that

• A sparse data set with a relatively high degree of

additional meaningless information can be fitted effec-

tively using a feedforward ANN,

• There may be benefits resulting from networks with two

hidden layers rather than one.

Ortigosa, López and Garcı́a [22, 23] presented an ANN

approach to predicting two resistance components. To

provide estimates of the form coefficient and the wave’s

coefficient as functions of ship hull geometry coefficients

and the Froude number, the multilayer perceptron (MLP)

was trained with generated data and experimental data. An

empirical model was constructed using a neural network.

The data necessary to train ANN were generated using

Holtrop and Mennen’s method [11] that provides a pre-

diction of the total resistance’s components. The MLP with

a sigmoid hidden layer and two linear output layers was

used. The selected training algorithm was the quasi-New-

ton method with Broyden–Fletcher–Goldfarb–Shanno train

direction and Brent optimal train rate described by Bishop

[20]. Different numbers of neurons in the hidden layer were

tested, and the network architecture providing the best

generalization properties for the validation data set was

adopted. The optimal ANN architecture was 5 inputs, 9

hidden layer neurons and 2 outputs. The ANN results were

compared against those provided by Holtrop and Mennen’s

method for estimating the form factor and the wave’s
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coefficients, and it was found that the quality of the pre-

diction with the ANN is improved over the entire range of

data.

This analysis of references concerning the ANN

approach to modelling ship fuel consumption and hull

resistance shows us that.

• Historical data derived from ship logs (noon reports)

have been used to model fuel consumption as the input

variables,

• Design data (parameters of ship hull geometry) or

experimental data (tank tests) have been used to model

ship resistance as the input variables,

• There is a lack of detailed information regarding:

– Methods for carrying out measurements,

– Types of propellers applied in ship driveline

systems.

Moreover, the major reference for designing and con-

structing ANNs was Bishop’s book [20].

In our approach, to design and construct more adequate

ANN models enabling ship fuel consumption and speed

prediction, we decided to plan a dedicated experiment.

Such an experiment was conducted with different com-

manded outputs of the ship driveline system for various

environmental conditions at sea.

3 Decision support system and its
components

3.1 Decision support system concept

As previously mentioned, there are no methods enabling one

to select commanded outputs based on formalized heuristic

knowledge in cases of ships equipped with CE coupled to

CPP without speed/pitch ratio controllers. Therefore, oper-

ators (amaster or officers in charge) of such ships set the shaft

speed and/or the CPP pitch ratio to control the propeller

thrust indirectly. As a rule, they select values of the com-

manded outputs based on own experience, intuition and all

available information regarding operational conditions. In

our approach, the term ‘operational conditions’ refers to the

physical environment where the ship operates, i.e. the wind,

wave and current conditions encountered by the ship.

Sometimes these settings can be irrational or inappro-

priate. To avoid such situations, a decision support system

(DSS) should be developed.

The developed DSS consists of the following main

components (Fig. 1).

• A data acquisition module with many inputs in the form

of uncontrollable input variables and one output in the

form of a vector of normalized ANN data,

• An identification module with the normalized ANN

output values resulting from the previous module as the

input and one output in the form of a matrix represent-

ing the ANN internal representation of data enabling

the prediction of ship fuel consumption and speed,

• An optimization module with two inputs: the matrix

representing ANN internal representation of data

resulting from the former module and the vector of

weight factors of the two-objective optimization model,

and two outputs with the optimal commanded outputs.

To develop the DSS, it was necessary to:

• Define input and variables of the ship driveline system

models,

• Build models enabling ship fuel consumption and speed

prediction using ANN techniques,

• Build a decision-making model using multi-objective

optimization methods.

To build these models, we considered a ship as a solid

object located on the border of water and air, partly

immersed in each and typically remaining in relative

motion, which allows us to define variables for black box

and decision-making models. Initially, we presented this

Fig. 1 DSS block diagram

Fig. 2 ‘Black box’ model
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problem in the form of a ‘black box’ subjected to a variety

of factors (Fig. 2).

As decision-making input variables, XDi, factors ensur-

ing the desired ship motion (the propeller thrust), we

selected the commanded outputs of the ship driveline

system, that is, both the CE rotational speed and the CPP

pitch. A variety of factors that affect the ship motion and

result from operational conditions was nominated as the

uncontrollable input variables, XNj. As the model output

variables, Yk, factors associated with fuel consumption and

operational losses, we selected the CE fuel consumption

and the ship speed. Other factors affecting the ship motion

but which are difficult and sometimes even impossible to

observe, and for which there is no possibility to impact

their values, were set as the model disturbances, Z. The

input and output variables are presented in Table 1.

Taking into account the distinguished variables of the

black box model, the problem of decision-making can be

formulated as follows:

what should the values of the decision-making variables,

XDi, be for the given values of the uncontrollable variables,

XNj, to provide the desired values of the output variables,

Yk.

The model output variables, Yk, constitute criteria for the

two-objective optimization problem. The first objective is

that the fuel consumption should be as small as possible,

and the second is that the ship speed should be as high as

possible. The weighted sum method that minimizes a

positively weighted convex sum of these objectives was

adopted as the substitute objective function:

Z ¼ wq1 � Y1 � 1� wq1

� �
� Y2 ! MIN ð1Þ

and

wq1 þ wq2 ¼ 1 ð2Þ

where Z—the substitute objective function of a two-ob-

jective optimization problem, Y1—the normalized hourly

fuel consumption rate, Y2—the normalized instantaneous

speed over the ground, wq1—the weight factor of criterion

1, wq2—the weight factor of criterion 2. The substitute

objective function, Z, was modified by introducing a new

output variable representing the loss of speed of a vessel

because the graph curves obtained from both ANN models

have consistent slopes. It was a purely technical approach

that does not alter the optimization results. Finally, the

substitute objective function obtained the following form:

Z ¼ wq1 � Y1 � 1ð Þ þ wq1 � 1
� �

� Y2 ! MIN ð3Þ

Based on the nominated optimization criteria, their

mathematical descriptions and the determined constraints,

an algorithm was designed for the two-objective opti-

mization. All necessary calculations were performed using

code developed from the MATLAB optimization toolbox.

More detailed information can be found in Rudzki [1].

3.2 Data acquisition

To collect the data necessary to create the ANN models, an

experiment was conducted on the tall ship Pogoria. This

ship is a barquentine, which means that the main source of

her propulsion is sails. Nevertheless, Pogoria is equipped

with a 255-kW drive engine, which drives a CPP with a

356 rpm nominal speed through a 1:4.5 reduction gear

ratio. The selection of the CE rotational speed and the CPP

pitch is performed by two command levers located on the

navigating bridge. Therefore, we decided to conduct the

dedicated experiment at sea with different commanded

outputs of the ship driveline system and different ship

Table 1 Output and input variables of ANN models

Variable name Variable identifier Possible

limit values

Observed

values

Unit

Min Max Min Max

CE rotational speed X1 800 2000 1100 1950 [rpm]

CPP pitch X2 0 19 0 18 [Pitch scale}

Wind direction angle in relation to the longitudinal axis of the ship X3 -90 90 -90 90 [�]
Wind speed X4 0 – 0 48 [knot]

State of the sea X5 0 10 0 8 [Degree]

Tidal current direction angle in relation to the longitudinal axis of the ship X6 -90 90 -83 90 [�]
Tidal current speed X7 0 – 0 3.1 [Knot]

Time since the last docking of the ship X8 0 – 0 24 [Months]

Hourly fuel consumption rate Y1 – &65 6 48.9 [dm3/h]

Instantaneous speed over the ground Y2 0 – 0 11.2 [Knot]
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courses for various environmental conditions at sea. These

experiments were carried out with the engine as the main

source of power (without using sails).

To obtain appropriate measurements, we used different

onboard instruments and a specially developed measuring

device. More information regarding measurement methods

is presented in Rudzki and Tarelko [12]. Values for the

selected input and output variables of the ANN models

were obtained from 315 observations carried out during sea

trials. Their possible and observed ranges are presented in

Table 1, and the collected results are published in Rudzki

[1].

4 Development of ANN models

Artificial neural network techniques were used to build

models enabling ship fuel consumption and speed predic-

tion, which are necessary to develop DSS. The input and

output variables presented in Table 1 and their values

acquired from the dedicated experiment conducted at open

sea were used to design and construct these models. Gen-

erally, the design and construction of ANN models consist

of the following main actions.

• Data normalization,

• Division of the data set,

• Architecture of ANN models,

• Assessment of ANN model quality.

4.1 Quality assessment of the collected data set

Initially, a quality assessment of the collected data set was

conducted before implementing these actions. This was

done using the STATISTICA software module. To analyse

the correctness of the factor spatial structure, the central

agglomeration procedure and six hierarchical cluster

algorithms were used. These statistical methods allowed us

to find relatively homogeneous clusters of cases based on

dissimilarities or distances between the observed objects.

As a result, we received many cluster hierarchies that are

commonly displayed as tree diagrams called dendrograms.

An example of the dendrogram for the input variables

(without the variable: ‘time since the last docking of the

ship’) and the output variable ‘hourly fuel consumption

rate’ using a method called the City block (Manhattan)

distance is shown in Fig. 3.

The vertical axis of the dendrogram represents the dis-

tance between clusters, and the horizontal distance repre-

sents the objects and clusters. All dendrograms obtained

using these methods have similar structures. The objects

are practically separated by every method and every met-

ric, and similarly—with the exception of specific numeral

values of similarity. Based on the correct clustering, we

agreed that the selected variables are appropriate for the

collected data set.

4.2 Data normalization and division of the data
set

In the next steps, the MATLAB Neural Network Toolbox

was applied to develop the desired ANN models.

In the first step of developing ANN models, linear

normalization with 10% reserve was used. For data with

positive values of the variables, that is, X1, X2, X4, X5, X7,

X8, Y1 and Y2, the range was [0.1, 0.9], whereas for data

with negative values of the variables, that is, X3 and X6, the

range was [- 0.9,0.9]. The straight-line coefficients were

calculated using the following formulas:

• For data with positive values of the variables.

ai ¼
0:8

ximax � ximin

and bi ¼ 0:9� 0:8 � ximax

ximax � ximin

: ð4Þ

• For data with negative values of the variables.

aj ¼
1:8

xjmax � xjmin

and bj ¼ 0:9� 1:8 � xjmax

xjmax � xjmin

: ð5Þ

This allowed us to extrapolate beyond the observed

ranges, e.g. greater than the observed values of the wind

force or sea state.

Next, a cross-validation procedure was performed to

ensure the accuracy of the results. The idea of this proce-

dure is to split the training set into two, a set of examples to

train with and a validation set. To improve both the effi-

ciency and the quality of ANN training, the data were

randomly divided into three sets (training, testing and

Fig. 3 Dendrogram of the hierarchical cluster analysis (metric

distance: City Block (Manhattan)
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validation). We examined four methods offered by the

MATLAB Neural Network Toolbox that enables splitting

the data set. As a result, we selected the dividerand func-

tion to create random indices for these sets. Subsequently,

we obtained three subsets in the following ratio:

• Training set—70% of the data,

• Validation set—20% of the data,

• Testing set—10% of the data.

4.3 Architecture of ANN models

The most important stage in building ANN models is to

design and construct the appropriate network architecture.

It determines the model significance and adequacy. To

design the suitable network architecture, it is necessary to

decide several important parameters, such as the linearity

or non-linearity of the considered problem, the number of

network outputs, hidden layers, neurons in the hidden

layers, epochs of network learning, the type of the activa-

tion function, quality of fit to the data, algorithm and step

learning.

Results of the preliminary sea trials show that the con-

sidered issue is inherently a nonlinear phenomenon [12].

Therefore, a nonlinear neural network was selected to

design and construct its architecture.

To develop DSS, we need to build two ANN models

with two separate outputs, which could be realized by one

common or two separate networks. In the second case,

there is a contradiction between the model outputs.

Therefore, we decided to build two separate networks with

a single output for each model according to the suggestions

presented in Tadeusiewicz [24]. This approach enabled the

optimal adjustment of the network settings.

The next stages in designing a network architecture are

to choose the number of hidden layers and epochs of net-

work learning. In the developed network, information

moves in only one direction without any cycles or loops. In

ANN techniques, these structures are called feedforward

networks and they are described by MLP networks in a

relatively comfortable way. Therefore, the function feed-

forward was chosen from the MATLAB Neural Network

Toolbox. It allowed us to specify successive parameters

and learning processes of the network structures like the

number of hidden layers, the number of neurons in the

hidden layers and the activation functions.

All actions needed to develop the ANN models were

performed based on the MATLAB Neural Network Tool-

box and its functions. In particular, the number of epochs,

the type of activation function for the neurons, the ANN fit

quality and the ANN training step were completed, and the

appropriate MATLAB scripts were developed. Extensive

computational experiments generated two separate ANNs

for both output variables Y1 ‘hourly fuel consumption rate’

and Y2 ‘instantaneous speed over the ground’. In both

cases, MLP network with the following structure was used:

• Eight neurons in the input layer, representing the input

variables for both ANN models,

• Two hidden layers with different numbers of neurons,

and

• One neuron in the output layer representing the output

variables separately for each of the ANN models.

These two networks differ only in the number of neu-

rons in their hidden layers. The structure of the adopted

networks is presented in Fig. 4.

The number of the neurons in the hidden layers and the

transfer (activation) functions for the neurons were modi-

fied during network learning. The following functions,

available in the MATLAB Neural Network Toolbox, were

applied.

• Linear transfer function: purelin,

• Log-sigmoid transfer function: logsig,

Fig. 4 Principal architecture of the developed ANNs

Fig. 5 Network training performance plot
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• Tan-sigmoid transfer function: tangsig.

Ultimately, the best results were obtained using the

tangsig transfer function for neurons of both hidden layers.

Several network learning methods have been used. We

started with the recommended first-choice supervised

algorithm of a method called fastest backpropagation

algorithm Levenberg–Marquardt (trainlm). Unfortunately,

this method did not give us satisfactory learning results.

Momentum learning methods were used in the next steps,

namely gradient descent with momentum backpropagation

(traingm), and gradient descent with momentum and

adaptive learning rate backpropagation (traingdx). The best

fit of models was obtained by applying the descent with

momentum gradient method. Nevertheless, the calculation

time using the four-core processor was quite long and

lasted about 37 h.

After many experiments, the traingdm training function,

which updates weight and bias values according to gradient

descent with momentum, was used for the network learning

with parameters as follows:

• mvnet.trainParam.show = 1 (displaying results every 1

learning epoch),

• mvnet.trainParam.epochs = 2,000,000 (the maximum

number of learning epochs),

• mvnet.trainParam.goal = 0.0001 (the value of mean

squared error to be achieved during the learning

process),

• mvnet.trainParam.max_fail = 200 (the number of

increasing learning errors checked on the validation

set).

The maximum number of learning epochs was relatively

easy to determine experimentally using the plot network

performance function plotperform. While observing the

graph of network learning, it was noticed that after

reaching 2000000 epochs the network training essentially

stops (Fig. 5).

The MATLAB diagrams of pattern recognition net-

works for both ANN models are shown in Fig. 6.

Fig. 6 MATLAB diagrams of pattern recognition networks for ANN model outputs for: a hourly fuel consumption rate; b instantaneous speed

over the ground
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4.4 Quality assessment of ANN models

The developed neural networks were fitted to the data by

learning algorithms during a training process. The quality

was proved using MATLAB regression plots that displayed

the network outputs with respect to targets for training,

validation and test sets (Fig. 7). In both cases, the quality

of fits is reasonably good for all data sets, with R2 values

above 0.95.

5 Results and discussion

To verify the correctness of the presented approach, addi-

tional sea trials were conducted after developing the

computer-aided system. The representative values of the

input variables (observations) are shown in Table 2. To

avoid excessive concentration of lines on graphs repre-

senting relationships between the ANN model variables,

these graphs were constructed for decision-making variable

values with steps of 200 [rpm] for X1 and 2 [pitch scale] for

X2.

Fig. 7 MATLAB regression plots displaying the network outputs with respect to targets for training, validation, and test sets for: a hourly fuel

consumption rate; b instantaneous speed over the ground

Table 2 Representative values

of the input variables used to

validate ANN models

Variable identifier Value of observation Unit

No. 1 No. 2 No. 3 No. 4

X1 From 1000 to 1800 with steps of 200 [rpm]

X2 From 2 to 18 with steps of 2 [Pitch scale]

X3 -80 -50 50 90 [�]
X4 25 5 3 7 [Knot]

X5 4 1 1 2 [Degree]

X6 -80 -15 75 0 [�]
X7 1 0.5 1 0 [Knot]

X8 6 6 18 6 [Months]
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The impact of the decision-making variables X1 ‘rota-

tional speed of the engine’ and X2 ‘pitch of the propeller’

on the first output variable Y1 ‘hourly fuel consumption

rate’ for the representative values of the uncontrollable

variables X3 – X8 (Table 2) is shown in graphical form in

Figs. 8 and 9, respectively. These same dependencies are

collected together in a 3-D in Fig. 10.

An analysis of the constructed graphs shows us that the

first developed ANN model that connects a fuel con-

sumption process to factors that influence this process is a

good representation of the ship operational practice. We

notice very good smooth curves without any unexpected

bends, bending or other undesirable distortions. However,

we notice slight negative slopes of curves (Fig. 9c, d) for

the minimum value of engine rotational speed

(X1= 100 rpm) in cases when wind affects in the direction

of the vessel’s motion. This is consistent with observations

during the operational practices of the tested ship, when the

wind blowing from the stern drives provides additional

thrust and simultaneously reduces the fuel consumption.

The received 2-D graphs (Figs. 8, 9) give us a basis to

conclude that this representation

• Should be appropriate for the entire range of the

decision-making variables X1 and X2, that is, for values

ranging from 1000 to 1800 [rpm] and from 2 to 18

[pitch scale], respectively (Table 2). These values

ranges are used in practice as the commanded outputs

during operation of the tested ship,

• May be suitable for the uncontrollable variables X3–X8

in terms of their maximum values obtained during the

sea trials (Table 1).

Fig. 8 Relationships between the output variable Y1 ‘hourly fuel consumption rate’ and the decision-making variable X1 ‘rotational speed of the

engine’ for: a observation No.1; b observation No.2; c observation No.3; d observation No.4
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These conclusions are also confirmed by the three-di-

mensional visualization presented in Fig. 10, where any

unexpected bends, bending or other undesirable distortion,

called ‘sigmodal fluctuation’ [24] do not appear.

Similar behaviour for the ANN model can be observed

for the influence of the decision-making variables X1 ‘ro-

tational speed of the engine’ and X2 ‘pitch of the propeller’

on the second output variable Y2 ‘instantaneous speed over

the ground’. These dependencies are presented in graphical

form in Figs. 11 and 12, respectively, for the representative

values of the uncontrollable variables X3–X8 (Table 2).

Moreover, these same dependencies are collected together

in the 3-D graphs presented in Fig. 13.

The second ANN model developed that links ship speed

to factors that influence this speed is also a very good

representation of the ship operational practice. Very good

smooth curves without any unexpected bends, bending and

negative slopes of curves characterize the presented graphs.

Their courses also match the observations recorded during

operation of the tested ship.

Based on the 2-D graphs (Figs. 11 and 12), we can

conclude that this representation.

Fig. 9 Relationships between the output variable Y1 ‘hourly fuel consumption rate’ and the decision-making variable X1 ‘rotational speed of the

engine’ for: a observation No.1; b observation No.2; c observation No.3; d observation No.4
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• Should be appropriate for the entire range of decision-

making variables X1 and X2, that is, for values from

1000 to 1800 [rpm] and from 2 to 18 [pitch scale],

respectively (Table 2). These values are used in prac-

tice as the commanded outputs during operation of the

tested ship,

• May be suitable for the uncontrollable variables X3–X8

in terms of their maximum values obtained during the

sea trials (Table 1).

These conclusions are also confirmed by the three-di-

mensional visualization presented in Fig. 13, where any

unexpected bends, bending or other undesirable distortion,

called ‘sigmodal fluctuation’ [24], also do not appear.

Analysis of the modelling results for each of the ANN

networks by observing parameters that characterize the

quality of their fitting to the data recorded during sea trials

as well as analysis of graph curve courses (Figs. 8, 9, 11

Fig. 10 Three-dimensional visualization of relationships between the

output variable Y1 ‘hourly fuel consumption rate’ and both the

decision-making variables X1 ‘rotational speed of the engine’ and X2

‘pitch of the propeller’ for: a observation No.1; b observation No.2;

c observation No.3; d observation No.4
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and 12) for various values of the model input variables

allows us to formulate the following statements:

• The developed neural networks are well fitted to the

real data as evidenced by the relatively high correlation

coefficient R2 and a lack of ‘sigmodal fluctuation’ in the

MLP class models,

• There are some troubles with fitting the observed

parameters in the areas where there was a lack of sea

trail data or their observation number was low.

6 Conclusions

Prediction of ship driveline system performance was car-

ried out for various ranges of the decision-making variables

(commanded outputs) for numerous of uncontrollable

variables (mainly sea environmental conditions) and dis-

turbances (quantity of fuel in tanks, etc.).

The results obtained for modelling ship speed fuel and

consumption by applying ANN allow concluding that:

• Application of ANN allows us to predict ship driveline

system performance with 0.8–2.8% accuracy, which is

Fig. 11 Relationships between the output variable Y2 ‘instantaneous speed over the ground’ and the decision-making variable X1 ‘rotational

speed of the engine’ for: a observation No.1; b observation No.2; c observation No.3; d observation No.4
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as the same accuracy as results of measurement

achieved during the ship sea trials,

• However, the recorded sea trial data are discrete values

in their nature while the applied ANN of MLP class

models provide continuous functions,

• The developed ANNs setting up black box models can

be used to build the decision support system aiding

selection of the commanded output of ship driveline

system.

The developed two-objective optimization model pro-

vides different combinations of optimal commanded out-

puts, whereas expected values of the output variables (ship

speed and fuel consumption) are similar. Therefore, future

research should be conducted with additional optimization

criteria, e.g. harmful air pollutants, including particulate

matter (PM), sulphur dioxide (SO2), nitrogen oxides (NOx)

emitted from ship engine.

Fig. 12 Relationships between the output variable Y2 ‘instantaneous speed over the ground’ and the decision-making variable X1 ‘rotational

speed of the engine’ for: a observation No.1; b observation No.2; c observation No.3; d observation No.4
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Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.
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